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Most continuous and increasing functions have two
different fixed points

SIMEON REICH 1 AND ALEXANDER J. ZASLAVSKI 2

ABSTRACT. We study the space of all continuous and increasing self-mappings of the real interval [0, 1]
equipped with the topology of uniform convergence. In particular, we show that most such functions have at
least two different fixed points.

1. INTRODUCTION

For nearly sixty years now, there has been considerable research activity regarding the
fixed point theory of certain nonlinear mappings. See, for example, [2, 4, 5, 7, 8, 9, 10,
11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 24] and references cited therein. This activity stems
from Banach’s classical theorem [1] regarding the existence of a unique fixed point for a
strict contraction. It also concerns the convergence of (inexact) iterates of a nonexpansive
mapping to one of its fixed points. Since that seminal result, many developments have
taken place in this field including, in particular, studies of feasibility, common fixed point
problems and variational inequalities, which find important applications in engineering,
medical and the natural sciences [3, 6, 21, 22, 23, 24].

In the present paper we consider the space of all continuous and increasing self-mappings
of the real interval [0, 1].

It is well known that a continuous and monotone self-mapping of an interval in a Ba-
nach space X ordered by a closed and convex cone X+ has a fixed point if the norm is an
increasing function on X+ and the following property holds:

(a) Every increasing and bounded (in the sense of the order) sequence converges.
See, for example, Theorem 3.1 on page 42 of [14].
If property (a) is not assumed, then the situation becomes more difficult and less un-

derstood. Nevertheless, some existence results were obtained for certain subspaces of the
space of increasing operators using the Baire category approach (see [18] and references
mentioned therein). For instance, a generic existence result was obtained for the subspace
of increasing mappings A which satisfy the condition

A(αx) ≥ αA(x)

for each α ∈ [0, 1] and each x belonging to the domain of A. For this subspace, we estab-
lished the existence of a set F , which is a countable intersection of open and everywhere
dense subsets of the space, such that each mapping in F has a unique fixed point and all
its iterates converge uniformly to this fixed point.

In the present paper we answer the question if such a result is true for the whole space
of continuous and increasing mappings. It turns out that such a result is not true even in
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the one-dimensional case. As a matter of fact, we show below (see Theorem 2.1) that most
continuous and increasing functions f : [0, 1] → [0, 1] have at least two different fixed
points.

2. RESULTS

Denote by A the set of all continuous and increasing functions f : [0, 1]→ [0, 1], that is,
all continuous self-mappings of [0, 1] such that

f(x) ≤ f(y) for all x, y ∈ [0, 1] satisfying x ≤ y.
For each f, g ∈ A, set

d(f, g) := sup{|f(x)− g(x)| : x ∈ [0, 1]}.
It is clear that (A, d) is a complete metric space. We begin with a few results regarding

this space. The proof of our main result (Theorem 2.5 below) is relegated to the next
section.

Proposition 2.1. There exists an open and everywhere dense set F ⊂ A such that for each f ∈ F ,

{0, 1} ∩ f([0, 1]) = ∅.

Proof. Let f ∈ A and take γ ∈ (0, 1). Define

fγ(x) := (1− γ)f(x) + 2−1γ, x ∈ [0, 1].

It is clear that fγ ∈ A and
fγ([0, 1]) ⊂ [2−1γ, 1− 2−1γ].

There exists an open neighborhood U(f, γ) of fγ in A such that for each g ∈ U(f, γ),

g([0, 1]) ⊂ [4−1γ, 1− 4−1γ].

Define
F := ∪{U(f, γ) : f ∈ A, γ ∈ (0, 1)}.

It is clear that F is an open and everywhere dense set in A and that for each f ∈ F , we
have

{0, 1} ∩ f([0, 1]) = ∅.
This completes the proof of Proposition 2.1. �

Proposition 2.2. There exists a set F ⊂ A, which is countable intersection of open and every-
where dense subsets of A, such that each f ∈ F is a strictly increasing function.

Proof. Given f ∈ A and γ ∈ (0, 1), define

fγ(x) := (1− γ)f(x) + γx, x ∈ [0, 1].

Clearly, fγ ∈ A.
Let i ≥ 1 be an integer. Then for each x1, x2 ∈ [0, 1] satisfying x2 − x1 ≥ i−1, we have

fγ(x2)− fγ(x1) ≥ γ(x2 − x1) ≥ γi−1.
This implies that there exists an open neighborhood U(f, γ, i) of fγ inA such that for each
g ∈ U(f, γ, i) and each x1, x2 ∈ [0, 1] satisfying x2 − x1 ≥ i−1, we have

g(x2)− g(x1) ≥ γ(2i)−1.

Define
F := ∩∞q=1 ∪ {U(f, γ, i) : f ∈ A, γ ∈ (0, 1), i ≥ q is an integer}.

It is not difficult to see that F is a countable intersection of open and everywhere dense
subsets of A and that each f ∈ F is a strictly increasing function. Proposition 2.2 is
proved. �
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Example 2.1. Let the function f be defined by

f(x) = 0, x ∈ [0, 1/3],

f(x) = 1, x ∈ [2/3, 1]

and
f(x) = 3x− 1, x ∈ (1/3, 2/3).

Clearly, f ∈ A. It is not difficult to see that for each h ∈ A satisfying ‖h− g‖ < 1/4, we have

h([0, 1/3]) ⊂ (f([0, 1/3]) + [−1/4, 1, 4]) ∩ [0, 1] ⊂ [0, 1/4]

and
h([2/3, 1]) ⊂ (f([2/3, 1]) + [−1/4, 1, 4]) ∩ [0, 1] ⊂ [3/4, 1].

These equations imply that there exist two points

ξ1 ∈ [0, 1/3], ξ2 ∈ [2/3, 1]

such that h(ξi) = ξi, i = 1, 2.

Example 2.2. Let a ∈ (0, 1), p ≥ 1 and let the function f be defined by f(x) = axp for all
x ∈ [0, 1]. Then zero is the unique fixed point of f .

Theorem 2.1. There exists an open and everywhere dense set F ⊂ A such that each function
f ∈ F has at least two different fixed points.

3. PROOF OF THEOREM 2.1

Given f ∈ A and γ ∈ (0, 1), define

fγ(x) := (1− γ)f(x) + 4−1γ + 2−1γx, x ∈ [0, 1]. (3.1)

Clearly, fγ ∈ A, the function fγ is strictly increasing,

fγ([0, 1]) ⊂ [4−1γ, 1− 4−1γ] (3.2)

and
‖fγ − f‖ ≤ γ. (3.3)

There exists a point x∗ ∈ [0, 1] such that

fγ(x∗) = x∗. (3.4)

In view of (3.2) and (3.4),
x∗ ∈ [4−1γ, 1− 4−1γ]. (3.5)

Let i ≥ 1 be an integer. Since the function fγ is continuous and strictly increasing, there
exists

∆0 ∈ (0, 8−1γ) (3.6)

such that
fγ(x∗) < fγ(x∗ + ∆0) ≤ fγ(x∗) + 1/i (3.7)

and
fγ(x∗)− 1/i ≤ fγ(x∗ −∆0) < fγ(x∗). (3.8)

By (3.5), (3.7) and (3.8), there exist positive numbers ∆1 and ∆2 such that

∆1 + ∆2 < ∆0 (3.9)

and
∆1 < min{fγ(x∗ + ∆0)− x∗, x∗ − fγ(x∗ −∆0)}. (3.10)

By (3.10), there exists a number λ > 1 such that

(2λ− 1)∆1 < ∆1 + ∆2 (3.11)
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and
x∗ + λ∆1 < f(x∗ + ∆0), x∗ − λ∆1 > f(x∗ −∆0). (3.12)

Now define a function g : [0, 1] → R1 as follows. For each point x ∈ [0, x∗ −∆0] ∪ [x∗ +
∆0, 1], set

g(x) := fγ(x). (3.13)

Next, define
g(x) := x∗ + λ(x− x∗), x ∈ [x∗ −∆1, x∗ + ∆1], (3.14)

g(x) := x∗ + λ∆1, x ∈ (x∗ + ∆1, x∗ + ∆1 + ∆2] (3.15)

and
g(x) := x∗ − λ∆1, x ∈ [x∗ −∆1 −∆2, x∗ −∆1). (3.16)

Equations (3.10), (3.15) and (3.16) imply that

g(x∗ + ∆1 + ∆2) = x∗ + λ∆1 < fγ(x∗ + ∆0) (3.17)

and
g(x∗ −∆1 −∆2) = x∗ − λ∆1 > fγ(x∗ −∆0). (3.18)

For each x ∈ [x∗ + ∆1 + ∆2, x∗ + ∆0], set

g(x) := x∗+λ∆1 + (∆0−∆1−∆2)−1(fγ(x∗+ ∆0)−x∗−λ∆1)(x−x∗−∆1−∆2) (3.19)

and for each x ∈ [x∗ −∆0, x∗ −∆1 −∆2], set

g(x) := x∗−λ∆1+(∆0−∆1−∆2)−1(−fγ(x∗−∆0)+x∗−λ∆1)(x−x∗−∆1−∆2). (3.20)

Put
fγ,i := g.

It follows from (3.13)–(3.16), (3.19) and (3.20) that the function g is continuous and increas-
ing and that g ∈ A. In view of (3.7), (3.8) and (3.13), we have

‖g − fγ‖ ≤ 4i−1. (3.21)

By (3.15) and (3.16),

g([x∗ + ∆1, x∗ + ∆1 + ∆2]) = {x∗ + λ∆1} (3.22)

and
g([x∗ −∆1 −∆2, x∗ −∆1]) = {x∗ − λ∆1}. (3.23)

Denote by U(f, γ, i) the open neighborhood of g = fγ,i in A such that for each h ∈
U(f, γ, i),

d(h, fγ,i) < (λ− 1)∆1 (3.24)

(see (3.11)). Consider
h ∈ U(f, γ, i). (3.25)

It follows from (3.11) and (3.22)–(3.25) that

h([x∗ + ∆1, x∗ + ∆1 + ∆2]) ⊂ g([x∗ + ∆1, x∗ + ∆1 + ∆2]) + [−(λ− 1)∆1, (λ− 1)∆1]

⊂ [x∗ + ∆1, x∗ + (2λ− 1)∆1] ⊂ [x∗ + ∆1, x∗ + ∆1 + ∆2] (3.26)

and

h([x∗ −∆1 −∆2, x∗ −∆1]) ⊂ g([x∗ −∆1 −∆2, x∗ −∆1]) + [−(λ− 1)∆1, (λ− 1)∆1]

⊂ [x∗ − (2λ− 1)∆1, x∗ −∆1] ⊂ [x∗ −∆1 −∆2, x∗ −∆1]. (3.27)

In view of (3.26) and (3.27), there exist points

ξ1 ∈ [x∗ + ∆1, x∗ + ∆1 + ∆2]

and
ξ2 ∈ [x∗ −∆1 −∆2, x∗ −∆1]
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such that
h(ξi) = ξi, i = 1, 2.

Thus any function in U(f, γ, i) has at least two different fixed points. Define

F := ∪{U(f, γ, i) : f ∈ A, γ ∈ (0, 1), i ≥ 1 is an integer}.

It is clear that F is an open set. Since the set {fγ : f ∈ A, γ ∈ (0, 1)} is everywhere
dense, inequality (3.21) implies that F is also an everywhere dense set in A. By construc-
tion, each function in F has at least two different fixed points. This completes the proof
of Theorem 2.1.
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