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Fixed points and coupled fixed points in b-metric spaces via
graphical contractions

MONICA-FELICIA BOTA, LILIANA GURAN, GABRIELA PETRUSEL

ABSTRACT. In this paper some existence and stability results for cyclic graphical contractions in complete
metric spaces are given. An application to a coupled fixed point problem is also derived.

1. INTRODUCTION AND PRELIMINARIES

In this paper, we will prove some fixed point and coupled fixed point theorems in
complete b-metric spaces. Our results extend some recent theorems proved in classical
metric spaces.

We recall first some notions and results.

Definition 1.1. Let M be a nonempty set and let s > 1 be a given real number. A functional
d: M x M — Ry is said to be a b-metric (also called in some papers quasi-metric) with constant
s > 1if the Fréchet axioms of the metric are satisfied, except the so-called triangle inequality axiom,
which has the following form:

(x) d(z,z) < s[d(z,y) + d(y, )], forall z,y,z € M.
A pair (M, d) with the above properties is called a b-metric space with constant s > 1.

Some interesting examples and a very recent work regarding the origins of the notion
of b-metric space are given in [2], [3], [4], [5], [6], [9]. It is known that some topological
properties in the setting of b-metric spaces are the same as in metric spaces.

Definition 1.2. Let (M, d) be a b-metric space. Then, a subset Y of M is called:

(1) compact if for every sequence of elements of Y there exists a subsequence that converges to
an element of Y.

(2) closed if for each sequence (xz,,)nen in Y which converges to an element x, we have x € Y.
The b-metric space (M, d) is complete if every Cauchy sequence from M converges in X.

Lemma 1.1. Notice that in a b-metric space (M, d) the following assertions hold:
(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy.

Although, there are some important distance-type differences: the b-metric on M need
not be continuous, open balls in b-metric spaces need not be open sets, the closed ball is
not necessary a closed set, to recall few.
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Definition 1.3. [8] Let (M, d) be a b-metric space. Let p be a positive integer with p > 2, let
. P . -
K1, K, ..., K, be subsets of M, and K := \J K;. Then, T : K — K is called a cyclic operator if
i=1
(i) the sets K; # 0 for every i € {1,2,...p};

7=

p ~
(44) K; is a cyclical representation of K with respect to T, i.e.,
=1

T(Kl) c K27T(K2) - K?n o 'T(Kp—l) - KPaT(Kp) c Kl'

Let X be a nonempty set and 7' : X — X be a single-valued operator. We denote by
Fiz(T) :={z € X : =T (z)} the fixed point set of T'.

Definition 1.4. [20] Let (M, d) a b-metric space. An operator T : M — M is called a weakly
Picard operator (WPO) if the sequence (T™(z))nen converges for all x € M and its limit, denoted
by T>°(x), is a fixed point for T.

Definition 1.5. [20] In the above context, if T' is a WPO and Fix(T) = {«*}, then, by definition,
T is a Picard operator.

If (M, d) is a b-metric space and F' : M x M — M is an operator, then, by definition, a
coupled fixed point for F is a pair (z*,y*) € M x M satisfying

(a1 { yr=Fy ).

Another generalization of the classical metric of Fréchet is the vector-valued metric. In
this case, if M is a nonempty set, then a mapping d : M x M — R™ is a vector-valued
metric (or a Perov type metric) if d satisfies all the axioms of the metric with respect to
the componentwise inequality between vectors in R™. If the triangle inequality takes the
form given in (), then we say that (M, d) is a generalized b-metric space in the sense of
Perov with constant s > 1. In particular, if m = 1 we obtain the above presented notion of
b-metric.

We denote by M,,,,, (R} ) the set of all m x m matrices with positive elements, by I,,,
the identity m x m matrix and by O,, the null m x m matrix.

Definition 1.6. A square matrix A € My,,,, (Ry) is said to be convergent to zero if and only if
its spectral radius p(A) is strictly less than 1. In other words, this means that all the eigenvalues
of A are in the open unit disc.

We have the following characterization theorem for a matrix convergent to zero.
Lemma 1.2. (see e.g. [16], [18]) Let A € M., ., (Ry). Then the following statements are

equivalent:

(1) Ais a matrix convergent to zero;

(2) A™ — O,,, as n — oo;

(3) I,, — Ais non-singular and (I,,, — A)_1 =I,+A+.. .+ A"+ ..
(4) 1., — A is non-singular and (I, — A)~" has nonnegative elements.

Definition 1.7. Let (M, d) be a generalized b-metric space in the sense of Perov and let f : M —
M be an operator. Then, f is called an A-contraction if and only if A € M.y, ,(Ry) is a matrix
convergent to zero and

d(f(x), f (y)) < Ad(x,y), forany (z,y) € M x M.
If the above condition holds for every (z,y) € Graph(f), i.e.,

d(f(z),f*(z)) < Ad(z, f(z)), forany z € M,
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then f is called a graphical (orbital) A-contraction.

Notice that any A-contraction f : M — M on a generalized b-metric space in the sense
of Perov (M, d) is continuous, in the sense that for any convergent sequence {z, }nen C M
to z € M, the sequence {f(z,)}nen converges to f(Z). Not the same is true for graphical
(orbital) A-contraction.

In particular, if m = 1 we get the classical notions of (Banach) a-contraction and graph-
ical (orbital) a-contraction in b-metric spaces, where A := a €]0, 1.

2. MAIN RESULTS
We recall first the following important result given by Miculescu and Mihail.

Lemma 2.3. [11] Every sequence (x,, )nen 0f elements from a b-metric space (M, d) with constant
s having the property that there exists v € [0, 1] such that d(xy41,z,) < ¥d(@y, Tn—1), n € Nis
a Cauchy sequence. Moreover, the following estimation holds

n

y
d(Tni1, Tnip) < T

s d(xo,z1), foralln,p € N,
~

oo
) i1
where S = Z y2ilogy 5427

i=1
Our first main result is the following theorem in b-metric spaces.

Theorem 2.1. Let (M, d) be a complete b-metric space with constant s > 1, p € Nwithp > 2 and

_ P _ .

let Ky, K, ..., K, be nonempty and closed subsets of M. Consider K = U KiandT: K - K

=1

be such that U K, is a cyclical representation of K with respect to T. Suppose that T is a cyclic
=1
graphical (orbital) a-contraction, i.e., a €]0, 1] and

d(T(x), T?(z)) < ad(z,T(x)), for every x € K.
Then:
(i) ﬂK #0and T : ﬂK — ﬂKZ,
(#4) 1f addztzonall]/, T has. closed gmph then:
(ii)-(a) T is a weakly Picard operator with the constant ﬁ on ﬁ K ie., Fix(T) #
i=1

P
() and, for every element x € ﬂ K;, the sequence {T"(x)}nen converges to T (z) €
i=1
Fix(T);
(ii)-(b) the following apriori estimation holds:
a"sS

p
4@, T(z),n €N, forall x € M K,

i=1

AT (), T () <

o0
. i1
where S := E a?!1oga 527

i=1
(iii)-(c) the following retraction-displacement condition holds

d(z, T=(z)) < s(1—a+s5)

P
< = d(z,T(x)),n €N, forall x € ﬂKi,

i=1
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oo
) i-1
where S = E a?t108a 5T,

i=1

(iv)-(d) if s < /122, then T is a quasi-contraction, in the sense that
25 q

d(T(x), T>(z)) < Bd(z, T (), forall z € (p] K.,
=1

o0

;2 . i—1

where B := =2 €]0,1[and S := E a?i108a 2
i=1

p
Proof. (i) Letzp € |J K; be arbitrary. Then, there exists iy € N such that 2y € K;,. Hence,

i=1

1 = T((Eo) C T(Kzo) - Ki0+1. Then, for xr1 € KiOJrl we have 15 := T(.’El) € T(Kio+1) C

P
K, +2. Inductively, we get a sequence {z,, }nen, with 2,11 = T(x,) = T (z0) € U K,
i=1

for eachn € N.

If x,, = 41, then x, is a fixed point of T'. We suppose that z,, # 41 foralln > 0.
From the graphical contraction condition it follows that

(2, 1) = d(T(xn-1), T(2n)) = d(T(xp_1), T*(xn_1)) < ad(xp_1, T(xn_1)) = ad(Tp_1,2n).

Applying Lemma 2.3 for v = a, we deduce that (z,,),en is a Cauchy sequence. From
the same lemma we also have that
TLS
(22) d(anrhanrp) < la d(on,LIJl), for all n,p € N,
—a

oo
where S := Z 2108 s+2"7 1
i=1
Since (2, )nen is Cauchy, by the completeness of the b—metric, we have that the se-
p
quence converges z* 1= z*(z) € |J K.
i=1
Moreover, we observe that infinitely many terms of (z,,)nen lieineach K;,i € {1,2, ..., p}.

p -
Thus z* € () K;. By the cyclical representation of K with respect to 7, we get that
i=1

P J2
i=1 i=1
(i) Since (T™(x0)), converges to z*, the closed graph condition of T implies that 2* €
Fix(T).
In addition, from (2.2), we get

d(Tn+1($0), a:*) < S(d(xn+17 xn-i—k) + d(xn-&-ka JZ*) <

Tjid(mo,T(xo)) + sd(zptk, "), n, k € N.

By letting k — oo we obtain that

asS
1—a

AT (o), 2*) < 2 d(wo, T(wo)),m € .

(i43) By (i7), for n = 0 we get

sS

A(T(@), T(2)) <

P
d(x,T(x)), forall z € ﬂ K;.

i=1
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p
Thus, for all x € ﬂ K;, we have that

i=1
s(1—a+sS)

d(z, T%(x)) < s(d(@, T(2)) + d(T(2), T (2))) < ———

d(x, T(z)).
(iv) As before, by (i7), for n = 0 we get

A(T(2), T(x)) < 2

P
d(z,T(x)), forall x € ﬂ K;.

i=1

Then, we have:

oo sS 529 o o
AT (@), T=(2)) < T2 dle, T(@)) < 7 [dlw, T=(2)) + d(T(x), T ()]
Hence, we conclude that
528 L
(Il
Example 2.1. Let X = [0, +o0] be equipped withd : X x X — R+ defined by d=|z—yl%

Let Ay = [0, 3], Az = [i 1] be subsets of X = R*. Define T : U A — U A; by

i=1 i=1

Notice that (X, d) is a complete b-metric space with b = 1. Moreover T(A;) C As, T(As) C
Ay. Then U A; is a cyclic representation with respect to T. Additionally, T satisfies all the as-

sumptions ( i- w) in Theorem 2.1, i.e., T is a cyclic graphical %-contraction with respect to d.

We also observe that Fiz(T) = {2,1}.
As a consequence of the first main result we can prove some stability results for cyclic
graphical contractions in b-metric spaces.

Definition 2.8. Let (M, d) be a b-metric space with constant s > 1, T : M — M be an operator
with Fix(T) # 0 and let r : M — Fix(T) be a set retraction. Then:

(a) the fixed point equation x = T'(x),x € M is said to be well-posed in the sense of Reich
and Zaslavski if for each z* € Fixz(T) and for any sequence (yy, )nen in r—1(z*) for which

A(Yn, T (yn)) = 0as n — oo,
we have that
Yn — xF asn — 00.
() the fixed point equation
(2.3) z=T(z),x € M,
is said to be Ulam-Hyers stable if there exists ¢ > 0 such that for any € > 0 and any e-solution z
of the fixed point equation (2.3), i.e.,
d(z,T(z)) <e
there exists x* € Fix(T') such that d(z,x*) < ce.
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(c) The operator T has the Ostrowski stability property if for each x* € Fix(T) and for any
sequence (2, )nen in v~ (z*) for which

d(znt1,T(2zn)) = 0asn — oo,

we have that
Zn — ¥ asn — oo.

We have the following stability results for a fixed point equation with cyclic graphical
contractions in complete b-metric spaces.

Theorem 2.2. Let (M, d) be a complete b-metric space with constant s > 1, let p € Nwithp > 2
. P . .
and K1, Ko, ..., K,, be nonempty and closed subsets of M. Let K := U KiandletT : K — K

be such that U K, is a cyclical representation of K with respect to T. Suppose that T is a cyclic
graphical (orbztal) a-contraction, i.e., a €]0, 1] and
d(T(z), T?(z)) < ad(z, T(x)), for every x € K.

Then, the fixed point equation x = T(z),z € K is well-posed in the sense of Reich and Zaslavski
and it is Ulam-Hyers stable.

p
Proof. By Theorem 2.1 we know that T"is a weakly 12—-Picard on ﬂ K; and the following
i=1
retraction-displacement condition holds:
s(1—a+sS)
1-a

p
d(z,T(x)), forall z € ﬂ K;,

i=1

(2.4) d(z, T>(z)) <

p
where, for each =z € ﬂ K;, the value T (z) € Fix(T) is the limit of the sequence of
i=1

b . J4 P
Picard iterates {T"(x)}neny and S := Zaz“c’ga s+27" Gince T : ﬂ K; — ﬂ K;is a

i=1 =1 i=1

weakly Picard operator, the mapping T : ﬂ K; — Fix(T) is a set retraction.
i=1
Consider first z* € Fiz(T) and (y,)nen a sequence such that T°°(y,,) = z* and
d(yn, T(yn)) — 0asn — co.
If we consider in (2.4) = := y,,, then we get that
s(1 —a+sS)

d(yn,x*) = d(yanoo(yn)) < 1—a d(yan(yn)) — 0, asn — oo.

p
Thus, the fixed point equation z = T'(z),z € ﬂ K; is well-posed in the sense of Reich
i=1
and Zaslavski.
Consider now any € > 0 and any e-solution z of the fixed point equation z = T( )T €

p
ﬂ K;. Thus, d(2,T(z)) < e. As before, since T' is a weakly 1=

=1 =1

—P1card on ﬂ K; we

P
have that Fiz(T) # 0 and for each = € ﬂ K;, the sequence of Picard iterates {1 (z)},en
i=1
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converges to T°(z) € Fiz(T). Using again the retraction-displacement condition (2.4)
with z := 2z, we get that

d(z,T>(2)) < wd(z,ﬂz)) < wg.
1—a l1-a
p
hence, the fixed point equation = T'(z),x € ﬂ K; is Ulam-Hyers stable. O
i=1

The following result is know as Cauchy-Toeplitz Lemma.

Lemma 2.4. (Cauchy-Toeplitz Lemma, see, for example, [20]) Let (an)nen be a sequence in R,

such that the series E ay, is convergent and (by,)nen € Ry be a sequence such that lim b, = 0.
n—oo
n>0

Then
nh—>Holo(Z n—rbir) = 0.
k=0
Theorem 2.3. Let (M, d) be a complete b-metric space with constant s > 1, let p € Nwithp > 2
- p - -
and K1, Ko, ..., K, be nonempty and closed subsets of M. Let K := U KiandletT : K - K

be such that U K, is a cyclical representation of K with respect to T. Suppose that T is a cyclic
graphical (orbztal) a-contraction, i.e., a €]0, 1{ and
d(T(z), T*(x)) < ad(x, T(z)), for every x € K.
p
If == gz 5 < 1, then the operator T has the Ostrowski property on ﬂ K;.

i=1

Proof. Since — s°S 2 < < 1 we get that s <
a qua51 contractlon ie.,

*. Then, by Theorem 2.1 we know that 7" is

d(T(x), T (x)) < Bd(x, T (x)), forall x € ﬁ K;,

i=1

where 3 = SQS €]0,1]and S := Zamloga +2""" Moreover s < 1. Then, T has

l—a—s
=1

P
the Ostrowski property on ﬂ K;. For this conclusion, let z* € Fiz(T) and let (2, )nen a
i=1

sequence in ﬁ K; such that T*°(z,) = z* and

i=1

d(zp+1,T(2,)) = 0asn — oco.
Then, we have
d(znt1,77) = d(zn41, T (20)) < s[d(zn41, T(20)) + d(T(20), 27)] =
s[d(zn+1, T (20)) + d(T(20), T™ (20))] <
s [d(znt1, T (2n)) + Bd(2n, T™ (2n))] = s[d(zn41, T (2n)) + Bd(zn, 27)] <
Sd(zn+17T(Zn)) +526[ (ZnaT(Zn—l)) ( (Zn 1) € )} =
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§[d(zn+1,T(20)) + 88d(z0, T(2p-1)) + - - + (s8)"d(21, T (20))] + (s8)"d(20, 27).
Now, by the Cauchy-Toeplitz Lemma we get the conclusion. O

If we consider now the case of a generalized b-metric space in the sense of Perov, then
the following lemma follows in a similar way to Lemma 2.1 given by Miculescu and Mi-
hail in [11].

Lemma 2.5. Let (zy,)nen be a sequence of elements from a generalized b-metric space in the sense
of Perov (X, d) . Then, the inequality
k—1
d(wo, ) < " d(ws, wig1)
i=0
holds for each n € N and each k € {1,2,3,...,2"~1 27},

Using the above lemma, it is an open question to prove a similar result with Lemma
2.2 given by Miculescu and Mihail in [11], for the case of vector-valued b-metric space.
Conjecture. Let (z,,)nen be a sequence of elements from a vector-valued b-metric space (M, d)
of constant s > 1 having the property that there exists A € M, m(R), such that:
(i) Ais convergent to zero;
(17) d(znt1,2n) < Ad(zp,Tn—1) for every n € N.
Then (xy,)nen is a Cauchy sequence in (M, d).

As an application of the main result we can obtain a coupled fixed point theorem in
complete b-metric spaces. We give first the following immediate consequence of Theorem
2.1.

Theorem 2.4. Let (X,d), (Y, p) be two complete b-metric space, with s > 1, p € Nwithp > 2

p
and Ai, Ao, ..., Ap, B1, Ba, ..., B, be nonempty and closed subsets of X. Consider Z = | J (A; x
i=1
B,) and the operator F : Z — Z be such that F(A; x B;) C A;41 X Biy1, foreveryi € {1,...,p},

where A,+1 = Ay and By,11 = By. Suppose that there exists a €]0, 1] such that
d(F(z,y), F*(2,y)) < ad((z,y), F(x,y)), for every (x,y) € Z,

where d is a scalar b-metric generated by d and p.
Then:

(z) ﬂ(A X B;) # Dand F : ﬂ(A X B;) — ﬂ(A X B;);

(17) zf addztzonally F has closed graph then sz( ) # () and the following apriori estimation
holds:
a™sS

l1—a

d(F™(z0),2%) < d(wo, F(x0)),n € N,
where S := Y~ a®'1% s+2'71,
i=1
Using the above result we can obtain the following extended coupled fixed point theo-
rem.

Theorem 2.5. Let (X,d), (Y, p) be two complete b-metric space with constant s > 1, p € N
with p > 2and Ay, Ay, ..., Ay, B1, By, ..., By be nonempty and closed subsets of X. Consider

p p

Z = U (A x Bj)and Fy : Z — \J A, and Fy : Z — |J B; be such that the following
i=1 =1

assumptzons hold:
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(i) F1(A; X B;) C Ajp1 and F5(A; x B;) C Byya, forevery i € {1,...,p}, where Apy1 = Ay
and Berl = Bl.
(ii) Suppose that there exist a1, as € (0, 1) such that

d(Fy(z,y), Fi(z,y)) < ard(z, Fy(2,y)), for every (z,y) € Z,

p(Fa(x,y), F5 (x,y)) < azp(y, Fa(x,y)), for every (z,y) € Z,
where FI'(x,y) = FI' (Fi(z,y), Fo(x,y)) and F3(z,y) = Fy~ Y (Fi(z,y), Fa(z,y)) forn €
N,n > 2.
Then, the following conclusions hold:
p

(1) N (A;x B;) #0;

i=1

p
(12) if, additionally, Fy, F5 have closed graph, then, for each element z = (z,y) € () (A4; X

i=1
B;), the sequence (F{'(z),F3(2))nen converges to a solution (z*,y*) € Fiz(F) N
P
M (A; x B;) of the operator system
i=1
T = Fl (I‘, y)
25
29) { y = F(z,y).

P
Moreover for every (xz,y) € () (4; x B;) the following apriori estimation holds:
=1

AP (20), 5) + p(F (o), o) < xian, az}"sS

STz max{al,aQ}(d<x0’F1($O)) + d(xo, F2(x0))),n € N,

o0

> i—1
where S := E max{ay, ag}> 108max{ar oz} SH2
i=1

Proof. Let us consider the following b-metric

d((z,y), (u,0)) = d(z,u) + p(y, )

defined on X x Y. By the hypothesis we have that (X x Y, d) is a complete b-metric space.
Let us define the operator Tr, r, : Z — Z by

(26) TF1,F2($7y) = (F1(.I‘,y),F2(fL',y)).

Notice that the fixed point set of this operator coincides with the solution set of (2.5).
Let us notice that the operator T r, satisfies all the conditions of Theorem 2.4. We
have that T, r,(A; X B;) C A;y1 X B;11 and also

CZ(TF1,F2(x7y)ﬂTg'l,Fg(xﬂy)) < (ldN((x7y),TF1’F2(£L',y))7 for every (x,y) € Z7

where a = max{a;, az}.
Applying the previous theorem we obtain the conclusion. O

Remark 2.1. In particular, if in the above theorem we consider Fy (x,y) = F(x,y) and Fa(x,y) =
F(y,x), where F' : X x X — X is a given operator, then we obtain an existence and approximation
result for the coupled fixed point problem (1.1).
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