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On normalized distance Laplacian eigenvalues of graphs
and applications to graphs defined on groups and rings
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ABSTRACT. The normalized distance Laplacian matrix of a connected graph G, denoted by DL(G), is de-
fined by DL(G) = Tr(G)−1/2DL(G)Tr(G)−1/2, where D(G) is the distance matrix, the DL(G) is the distance
Laplacian matrix and Tr(G) is the diagonal matrix of vertex transmissions of G. The set of all eigenvalues of
DL(G) including their multiplicities is the normalized distance Laplacian spectrum or DL-spectrum of G. In
this paper, we find the DL-spectrum of the joined union of regular graphs in terms of the adjacency spectrum
and the spectrum of an auxiliary matrix. As applications, we determine the DL-spectrum of the graphs asso-
ciated with algebraic structures. In particular, we find the DL-spectrum of the power graphs of groups, the
DL-spectrum of the commuting graphs of non-abelian groups and the DL-spectrum of the zero-divisor graphs
of commutative rings. Several open problems are given for further work.

1. INTRODUCTION

In this article, all graphs are connected, simple, undirected and finite. A graph is de-
noted by G(V,E) (or simply G), where V and E are its vertex and edge set, respectively.
The cardinality of V is the order n of G and the cardinality of E is the size m of G. The
degree of a vertex v ∈ V in G is the number of edges incident with v and is denoted by
dG(v) (or simply dv ). The neighborhood of a vertex v, denoted byN(v), is the set of vertices
of G adjacent to v, so that dv = |N(v)|. A graph is called r-regular if the degree of every
vertex is r. For other undefined notations, see [18].

The adjacency matrix A(G) of graph G is a (0, 1)-square matrix of order n with rows and
columns indexed by vertices, where (i, j)-entry is 1, if vi is adjacent to vj and 0, otherwise,
1 ≤ i, j ≤ n. Let Deg(G) be the diagonal matrix of vertex degrees di. The real symmetric
matrices L(G) = Deg(G) − A(G) and Q(G) = Deg(G) + A(G) are called the Laplacian
matrix and the signless Laplacian matrix of G, respectively. More about these matrices can
be seen in [18].

The normalized Laplacian matrix of a connected graph G is a square matrix of order n,
defined by

L(G) = (lij)n×n =

{
1 i = j,
−1√
dvidvj

i 6= j,

where dvi is the degree of vertex vi and 1 ≤ i, j ≤ n. The relation of the adjacency matrix
and the Laplacian matrix of G with the normalized Laplacian matrix is given below

L(G) = Deg(G)−1/2L(G)Deg(G)−1/2 = I −Deg(G)−1/2A(G)Deg(G)−1/2,
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where Deg(G)−1/2 is the diagonal matrix of square root of vertex degrees of G. For some
recent work on the normalized Laplacian, see [19, 20, 50, 26] and for the normalized Lapla-
cian Estrada index, see [47, 48].

For two vertices u and v in a connected graph G, the distance between u and v, denoted
by d(u, v), is the length of a shortest path between them. The distance matrix D(G) of a
connected G, is defined as D(G) = (d(u, v))u,v∈V (G), if u 6= v and is taken as zero when
u coincides with v. The transmission (or transmission degree) TrG(v)(if the graph is clear
from the context then we write Tri instead of TrG(i)) of the vertex v is defined to be the
sum of the distances from v to all other vertices of G, that is, TrG(v) =

∑
u∈V (G)

d(u, v).

We note that TrG(v) is same as the v-th row sum of the matrix D(G). Let Tr(G) be the
diagonal matrix of row sums of G. The Weiner index W (G) of G is the sum of distances
between all unordered pairs of vertices. The distance Laplacian matrix is denoted by
DL(G) and is defined as DL(G) = Tr(G)−D(G). It immediately follows that DL(G) is a
real symmetric and positive semi-definite matrix. Similarly the matrix DQ(G) = Tr(G) +
D(G) is called the distance signless Laplacian matrix of G. More about these matrices can
be seen in [8, 9, 22, 23, 39].

Recently, Reinhart [46] put forward the concept of the normalized distance Laplacian
matrix of a connected graph G and defined as

DL(G) = (dij)n×n =

{
1 if i = j,
−d(vi,vj)√
Tr(vi)Tr(vj)

if i 6= j,

where 1 ≤ i, j ≤ n. Just as the normalized Laplacian matrix can be represented in terms of
Laplacian and adjacency matrix of a graph, the normalized distance Laplacian matrix is
equivalently defined in terms of distance matrix and distance Laplacian matrix as follows

DL(G) = Tr(G)−1/2DL(G)Tr(G)−1/2 = I − Tr(G)−1/2D(G)Tr(G)−1/2.

The normalized distance Laplacian matrix is real symmetric positive semi-definite and its
eigenvalues are ordered as ρL1 ≥ ρL2 ≥ · · · ≥ ρLn−1 ≥ ρLn = 0, where ρL1 is known as the
distance normalized Laplacian spectral radius of G. The set of all eigenvalues of the ma-
trix DL(G) together with their multiplicities is called the normalized distance Laplacian
spectrum or DL-spectrum of G. For some spectral properties of the normalized distance
Laplacian matrix, we refer to [46, 30, 24].

There are various types of graphs defined on groups, rings, vector spaces, like Cayley
graphs [12], intersection graphs, commuting graphs [10], primes graphs, power graphs
[32], zero divisor graphs [14] and several other types of graphs defined on algebraic struc-
tures. In fact algebra and discrete mathematics are two vital disciplines of mathematics,
they interact in several ways by extending tools from each other. These types of graphs
have numerous applications and are well studied, see [33, 7]. Researchers have studied
various spectral properties of algebraic graphs for different types of matrices and inter-
esting results were obtained, [40, 38, 15, 16, 29, 28, 35].

The rest of the paper is organised as: in Section 2, we find the DL-spectrum of joined
union of regular graphs in terms of the adjacency spectrum of the respective components.
As applications to the results in Section 2, we determine the DL-eigenvalues of power
graphs of groups, the commuting graphs of non-abelain groups and the zero-divisors of
the commutative ring Zn in Section 3, Section 4 and Section 5, respectively.
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2. NORMALIZED LAPLACIAN EIGENVALUES OF THE JOINED UNION OF GRAPHS

In this section, we find the DL-spectrum of the joined union of regular graphs in terms
of the adjacency spectrum of its components and an auxiliary matrix determined by the
structure of the graph. We also obtain the DL-spectrum of the join of regular graphs.
Further, the DL-spectrum of some well known families of graphs are determined.

Consider the matrix

M =


m1,1 m1,2 · · · m1,s

m2,1 m2,2 · · · m2,s

...
...

. . .
...

ms,1 ms,2 · · · ms,s


n×n

,

whose rows and columns are partitioned according to a partition S = {S1, S2, . . . , Sm}
of the index set X = {1, 2, . . . , s}. The quotient matrix Q of M is the s × s matrix whose
(i, j)-th entry is the average row sum of the block ai,j . The partition S is said to be regular
if each block ai,j of M has constant row (and column) sum and in this case the matrix Q
is called a regular quotient matrix. In general, the eigenvalues of Q are interlaced by the
eigenvalues of M , while for regular partitions [18], each eigenvalue of Q is an eigenvalue
of M .

Let G(V,E) be a graph of order n and Gi(Vi, Ei) be graphs of order ni, where i =
1, . . . , n. The joined union G[G1, . . . , Gn] of graphs G1, G2, . . . , Gn with respect to graph G
is the graph H(W,F ) with vertex set W and edge set F defined as

W =

n⋃
i=1

Vi and F =

n⋃
i=1

Ei
⋃( ⋃

{vi,vj}∈E

Vi × Vj
)
.

Equivalently, the joined union G[G1, . . . , Gn] of graphs G1, G2, . . . , Gn with respect to
graph G is obtained by replacing each vertex vi of G by the graph Gi and joining edges
from each vertex of Gi to every vertex of Gj whenever vi and vj are adjacent in G. It

is clear that order of the graph G[G1, . . . , Gn] is
n∑
i=1

ni and its size is
n∑
i=1

mi +
∑

vi∼vj
ninj ,

where vi ∼ vj means that vi adjacent to vj . It is clear from the definition that the usual
join G1OG2 is a particular case of the joined union and can be written as K2[G1, G2]. The
following example illustrates the joined union of three graphs.

G1 G2 G3

v1 v2 v3

G = P3 P3[G1, G2, G3]

FIGURE 1. Joined union of three graphs

The following result gives the DL-spectrum of G[G1, . . . , Gn], when each Gi is ri-
regular graph of order ni.

Theorem 2.1. Let G be a connected graph of order n ≥ 2 and size m and let Gi be ri-regular
connected graphs of order ni having adjacency eigenvalues λi1 = ri ≥ λi2 ≥ . . . ≥ λini , where
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i = 1, 2, . . . , n. Then the normalized distance Laplacian eigenvalues of G[G1, . . . , Gn] are

1 +
1

Ti

(
2 + λik(Gi)

)
, for i = 1, . . . , n and k = 2, 3, . . . , ni,

where Ti = 2ni − 2 − ri + n
′

i, and n
′

i =
n∑

k=1,k 6=i
nkdG(vi, vk). The other n normalized distance

Laplacian eigenvalues are given by the eigenvalues of the following regular quotient matrix

(2.1) M =


d
′

1
−n2dG(v1,v2)√

T1T2
. . . −nndG(v1,vn)√

T1Tn
−n1dG(v2,v1)√

T1T2
d
′

2 . . . −nndG(v2,vn)√
T2Tn

...
...

. . .
...

−n1dG(vn,v1)√
T1Tn

−n2dG(vn,v2)√
T2Tn

. . . d
′

n

 ,

where d
′

i = 1− 1
Ti

(
2ni − ri − 2

)
.

Proof. Let V (G) = {v1, . . . , vn} be the vertex set of G and let V (Gi) = {vi1, . . . , vini}
be the vertex set of Gi, for i = 1, 2, . . . , n. Let H = G[G1, . . . , Gn] be the joined union of

ri-regular graphs Gi, where i = 1, 2, . . . , n. Clearly order of H is N =
n∑
i=1

ni. As Gi is

ri-regular graph, the transmission degree of every vertex vij ∈ V (H), for 1 ≤ i ≤ n and
1 ≤ j ≤ ni, is equal to the distance of j-th vertex in Gi to all other vertices of G, which is
further equal to the distance within vertices of Gi and the distance of vertices outside of
Gi. Thus,

Tr(vij) = dGi(vij) + 2(ni − 1− dGi(vij)) + n1d(vi, v1) + n2d(vi, v2) + · · ·+ nnd(vi, vn)

= 2ni − 2− d(vij) + n
′

i = 2ni + n
′

i − ri − 2.

Further, we note that Tr(vi1) = Tr(vi2) = · · · = Tr(vini) = Ti (say), for i = 1, 2, . . . , n.
Without loss of generality let us label the vertices of H in a suitable way so that the nor-
malized distance Laplacian matrix DL(H) can be put as

DL(H) =


D1

−dG(v1,v2)√
T1T2

Jn1×n2 . . . −dG(v1,vn)√
T1Tn

Jn1×nn
−dG(v1,v2)√

T1T2
Jn2×n1

D2 . . . −dG(v2,vn)√
T2Tn

Jn2×nn
...

...
. . .

...
−dG(v1,vn)√

T1Tn
Jnn×n1

−dG(v2,vn)√
T2Tn

Jnn×nn−1
. . . Dn

 ,

where, for i = 1, 2, . . . , n,

Di = Ini −
1

Ti

(
2(Jni − Ini)−A(Gi)

)
,

A(Gi) is the adjacency matrix of Gi, Jni is the matrix with all entries equal to 1 and Ini is
the identity matrix of order ni.

Since each of Gi is ri-regular graph, it is well known that ri is the adjacency eigen-
value [see, [18]] of A(Gi) with the corresponding eigenvector eni = (1, 1, . . . , 1︸ ︷︷ ︸

ni

)T and any

other eigenvector of A(Gi) is orthogonal to it. Let λik, where λik 6= ri, 2 ≤ k ≤ ni, be
an arbitrary eigenvalue of A(Gi) with its associated eigenvector Y = (yi1, yi2, . . . , yini)

T

satisfying eTniY = 0. Clearly, the column vector Y can be considered as a function defined
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on V (Gi) associating the vertex vij to yij , that is, Y (vij) = yij , with i = 1, 2, . . . , n and
j = 1, 2, . . . , ni. Now, take the vector X = (x1, x2, . . . , xn)T , where

xj =

{
yij if vij ∈ V (Gi)

0 otherwise.

Recall that eTniY = 0 and coordinates of X corresponding to vertices in
⋃
j 6=i Vj of H are

zeros, so we obtain

DL(H)X =



−dG(v1,vi)√
T1Ti

Jn1×niY

...
−dG(vi−1,vi)√

T1Ti−1

Jni−1×niY

DiY
−dG(vi+1,vi)√

Ti+1Ti
Jni+1×niY

...
−dG(v1,v2)√

T1T2
Jnn×niY


=



0
...
0(

Ini − 1
Ti

(2(Jni − Ini)−A(Gi)
)
Y

0
...
0


=

(
Ini −

1

Ti

(
2(Jni − Ini)−A(Gi)

))
X = 1 +

1

Ti

(
2 + λikA(Gi)

)
.

This shows that X is the eigenvector of the normalized distance Laplacian matrix DL(H)

associated to the eigenvalue 1 + 1
Ti

(
2 + λik(Gi)

)
, for each eigenvalue λik of A(Gi) other

than ri, 2 ≤ k ≤ ni. This implies that 1 + 1
Ti

(
2 + λik(Gi)

)
, with 1 ≤ i ≤ n and 2 ≤ k ≤ ni,

are the eigenvalues of DL(H). In this way, we obtain
n∑
i=1

ni − n normalized distance

Laplacian eigenvalues of DL(H). The other n normalized distance Laplacian eigenvalues
of DL(H) can be obtained by using the concept of regular quotient matrix and are given
by the matrix (2.1). This proves the result. �

The lexicographic product G
[
H
]

of graphs G and H is the graph with vertex set V (G)×
V (H) and (a, x)(b, y) ∈ E(G

[
H
]
) whenever ab ∈ E(G), or a = b and xy ∈ E(H). It is

easy to see that the lexicographic productG
[
H
]

of the graphsG andH is the joined union
G[H,H, . . . ,H]. That is, G

[
H
]

= G[H,H, . . . ,H]. Taking, Gi = H for all i in Theorem 2.1,
we obtain the following result which gives the normalized distance Laplacian spectrum
of the lexicographic product G

[
H
]
.

Corollary 2.1. LetG be a connected graph of order n ≥ 2 and letH be a connected r-regular graph
of order n1. Let λ1(H) ≥ λ2(H) ≥ . . . ≥ λn1

be the adjacency eigenvalues of H . The normalized
distance Laplacian spectrum of the lexicographic product G

[
H
]

= G[H, . . . ,H] consists of the

eigenvalues 1 + 1
Ti

(
2 + λk(Gi)

)
, for i = 1, 2, . . . , n and k = 1, 2, . . . , n1 − 1, where Ti =

2n1 − 2− r + n1
∑

k=1,k 6=i
ndG(vi, vk). The remaining n eigenvalues are given by the eigenvalues

of the matrix 2.1 with ni = n1 and Ti = 2n1 − 2− r + n1
∑

k=1,k 6=i
ndG(vi, vk), 1 ≤ i ≤ n.

Next result is a consequence of Theorem 2.1 and gives the normalized distance Lapla-
cian eigenvalues of the join of two regular graphs.

Corollary 2.2. Let G1 and G2 be r1-regular and r2-regular connected graphs of order n1 and n2,
respectively. The normalized distance Laplacian spectrum of G1OG2 consists of the eigenvalues
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1 + 1
T1

(
2 + λ1k(G1)

)
, k = 2, . . . , n1, the eigenvalues 1 + 1

T2

(
2 + λ2k(G1)

)
, k = 2, . . . , n2

and the other two normalized distance Laplacian eigenvalues of G1OG2 are the eigenvalues of the
matrix given below

(2.2)

1− 1
T1

(
2n1 − r1 − 2

)
−n2√
T1T2

−n1√
T1T2

1− 1
T2

(
2n2 − r2 − 2

) ,

where T1 = 2n1 + n2 − r1 − 2 and T2 = 2n2 + n1 − r2 − 2.

Proof. Labelling the vertices first from G1 and then from G2, the normalized distance
Laplacian matrix of G1OG2 can be written asI1 − 1

T1

(
2(Jn1

− In1
)−A(G1)

)
−1√
T1T2

Jn1×n2

−1√
T1T2

Jn2×n1
I1 − 1

T2

(
2(Jn2

− In2
)−A(G2)

) .

Now, result follows by Theorem 2.1. �
Consider the complete split graph, denoted by CSn,ω , with clique number ω and inde-

pendence number n − ω. Clearly, CSn,ω = KωOKn−ω . Taking n1 = ω, n2 = n − ω, T1 =
n − 1, T2 = 2n − ω − 2 in Corollary 2.2 and using the fact adjacency spectrum of Kω is
{ω−1,−1[ω−1]}, it follows that the spectrum ofCSn,ω consists of the eigenvalue 1+ 1

n−1 =
n
n−1 with multiplicity ω−1, the eigenvalue 1+ 2

2n−ω−2 = 2n−ω
2n−ω−2 with multiplicity n−ω−1.

The remaining two normalized distance Laplacian eigenvalues of CSn,ω are given by the
eigenvalues of the matrix 2.2 and are 0, n−ωn−1 + ω

2n−ω−2 .

Let Wn+1 be the wheel graph of order n + 1. It is well known that Wn+1 = CnOK1.
Taking n1 = n, n2 = 1, r1 = 2, r2 = 0, T1 = 2n − 3, T2 = n in Corollary 2.2 and using
the fact that the adjacency spectrum of Kω is {ω − 1,−1[ω−1]}, we get the normalized
distance Laplacian spectrum of Wn+1, which consists of the eigenvalues 1 + 1

2n−3

(
1 +

2 cos
( 2π(k−1)

n

))
, k = 2, . . . , n and the eigenvalues 2n−2

2n−3 , 0.

3. NORMALIZED DISTANCE LAPLACIAN EIGENVALUES OF POWER GRAPHS OF GROUPS

In this section, we consider the power graphs of finite groups. As applications of The-
orem 2.1 and its consequences obtained in Section 2, we determine their normalized dis-
tance Laplacian eigenvalues.

If G is a finite group of order nwith identity e. The power graph of G, denoted by P(G),
is the simple graph with vertex set as the elements of group G and two distinct vertices
x, y ∈ P(G) are adjacent if and only if one is the positive power of the other, that is, xi = y
or yj = x, for positive integers i, j with 2 ≤ i, j ≤ n. Such graphs were introduced in [32],
see also [17], and have valuable applications both in algebra and combinatorics. They are
related to automata theory [33] besides being useful in characterizing finite groups. Let
Zn be the additive integer modulo n group and we let Uon = {a ∈ Zn : (a, n) = 1} ∪ {0},
where (a, n) denotes their greatest common divisor. Our other group theory notations
are standard and can be taken from [37]. More work on power graphs can be seen in
[11, 17, 34, 1] and the references therein.

The adjacency spectrum, the Laplacian, the normalized Laplacian and the signless
Laplacian spectrum of power graphs of finite cyclic and dihedral groups have been in-
vestigated in [13, 16, 28, 29, 43, 35, 44].

The divisor d of positive integer n (written as d|n) is the proper divisor of n, if 1 < d < n.
Let Dn be a simple graph with vertex set as the proper divisor set {di : 1, n 6= di|n, 1 ≤
i ≤ t} and edge set {didj : di|dj , 1 ≤ i < j ≤ t}, for 1 ≤ i < j ≤ t. If the canonical
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decomposition of n is n = pn1
1 pn2

2 . . . pnrr , where r, n1, n2, . . . , nr are non-negative integers
and p1, p2, . . . , pr are distinct prime numbers, then the order of graph Dn is |V (Gn)| =
r∏
i=1

(ni + 1)− 2.

Suppose d1, d2, . . . , dt be the proper divisors of n and x, y are vertices in P(Zn). Clearly,
if x and y are adjacent then o(x)|o(y) or o(y)|o(x), where o(x) denotes the order of x in Zn.
Thus, P(Zn) has complete subgroups of orders φ(di), 1 ≤ i ≤ t. If for some i and j, di|dj,
then since Zn is a cyclic group, all vertices of degree di and dj are adjacent. Also, all the
generators of Zn together with identity element constitute a complete subgraph of order
φ(n) + 1 and all its vertices are adjacent to every other vertex of P(Zn). This fact is made
precise in the following result.

Theorem 3.2. [34] If Zn is a finite cyclic group of order n, then the power graph P(Zn) is given
by

P(Zn) = Kφ(n)+1ODn[Kφ(d1),Kφ(d2), . . . ,Kφ(dt)],

where φ(n) is the Euler’s totient function.

The following result gives the information about some of the distance normalized
Laplacian eigenvalues of a graph when the graph contains a clique in which each ver-
tex have the same neighbour set outside the clique.

Lemma 3.1. [24] Let G be a connected graph of order n and K = {v1, v2, . . . , vω} induces a
clique inG satisfyingN(vi)−K = N(vj)−K, 1 ≤ i, j ≤ ω. ThenG has T+1

T as the normalized
distance Laplacian eigenvalue with multiplicity at least ω − 1, where T = Tr(vi) = Tr(vj) for
1 ≤ i, j ≤ ω.

The next result implies that n
n−1 is always the DL-eigenvalue of P(Zn).

Proposition 3.1. If P(Zn) is the power graph of the cyclic group Zn, then n
n−1 is normalized

distance Laplacian eigenvalue of P(Zn) with multiplicity at least φ(n).

Proof. Let P(Zn) be the power graph of the integer modulo group Zn. Then we know
that there are exactly φ(n) number of elements in Zn which generate every element of Zn.
So, by the definition of power graphs, there are φ(n) + 1 numbers of elements adjacent to
every other vertex of P(Zn). Therefore, power graph of Zn can be written as

P(Zn) = Kφ(n)+1OP(Zn \ Uon).

Thus, by using Lemma 3.1, we see that 1+ 1
n−1 = n

n−1 is the normalized distance Laplacian
eigenvalue with multiplicity φ(n). Also we note that n

n−1 may be the eigenvalue of the
equitable quotient matrix of Kφ(n)+1OP(Zn \ Uon). �

Next, problem is immediate from Proposition 3.1.

Problem 3.1. Characterize the power graphs of Zn which attain equality in Proposition 3.1.

Now, we will find the normalized distance Laplacian eigenvalues of P(Zn) using The-
orems 2.1 and 3.2.

Theorem 3.3. The normalized distance Laplacian spectrum of P(Zn) consists of the eigenvalue
n
n−1 with multiplicity φ(n), the eigenvalues φ(di)+n

′
i+1

φ(di)+n
′
i+1−1

, with multiplicities φ(di) − 1, for i =
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1, 2, . . . , t. The remaining t+ 1 eigenvalues are the eigenvalues of matrix (3.3) given below

(3.3) M =



1− φ(n)
n−1

−φ(d1)√
(n−1)T2

. . . −φ(dt)√
(n−1)Tt+1

−(φ(n)+1)√
(n−1)T2

d
′

2 . . . −φ(dt)d(v2,vt+1)√
T2Tt+1

−(φ(n)+1)√
(n−1)T3

−φ(d1)d(v2,v3)√
T2T3

. . . −φ(dt)d(v3,vt+1)√
T3Tt+1

...
...

. . .
...

−(φ(n)+1)√
(n−1)Tt+1

−(φ(d1))d(vt+1,v2)√
T2Tt+1

. . . d
′

t+1


,

where Ti+1 = φ(di) + n
′

i+1 − 1 and d
′

i+1 = 1− φ(di)−1
φ(di)+n

′
i−1

for i = 1, . . . , t, where n
′

i is defined
in Theorem 2.1.

Proof. Let P(Zn) be the power graph of Zn. Then by Theorem 3.2, we have

P(Zn) = H[Kφ(n)+1,Kφ(d1),Kφ(d2), . . . ,Kφ(dt)],

where H = K1ODn is the graph with vertex set {v1, . . . , vt+1}. By using Proposition
3.1, it follows that n

n−1 is the normalized distance Laplacian eigenvalue of P(Zn) with
multiplicity φ(n). For i = 1, . . . , t, Gi+1 = Kφ(di) and Ti+1 = 2ni+1 − 2 − ri+1 + n

′

i+1 =

2ni+1−2−ni+1 + 1 +n
′

i+1 = ni+1 +n
′

i+1−1 = φ(di) +n
′

i−1. Now, by applying Theorem
2.1, we see that

1 +
1

Ti+1
= 1 +

1

φ(di) + n
′
i+1 − 1

=
φ(di) + n

′

i+1

φ(di) + n
′
i+1 − 1

are the normalized distance Laplacian eigenvalues of P(Zn) with multiplicity φ(di) − 1,
for i = 1, 2, . . . , n. The other t+ 1 distance normalized Laplacian eigenvalues of P(Zn) are
the eigenvalues of matrix (3.3). �

If n = pz , where p is prime and z is positive integer, then P(Zn) [17] is the complete

graph Kn and its DL-spectrum is
{

0,
(

n
n−1

)[n−1]}
.

Let n = pq, where p and q, p < q, are primes. Then the power graph P(Zn) can be
written as

P3[Kp−1,Kφ(pq)+1,Kq−1].

Here,H = P3, n1 = p−1, n2 = φ(pq)+1, n3 = q−1, n
′

1 = φ(pq)+1+2q−2 = pq+q−p, n′2 =

p+ q− 2, n
′

3 = pq+ p− q, T1 = n1 + n
′

1 − 1 = pq+ q− 2, T2 = pq− 1 and T3 = pq+ p− 2.
Thus, by Proposition 3.1, n

n−1 is the normalized distance Laplacian eigenvalue of P(Zn)

with multiplicity φ(n) and by Theorem 3.3, φ(p)+n
′
2

φ(p)+n
′
2−1

= pq+q−1
pq+q−2 and φ(q)+n

′
3

φ(q)+n
′
3−1

= pq+p−1
pq+p−2

are the normalized distance Laplacian eigenvalues of P(Zn) with multiplicities p− 2 and
q − 2, respectively. The other three DL-eigenvalues of P(Zn) are the eigenvalues of the
following matrix  d

′

1
−n2√
T1T2

−n3√
T1T3

−n1√
T1T2

d
′

2
−n3√
T2T3

−n1√
T1T3

−n2√
T2T3

d
′

3

 ,

where d
′

i = 1− 1
Ti

(ni − 1), for i = 1, 2, 3. �
We recall that the proper power graph P(G∗) of a group G is the power graph of group

upon identity deletion, that is, P(G \ {e}). The proper power graph P(Z∗n) is a connected
graph of order n − 1, since there are generators of cyclic group Zn which are adjacent
to every other vertices of P(Z∗n). Thus the normalized distance Laplacian matrix makes
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sense on P(Z∗n). An analogues of Theorem 3.3 can be proved on the proper power graph
P(Z∗n).

The dihedral group of order 2n and dicyclic groups of order 4n are denoted and pre-
sented as follows

D2n =< a, b | an = b2 = e, bab = a−1 >,

Qn =< a, b | a2n = e, b2 = an, ab = ba−1 > .

If n is a power of 2, then Qn is called the generalized quaternion group of order 4n.
If n = pm1 , where m1 is the positive integer, then

P(D2n) = P3[Kn−1,K1,Kn],

that is, P(D2pm1 ) is the pineapple graph, the graph obtained from Kn by appending ver-
tices of degree 1 at some vertex of Kn. The normalized distance Laplacian spectrum of
P(D2pm1 ) = P3[Kn−1,K1,Kn] can be easily discussed as above in P(Zpq).

Also, if n is a power of 2, then it is clear that an and e are adjacent to all other vertices
of P(Qn), so the power graph P(Qn) can be written as joined union of cliques

P(Qn) = S[K2,K2n−2,K2,K2, . . . ,K2︸ ︷︷ ︸
n

],

where S = K1,n+1. Therefore, by using Theorems 2.1 and 3.3, the normalized distance
Laplacian spectrum of P(Q2n) can be easily determined. When n 6= pm1 in case of the
groupD2n and n not a power of 2 in case of the groupQn, it will be an interesting problem
to determine the normalized distance Laplacian spectrum of the power graphs. Therefore,
we leave the following problems for the future research.

Problem 3.2. Find normalized distance Laplacian spectrum of P(D2n) for n ∈ {pqr, p2q, (pq)2}
and generalize for any n?

Problem 3.3. Find normalized distance Laplacian spectrum ofP(Qn) for n ∈ {pq, pqr, p2q, (pq)2}
and generalize for any n?

4. NORMALIZED DISTANCE LAPLACIAN EIGENVALUES OF COMMUTING GRAPHS OF
GROUPS

Let G be a finite group andX be a non empty subset of G. The commuting graph, denoted
by C(G, X), is defined with X as vertex set and two vertices x and y are adjacent if and
only if x and y commute inX. commuting graphs of matrix rings and semirings over finite
fields were studied in [2, 21]. Metric dimension, resolving polynomial, clique number
and chromatic number of commuting graphs on dihedral groups were discussed in [4].
Recent results on the commuting graph of generalized dihedral groups can be found in
[31] and the references therein. The connectivity and spectral radius of adjacency matrix
of commuting graphs were studied in [5], Laplacian and signless Laplacian spectrum of
commuting graphs on dihedral groups were investigated in [3], common neighborhood
energy of commuting graphs [36]. For other spectral properties of commuting graphs, we
refer to [27] and the references therein.

The presentation of semi dihedral SD8n of order 8n is given by

SD8n = 〈a, b : a4n = e = b2, ab = ba2n−2〉,

The center of G, denoted by Z(G), is defined by

Z(G) = {z ∈ G : za = az for each a ∈ G.}
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...

n
2 + 2

K2Kn−2

K2

K2

...

K2

FIGURE 2. Graph S and the commuting graph C(D2n, D2n) with even n.

Clearly, the commuting graph G = C(Zn,Zn) is the complete graph Kn, as every el-
ement of Zn commutes with every other element. The normalized distance Laplacian
spectrum of C(Zn,Zn) ∼= Kn is already discussed. It is well known that Z(D2n) = {e},
for odd n and Z(D2n) =

{
e, a

n
2

}
, for even n. Also, Z(Q4n) = {e, an} is the center of di-

cyclic group. For the commuting graph G = C(D2n, Z(D2n)), we have G = K1, for odd
n and G = K2, for even n. So, the commuting graphs C(G, Z(G)) have simple structures.
However non trivial structures are obtained when we consider commuting graphs ofD2n,
with X = D2n itself.

Lemma 4.2. [4] For the commuting graph G = C(D2n, D2n) of the dihedral group D2n, we have

G =

{
K1O

(
Kn−1 ∪Kn

)
if n is odd,

K2O
(
Kn−2 ∪ n

2K2

)
if n is even.

In the following result, we find the normalized distance Laplacian eigenvalues of the
commuting graphs of dihedral group D2n.

Theorem 4.4. For the commuting graph C(D2n, D2n) of the dihedral group D2n, the following
hold.

(i) If n is odd, then the normalized distance Laplacian spectrum of C(D2n, D2n) consists of
the eigenvalue 4n−1

4n−2 with multiplicity n− 1, the eigenvalue 3n
3n−1 with multiplicity n− 2

and three eigenvalues of matrix (4.4).
(ii) If n is even, then the normalized distance Laplacian spectrum of C(D2n, D2n) consists of

the simple eigenvalue 2n
2n−1 , the eigenvalue 3n−1

3n−2 with multiplicity n − 3, the eigenvalue
4n−4
4n−5 with multiplicity n

2 and other eigenvalues are the eigenvalue of matrix (4.5).

Proof. (i). By Lemma 4.2, the commuting graph of D2n with X = D2n is

K1O
(
Kn−1 ∪Kn

)
= P3[Kn,K1,Kn−1],

that is, C(D2n, D2n) is the pineapple graph (a graph obtained by appending pendent edges
to a vertex of complete graph). For i = 1, 2, 3, we have

n
′

1 = 1 + 2(n− 1) = 2n− 1, n
′

2 = n+ n− 1 = 2n− 1 and n
′

3 = 2n+ 1.

Also, T1 = 2n1−2−r1+n
′

1 = 4n−3, T2 = 2n−1 and T3 = 3n−1. Thus, from Theorem 2.1,
we see that 1 + 2

T1
= 4n−1

4n−2 and 3n
3n−1 are the normalized distance Laplacian eigenvalues of

C(D2n, D2n) with multiplicities n− 1 and n− 2, respectively. The other three normalized
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distance Laplacian eigenvalues of C(D2n, D2n) are the eigenvalues of the following matrix

(4.4)

1− 2n−2
T1

−1√
T1T2

−2(n−1)√
T1T3

−n
T1T2

1− 2
T2

−(n−1)
T2T3−2n√

T1T3

−1√
T2T3

1− n−2
T3

 .

(ii). By Lemma 4.2, the commuting graph C(D2n, D2n) of D2n for even n is given below

C(D2n, D2n) = S[K2,Kn−2,K2,K2, . . . ,K2︸ ︷︷ ︸
n
2

],

where S = Kn
2 +1,1, see figure (1). Further, we have

n
′

1 = n− 2 + 2
n

2
= 2n− 2, n

′

2 = 2n+ 2, n
′

3 = · · · = n
′
n
2 +2 = 4n− 6

and

T1 = 2n1 − 2− r1 + n
′

1 = 2n− 1, T2 = 3n− 2, T3 = · · · = Tn
2 +2 = 4n− 5.

By applying Theorem 2.1, the normalized distance Laplacian spectrum of C(D2n, D2n)
consists of the eigenvalue 1 + 1

T1
with multiplicity one, the eigenvalue 1 + 1

T2
with multi-

plicity n−3 and the eigenvalue 1+ 1
T3

with multiplicity n
2 . The other normalized distance

Laplacian eigenvalues of C(D2n, D2n) are the eigenvalues of matrix (4.5),

(4.5)



2n
2n−1

−(n−2)√
T1T2

−2√
T1T3

. . . −2√
T1T3−2√

T1T2

3n
3n−1

−4√
T2T3

. . . −4√
T2T3

−2√
T1T3

−2(n−2)√
T2T3

4n−4
4n−5 . . . −4

T3

...
...

...
. . .

...
−2√
T1T3

−2(n−2)√
T2T3

−4
T3

. . . 4n−4
4n−5


.

�
For the commuting graph C(SD8n, SD8n) of the semi-dihedral group SD8n [[51], Lemma

2.10], we have the following observations:

Z(SD8n) =

{
an if n is even
a2n if n is odd

.

LetH = 〈a〉 andG = CQ4n
(a2n) = CQ4n

(a4n) be centralized subgroup of a2n inQ4n. Then
following observations are clear from the definition of commuting graphs

H1 =

{
C(SD8n, H − Z(SD8n)) = K4n−2 if n is even,
C(SD8n, H − Z(SD8n)) = K4n−4 if n is odd,

H2 =

{
C(SD8n, Z(SD8n)) = K2 if n is even,
C(SD8n, Z(SD8n)) = K4 if n is odd,

H2 =

{
C(SD8n, G− (Z(SD8n) ∪H)) = 2nK2 if n is even,
C(SD8n, G− (Z(SD8n) ∪H)) = nK4 if n is odd.

By above calculations, the commuting graphs of Q4n is

C(SD8n, SD8n) = P3[H1, H2, H3] =


K4O

(
K4n−4 ∪

(
K4 ∪ · · · ∪K4︸ ︷︷ ︸

n

))
if n is odd,

K2O
(
K4n−4 ∪

(
K2 ∪ · · · ∪K2︸ ︷︷ ︸

2n

))
if n is even.
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The subgraph induced C(Zn,Zn) of a in C(Qn, Qn) corresponds to K2n, the indiced
subgraph C(Z4,Z4) of b corresponds to K2 and they are repeated n times, and all these
vertices shares the identity element e and an of C(Qn, Qn). Based on these observations,
the commuting graph C(Qn, Qn) of Qn [5] can be written:

C(Qn, Qn) = K2O
(
K2n−2 ∪K2 ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸

n

)
.

Now, proceeding as in Theorem 4.4, the normalized distance Laplacian spectrum of com-
muting graphs of semi-dihedral and dicyclic groups can be found.

5. NORMALIZED DISTANCE LAPLACIAN EIGENVALUES OF ZERO-DIVISOR GRAPHS OF
COMMUTATIVE RINGS

LetR be a commutative ring with multiplicative identity different from zero. A non-zero
element x of R is known as a zero-divisor of R if there exists a non-zero y ∈ R such that
xy = 0. The zero-divisor graph of commutative ring R, denoted by Γ(R), is a simple,
connected and undirected graphs with vertex set as the set of non-zero zero-divisors of
R, in which two vertices x and y are adjacent if and if xy = 0. The zero divisor graphs
were initially used in colouring of graphs, but nowadays they are extensively studied in
investigating both the algebraic and the combinatorial properties of rings, see [49]. More
about these graphs can be found in [42, 14, 6, 52, 15, 41, 45].

For integers d and n with 1 < d < n, if d divides n (written as d|n), we say d is a
proper divisor of n. Let d1, d2, . . . , dt be the distinct proper divisors of n and let γn be the
simple graph with vertex set {d1, d2, . . . , dt} and edge set {didj : n|didj}. The graph γn is
connected (see [15]) and plays the role of underlying graph in the joined union graph of
Γ(Zn).

For 1 ≤ i ≤ t, we consider the sets Adi = {x ∈ Zn : (x, n) = di}, where (x, n) is
their greatest common divisor. We see that Adi ∩ Adj = φ, when i 6= j, implying that
the sets Ad1 , Ad2 , . . . , Adt are pairwise disjoint and partitions the vertex set of Γ(Zn) as
V (Γ(Zn)) = Ad1 ∪ Ad2 ∪ · · · ∪ Adt . From the definition of Adi , a vertex of Adi is adjacent
(see [15]) to the vertex of Adj in Γ(Zn) if and only if n divides didj , for i, j ∈ {1, 2, . . . , t}.
Also, it is clear that cardinality [52] of |Adi | = φ

(
n
di

)
, for 1 ≤ i ≤ t.

The induced subgraphs Γ(Adi) of Γ(Zn) are either cliques or totally disconnected and
Γ(Zn) can be written as their joined union. This observation is made precise in the follow-
ing result which can be found in [15].

Lemma 5.3. [15] Let n be a positive integer and di be a proper divisor of n. Then the following
holds.

(i) For i ∈ {1, 2, . . . , t}, the induced subgraph Γ(Adi) of Γ(Zn) on the vertex set Adi is
either the complete graph Kφ( ndi

) or its complement Kφ( ndi
). Indeed, Γ(Adi) is Kφ( ndi

) if
and only if n divides d2i .

(ii) For i, j ∈ {1, 2, . . . , t} with i 6= j, a vertex of Adi is adjacent to either all or none of the
vertices of Adj in Γ(Zn).

(iii) Let Γ(Zn) be the zero-divisor graph of the commutative ring Zn. Then

Γ(Zn) = γn[Γ(Ad1),Γ(Ad2), . . . ,Γ(Adl)].

The next result describes the DL-spectrum of the zero-divisor graph Γ(Zn) of the com-
mutative ring Zn.

Theorem 5.5. Let d1, d2, . . . , dl be the proper divisors of n. Then the normalized distance Lapla-
cian spectrum of Γ(Zn) consists of the eigenvalues 1 + ci

Ti
, with multiplicity φ

(
n
di

)
− 1, where
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ci =

{
1 if n divides d2i
2 if n does not divides d2i

, for i = 1, 2, . . . , l. The remaining normalized distance Lapla-

cian eigenvalues of Γ(Zn) are the eigenvalues of the following matrix

M =



d
′

1

−φ
(
n
d2

)
dγn (v1,v2)√
T1T2

. . .
−φ
(
n
dl

)
dγn (v1,vl)√
T1Tl

−φ
(
n
d1

)
dγn (v2,v1)√
T1T2

d
′

2 . . .
−φ
(
n
dl

)
dG(vγn ,vl)√
T2Tl

...
...

. . .
...

−φ
(
n
d1

)
dγn (vn,v1)√
T1Tl

−φ
(
n
d2

)
dγn (vn,v2)√
T2Tl

. . . d
′

l


,

where d
′

i = 1− ei
Ti

with ei =

{
2ni − 2 if n does not divide d2i
ni − 1 if n divides d2i

, for i = 1, 2, . . . , l.

Proof We note that Γ(Zn) can be written as joined union of cliques and their comple-
ments, so by Lemma 5.3 and Theorem 2.1, result follows. �

If n = p2, where p is prime, then p is the only proper divisor and so in this case
the zero-divisor graph Γ(Zn) is isomorphic to Kφ(p) and therefore its DL-spectrum is{

0,
(

φ(p)
φ(p)−1

)[p−2]}
.

If n = pq (p < q), p and q are primes, then p and q are the only proper divisors of
n. Thus, γn ∼= K2 and neither p2 nor q2 divides pq. So, the zero-divisor graph of Zpq
is K2[Kφ(p),Kφ(q)] and T1 = 2φ(p) − 2 + φ(q) and T2 = 2φ(q) − 2 + φ(p). Therefore, by
Theorem 5.5, 1+ 1

T1
and 1+ 1

T2
are theDL-eigenvalues of Γ(Zn) with multiplicities φ(p)−1

and φ(q) − 1, respectively. The other two DL of Γ(Zn) are the eigenvalues of following
matrix (

φ(q)
T1

−φ(q)√
T1T2

−φ(p)√
T1T2

φ(p)
T2

)
,

and its characteristic polynomial is x
(
x− φ(q)

T1
− φ(p)

T2

)
.

The next consequences of Theorem 5.5 gives the DL-spectrum of the commutative
graph Γ(Zn) of Zn when n is a prime power.

Corollary 5.3. Let n = pM , where M = 2m, p is prime and m ≥ 3 is positive integer. Then the
DL-spectrum of Γ(Zn) consists of the eigenvalue 1 + 2

Ti
with multiplicity φ(p2m−i)− 1, for i =

1, 2, . . . ,m−1, the eigenvalue 1+ 1
Tj

with multiplicity φ(p2m−j)−1, for j = m,m+1, . . . , 2m−1,
and

Ti =

{
2(p2m−1 − 1)− pi − 1, for i = 1, 2, . . . ,m− 1,

2(p2m−1 − 1) + φ(p2m−i)− pi, for i = m,m+ 1, . . . , 2m− 1.

The other DL-eigenvalues of Γ(Zn) are the eigenvalues of matrix (5.7).

Proof. For n = p2m, where m is positive integer and p is prime, the proper divisors of
p2m are p, p2, p3, . . . , pm−1, pm, pm+1, . . . , p2m−2, p2m−1 and the structure of Γ(Zn) with the
help of Lemma 5.3 was found by Rather et al. [42] and is given below

Γ(Zn) =γn
[
Kφ(p2m−1),Kφ(p2m−2), . . . ,Kφ(pm+1),Kφ(pm), . . . ,Kφ(p2),Kφ(p)

]
.(5.6)

In order to proceed further, we need effective informative about the underlying graph γn.
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By the definition of γn, the adjacency relation of vertices are

p ∼ p2m−1

p2 ∼ p2m−1, p2m−2

p3 ∼ p2m−1, p2m−2, p2m−3

...

pm−1 ∼ p2m−1, p2m−2, . . . , pm+2, pm+1

pm ∼ p2m−1, p2m−2, . . . , pm+1, pm

pm+1 ∼ p2m−1, p2m−2, . . . , pm, pm−1

...

p2m−2 ∼ p2m−1, p2m−2, . . . , pm+1, pm, pm−1, . . . , p3, p2

p2m−1 ∼ p2m−1, p2m−2, . . . , pm+1, pm, pm−1, . . . , p3, p2, p

Using the above adjacency relations and by (5.6), ni = φ(p2m−i) for i = 1, 2, . . . ,m −
1,m,m+ 1, . . . , 2m− 2, 2m− 1, the value of n

′

i’s are

n
′

1 = n2m−1 + 2n2 + 2n3 + · · ·+ 2n2m−2 = 2

2m−1∑
i=2

ni − n2m−1,

n
′

2 = n2m−1 + n2m−2 + 2(n2m−3 + · · ·+ n3 + n1) = 2

2m−1∑
i=1,i6=2

ni − (n2m−1 + n2m−2),

...

n
′

m−1 = n2m−1 + · · ·+ nm+1 + 2(nm + nm−2 + · · ·+ n2 + n1) = 2

2m−1∑
i=1,i6=m−1

ni −
m−1∑
i=1

n2m−i,

that is,

n
′

i = 2

2m−1∑
j=1,j 6=i

nj −
i∑

j=1

n2m−j , for i = 1, 2, . . . ,m− 2,m− 1.

Similarly,

n
′

m = n2m−1 + n2m−2 + · · ·+ nm+2 + nm+1 + 2(nm−1 + nm−2 + · · ·+ n2 + n1)

and in general

n
′

i =

2m−1∑
j=1,j 6=i

nj +

2m−1−i∑
j=1

nj , for i = m,m+ 1, . . . , 2m− 2, 2m− 1.
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Also, T1 = 2n1 + n
′

1 − 2 =
2m−1∑
i=1

ni − 2 − φ(p) = 2N − 2 − φ(p), where N is the order of

Γ(Zn) and equals N =
2m−1∑
i=1

φ(pi) = p2m−1 − 1. Arguing as above, we have

T2 = 2n2 + n
′

2 − 2 = 2

2m−1∑
i=1

ni − 2− (φ(p2) + φ(p)),

...

Tm−1 = 2nm−1 + n
′

m−1 − 2 = 2

2m−1∑
i=1

ni − 2−
m−1∑
i=1

φ(pi),

or
Ti = 2N − 1− pi, for i = 1, 2, . . . ,m− 1.

Also,

Tm = 2nm + n
′

m − 2 =

2m−1∑
i=1

ni − 2 + nm +

m−1∑
i=1

ni = N − 2 + φ(pm) + p2m−1 − pm,

and for i = m+ 1,m+ 2, . . . , 2m− 2, 2m− 1, we have

Ti =

2m−1∑
j=1

nj − 2 + ni +

i∑
j=1

nj = N − 2 + φ(p2m−i) + p2m−1 − pi.

Now, applying Theorem 5.5, the DL-spectrum of Γ(Zn) consists of the eigenvalues
1 + 2

Ti
with multiplicity φ(p2m−i) − 1, for i = 2, 3, . . . ,m − 1, and the eigenvalues 1 + 1

Ti

with multiplicities φ(p2m−i) − 1, for i = m,m + 1, . . . , 2m − 2, 2m − 1. While calculating

the values of Ti’s, we have used the fact that
r∑
i=1

φ(pr) = pr−1. The other DL-eigenvalues

of Γ(Zn) are the eigenvalues of following matrix

(5.7)



d
′
1

−2φ(pM−2)√
T1T2

· · · −2φ(pm+1)√
T1Tm−1

−2φ(pm)√
T1Tm

· · · −2φ(p2)√
T1TM−2

−φ(p)√
T1TM−1

−2φ(pM−1)√
T2T1

d
′
2 · · · −2φ(pm+1)√

T2Tm−1

−2φ(pm)√
T2Tm

· · · −φ(p2)√
T2TM−2

−φ(p)√
T2TM−1

...
...

. . .
...

... · · ·
...

...
−2φ(pM−1)√
Tm−1T1

−2φ(pM−2)√
Tm−1T2

· · · d
′
m−1

−2φ(pm)√
Tm−1Tm

· · · −φ(p2)√
Tm−1TM−2

−φ(p)√
Tm−1TM−1

−2φ(pM−1)√
TmT1

−2φ(pM−2)√
TmT2

· · · −2φ(pm+1)√
TmTm−1

d
′
m · · · −φ(p2)√

TmTM−2

−φ(p)√
TmTM−1

−2φ(pM−1)√
Tm+1T1

−2φ(pM−2)√
Tm+1T2

· · · −φ(pm+1)√
Tm+1Tm−1

−φ(pm)√
Tm+1Tm

· · · −φ(p2)√
Tm+1TM−2

−φ(p)√
Tm+1TM−1

...
... · · ·

...
...

. . .
...

...
−2φ(pM−1)√
TM−2T1

−2φ(pM−2)√
TM−2T2

· · · −φ(pm+1)√
TM−2Tm−1

−φ(pm)√
TM−2Tm

· · · d
′
M−2

−φ(p)√
TM−2TM−1

−2φ(pM−1)√
TM−1T1

−φ(pM−2)√
TM−1T2

· · · −φ(pm+1)√
TM−1Tm−1

−φ(pm)√
TM−1Tm

· · · −φ(p2)√
TM−1TM−2

d
′
M−1



where d
′

i =

{
1− 2φ(p2m−i)−2

Ti
, for i = 1, 2, . . . ,m− 1,

1− φ(p2m−i)−1
Ti

, for i = m,m+ 1, . . . , 2m− 1.
�

Following the similar steps as in Corollary 5.3, the proof of odd case n = p2m+1 can be
worked out.

Let the canonical decomposition of n be n = pn1
1 pn2

2 . . . pnrr , where r, n1, n2, . . . , nr are pos-
itive integers and p1, p2, . . . , pr are distinct prime numbers. Then we have the following
problem.
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Problem 5.4. Discuss the DL-eigenvalues of Γ(Zn), where n is in canonical decomposition and
relate the spectral properties with the algebraic properties of the ring Zn.

6. CONCLUSIONS

The normalized distance Laplacian matrixDL(G) is a newly introduced distance based
analogue of the normalized Laplacian matrix. Basics properties of DL-matrix were given
in [46]. The results were further elaborated and some spectral characterizations including
energy of DL-matrix are given in [24]. In the present paper, the DL-eigenvalues of joined
union of regular graphs were obtained along with their applications to graphs defined
from algebraic structures, like the power graphs of integer modulo groups, the commut-
ing graphs of non-abelian groups and the zero-divisor graphs of commutative rings.

Eigenvalues of a graph matrix are almost connected to each structural property of the
graph. It is this connection which makes the spectral study of graphs with respect to
a given graph matrix interesting in Spectral graph theory. Regarding the graphs which
arise from algebraic structures, spectral analysis with respect to a given graph matrix can
be helpful to answer many questions which are concerned to their algebraic structure.
Further, from Matrix theory point of view the spectral study of graphs which arise from
algebraic structures is important as these graphs form a small class of graphs and so many
interesting problems like spectral determination, extremal graphs for spectral norm, ex-
tremal graphs for trace norm, integral spectrum, graphs with few eigenvalues, etc, which
are important from Matrix theory point of view, can be easily discussed here. The work
in this paper is an effort to lay down a foundation for the study the algebraic graphs with
respect to a new graph matrix, namely the normalized distance Laplacian matrix. We con-
clude this paper with some interesting problems which can be considered in future.

Although we have discussed the DL-eigenvalues of the power graphs of integer mod-
ulo groups, the commuting graphs of non-abelian groups and the zero-divisor graphs of
commutative rings. The following problem can be of interest.

Problem 6.5. Discuss the DL-eigenvalues of the algebraic graphs like Cayley graphs, compressed
zero divisor graphs of commutative rings, zero divisor graphs of modules.

The authors in [24] have introduced the distance analogue of the general Randić topo-
logical index. Also, the relations between the distance Randić matrix and the DL-matrix
are presented in [25]. The fruitful properties of the DL-matrix, the distance Randić matrix
and the distance general Randić matrix are yet to be elaborated more. Therefore, we leave
the following problem.

Problem 6.6. Discuss the distance general Randić index as a topological index and explore its
properties.

The spectral graph invariants like, Estrada index is well studied for other graph matri-
ces. Therefore, the following problem can be considered in future.

Problem 6.7. Define the Estrada index for the matrix DL(G) of graph G and explore its proper-
ties.

Further, one can think about the study of the Ky Fan norm, the Schatten p-norm, ex-
tremal spectral graph spectral characterizations, the spectral spread and several other in-
teresting problems about the matrix DL(G) in future.

REFERENCES

[1] J. Abawajy, A. Kelarev and M. Chowdhury, Power graphs: A survey, Electronic J. Graph Theory Appl. 1(2)
(2013) 125–147.



On normalized distance Laplacian eigenvalues 229

[2] A. Abdollahi, Commuting graph of full matrix rings over finite fields, Linear Algebra Appl. 428 (2008) 2947–
2954.

[3] A. Abdussakir, R. E. Rivatul and N. Muflihatun, On the spectra of commuting and non commuting graph
on dihedral groups, Cauchy 4 (2017) 176–182.

[4] F. Ali, M. Salman and S. Huang, On the Commuting graph of dihedral group, Communications Algebra 44,6
(2016) 2389–2401.

[5] F. Ali and Y. Li, The connectivity and the spectral radius of commuting graphs on certain finite groups,
Linear Multilinear Algebra (2019) DOI: 10.1080/03081087.2019.1700893.

[6] D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999)
434-447.

[7] D. F. Anderson, T. Asir, A. Badawi and T. T. Chelvam, Graphs from Rings, Springer Nature Switzerland
(2021).

[8] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl. 458 (2014) 301–386.
[9] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439

(2013) 21–33.
[10] E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44(1) 31–43 (1983).
[11] P. J. Cameron and S. Ghosh, The power graphs of a finite group, Dicrete Math. 311(13) (2011) 1220–1222.
[12] P. Cayley, Desiderata and suggestions no 2, The theory of groups: graphical representation, Am. J. Math.

1(2) 174–176 (1878).
[13] S. Banerjee and A. Adhikari, Signless Laplacian spectra of power graphs of certain finite groups, AKCE Int.

J. Graphs Comb. (2019) http://doi.org/10.1016/j.akcej.2019.03.009.
[14] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[15] S. Chattopadhyay, K. L. Patra and B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring

Zn, Linear Algebra Appl. 584 (2020) 267–286.
[16] S. Chattopadhyay and P. Panigrahi, On Laplacian spectrum of power graphs of finite cyclic and dihedral

groups, Linear Multilinear Algebra 63(7) (2015) 1345–1355.
[17] I. Chakrabarty, M. Ghosh and M. K. Sen, Undirected power graph of semigroups, Semigroup Forum 78

(2009) 410–426.
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