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ABSTRACT. In the setting of Hilbert spaces, we show that a hybrid steepest-descent algorithm converges
strongly to a solution of a convex minimization problem over the fixed point set of a finite family of multi-
valued demicontractive mappings. We also provide numerical results concerning the viability of the proposed
algorithm with possible applications.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we assume thatH is a real Hilbert space, andD ⊆ H is nonempty,
closed and convex. Let S : D → D be a nonexpansive mapping (i.e., , a mapping satisfy-
ing ‖Su − Sv‖ ≤ ‖u − v‖) and let Φ : H → R be a convex and bounded below function.
The minimization problem over the fixed point set of a mapping is defined as:

(1.1) find u ∈ Fix(S) such that Φ(u) = inf Φ(Fix(S)),

where Fix(S) = {u ∈ D : Su = u} denotes the fixed point set of S.
It is remarked that the problem (1.1) is equivalent to the following variational inequal-

ity problem VIP(Φ́, F ix(S)) ([13]):

(1.2) find u ∈ Fix(S) such that 〈v − u, Φ́(u)〉 ≥ 0, ∀ v ∈ Fix(S),

provided that Φ is Gâteaux differentiable over an open set including Fix(S) where Φ́
denotes the derivative of Φ.

For a slow decreasing sequence α∗k ⊂ (0, 1), the following class of hybrid steepest-
descent algorithm (HSDA):

(1.3) yk+1 = S(yk)− α∗k+1Φ́(S(yk)),

is prominent for solving (1.2). The Algorithm (1.3) converges strongly to the set of so-
lutions of (1.2), involving a (quasi-)nonexpansive mapping S, under suitable set of con-
ditions on Φ, Φ́ and (α∗k) [17, 18]. A robust variant of HSDA, involving (asymptotically)
quasi-shrinking operators, was analyzed in [19](see also [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]).
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In 2008, Maingé [15] studied the problem (1.1) involving a more general class of demi-
contractive and demiclosed mapping via the following Mann-type variant of the HSDA:{

yk := xk − α∗kΦ́(xk);
xk+1 := (1− β)yk + βSyk.

(1.4)

The following compact form of (1.4) coincides with the HSDA:

(1.5) yk+1 = Sβyk − α∗k+1Φ́(Sβ(yk)),

where Sβ := (1 − β)Id + βS and Id denotes the identity mapping. Thus the following
natural question arises in view of the architecture of the Algorithm (1.4):

Can one modify the Algorithm (1.4) to solve the convex minimization problem (1.1)
over the fixed point set of multivalued mappings? Answering this question in the affir-
mative, we propose a HSDA for the convex minimization problem over the fixed point
set of a finite family of multivalued demicontractive mappings in Hilbert spaces. As far
as we know, such results have not so far appeared in the literature.

The rest of the paper is organized as follows: Section 2 contains some relevant pre-
liminary concepts and results for convex minimization problem and fixed point problem.
Section 3 comprises of strong convergence results of the proposed HSDA whereas Sec-
tion 4 provides numerical results concerning the viability of the proposed algorithm with
respect to various real world applications.

2. PRELIMINARIES

Let CB(D) denote the family of nonempty bounded and closed subsets ofD. The Haus-
dorff metric on CB(D) is defined as:

H(Ã, B̃) := max
{

sup
u∈Ã

d(u, B̃), sup
v∈B̃

d(v, Ã)
}
,

for all Ã, B̃ ∈ CB(D) where d(u, B̃) = infa∈B̃ ‖u− a‖.
Let S : D → CB(D) be a multivalued mapping, then u is said to be: (i) a fixed point of

S if u ∈ S(u) and (ii) an endpoint of S if S(u) = {u}. If S satisfies the endpoint condition
then Fix(S) is convex. Recall that the multivalued mapping S is said to be (i) nonexpan-
sive ifH(Su, Sv)2 ≤ ‖u− v‖2 for all (u, v) ∈ D ×D, (ii) quasi-nonexpansive if Fix(S) 6= ∅
and H(Sv, u)2 ≤ ‖v − u‖2 for all v ∈ D and u ∈ Fix(S) and (iii) demicontractive [12] if
Fix(S) 6= ∅ and there exists η ∈ [0, 1) such that H(Su, Sv)2 ≤ ‖u − v‖2 + ηd(v, Sv)2 for
all v ∈ D and u ∈ Fix(S). The class of multivalued demicontractive mappings contains
properly the class of multivalued quasi-nonexpansive mappings [14].

In this paper we are interested in the following multivalued variant of (1.1):
Let x0 ∈ H and let Si : D → CB(D), i ∈ {1, 2, · · · , N} be a finite family of η-demicontractive

multivalued mappings satisfying the endpoint condition. Let Φ : D → R ∪ (−∞,+∞] be
a convex, bounded below and Gâteaux differentiable function on H with the derivative
Φ́. Assume that Π :=

⋂N
i=1 Fix(Si) 6= ∅ then we aim to compute u ∈ Π such that Φ(u) =

inf Φ(Π), via the algorithm generated as follows:{
zk := xk − α∗kΦ́(xk);
xk+1 := (1− βk)zk + βk

∑N
i=1 ~iw

(i)
k , i = {1, 2, · · · , N}

(2.6)

where w(i)
k ∈ Sizk, for each i = {1, 2, · · · , N}, ~i ∈ (0, 1) such that

∑N
j=i ~i = 1, 0 < τ <

min( 1
2b1
, 1

2b2
), α∗k ⊂ [0, 1) and βk ∈ (0, 1).

In order to establish the convergence results of the Algorithm (2.6), we use the follow-
ing required conditions throughout the rest of the paper:
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(C1) βk ∈ (0, 1−ηi
2 ] and βk(1− βk − ηi) > 0, i ∈ {1, 2, · · · , N};

(C2) limk→∞ α∗k = 0;
(C3)

∑
k≥0 α

∗
k = +∞;

(C4) Φ́ is L-Lipschitz continuous onH (for some L ≥ 0); i.e.,

‖Φ́(u)− Φ́(v)‖ ≤ L‖u− v‖, ∀ u, v ∈ H.

(C5) Φ́ is Ψ-strongly monotone onH (for some Ψ > 0); i.e.,

〈Φ́(u)− Φ́(v), u− v〉 ≥ Ψ‖u− v‖2, ∀ u, v ∈ H.

We now enlist some useful results required in the sequel:

Definition 2.1. Let D be a nonempty, closed and convex subset of a Hilbert space H and let
S : D → CB(D) be a multivalued mapping. Then Id − S is said to be demiclosed at 0 if for any
sequence (xk) in D which converges weakly to u ∈ D and the sequence (‖xk − yk‖) converges
strongly to 0, where yk ∈ Sxk, then u ∈ Fix(S).

For every point u ∈ H, there exists a unique nearest point in D, denote by PDu, such
that ‖u − PDu‖ ≤ ‖u − v‖ ∀ u, v ∈ D. The mapping PD is called the metric projection of
H onto D. It is well known that PD is nonexpansive and satisfies 〈u − PDu, b − PDu〉 ≤
0 ∀ b ∈ D.

Lemma 2.1. Let u, v, n ∈ H and a ∈ [0, 1] ⊂ R, then

(1) ‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉;
(2) ‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉;
(3) ‖au+ (1− a)v − n‖2 = a‖u− n‖2 + (1− a)‖v − n‖2 − a(1− a)‖u− v‖2.

We need the following result to establish the strong convergence results of the Algo-
rithm (2.6).

Lemma 2.2. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert space H with the derivative Φ́. Let D be a nonempty closed and convex subset of H
and for each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive
multivalued mappings satisfying the endpoint condition and the demiclosedness principle where
(ηi)

N
i=1 ⊂ (0, 1). Let Π =

⋂N
i=1 Fix(Si) 6= ∅. Assume that the conditions (C1), (C2) and (C5)

hold, then for all k ≥ 0 the sequence (xk) given by (2.6) satisfies

(2.7) Uk+1 − Uk +
1

2
(1− 2Lα∗k)‖xk+1 − xk‖2 ≤ −α∗k〈xk − ū, Φ́(xk)〉,

where ū ∈ Π and

(2.8) Uk :=
1

2
‖xk − ū‖2 + α∗k(Φ(xk)− inf Φ).
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Proof. Let ū ∈ Π, then it follows from Lemma 2.1 and the Algorithm (2.6) that

‖xk+1 − ū‖2 =
∥∥∥(1− βk)(zk − ū)− βk

( N∑
i=1

~iw(i)
k − ū

)∥∥∥2

=
∥∥∥ N∑
i=1

~i
[
(1− βk)(zk − ū)− βk(w

(i)
k − ū)

]∥∥∥2

≤
N∑
i=1

~i
[
‖(1− βk)(zk − ū)− βk(w

(i)
k − ū)‖2

]
=

N∑
i=1

~i
[
(1− βk)‖zk − ū‖2 + βk‖w(i)

k − ū‖
2 − (1− βk)βk‖zk − w(i)

k ‖
2
]

=

N∑
i=1

~j
[
(1− βk)‖zk − ū‖2 + βkd(w

(i)
k , Siū)2 − (1− βk)βk‖zk − w(i)

k ‖
2
]

≤
N∑
i=1

~i
[
(1− βk)‖zk − ū‖2 + βkH(Sizk, Siū)2 − (1− βk)βk‖zk − w(i)

k ‖
2
]

≤
N∑
i=1

~i
[
(1− βk)‖zk − ū‖2 + βk(‖zk − ū‖2 + ηid(zk, Sizk)2)

−(1− βk)βk‖zk − w(i)
k ‖

2
]

≤
N∑
i=1

~i
[
(1− βk)‖zk − ū‖2 + βk(‖zk − ū‖2 + ηi‖zk − w(i)

k )‖2)

−(1− βk)βk‖zk − w(i)
k ‖

2
]

= ‖zk − ū‖2 − βk(1− ηi − βk)

N∑
i=1

~i‖zk − w(i)
k ‖

2.(2.9)

Note that
N∑
i=1

~i‖w(i)
k − zk‖ =

1

βk
(xk+1 − zk).

Setting ξk := 1
βk

(1− ηi − βk), we get

(2.10) ‖xk+1 − ū‖2 ≤ ‖zk − ū‖2 − ξk‖xk+1 − zk‖2.

Since βk ∈
(

0, 1−ηi
2

]
(so that ξ ≥ 1), therefore, we obtain

(2.11) ‖xk+1 − ū‖2 ≤ ‖zk − ū‖2 − ‖xk+1 − zk‖2.

From the estimate (2.11) and (C3), we have

‖zk − ū‖2 = ‖(xk − ū)− α∗kΦ́(xk)‖2

= ‖xk − ū‖2 − 2α∗k〈xk − ū, Φ́(xk)〉+ α2
k‖Φ́(xk)‖2

= ‖xk − ū‖2.(2.12)
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Moreover

‖zk − xk+1‖2 = ‖(xk+1 − xk) + α∗kΦ́(xk)‖2

= ‖xk+1 − xk‖2 + 2α∗k〈xk+1 − xk, Φ́(xk)〉+ α2
k‖Φ́(xk)‖2

= ‖xk+1 − xk‖2 + 2α∗k〈xk+1 − xk, Φ́(xk)− Φ́(xk+1)〉
+2α∗k〈xk+1 − xk, Φ́(xk+1)〉+ α2

k‖Φ́(xk)‖2.(2.13)

Using the L-Lipschitz continuity of Φ́ and the convexity of Φ, we obtain

〈xk+1 − xk, Φ́(xk)− Φ́(xk+1)〉 ≥ −L‖xk+1 − xk‖2,

and

〈xk+1 − xk, Φ́(xk+1)〉 ≥ Φ(xk+1)− Φ(xk).

Utilizing the above estimates in (2.13), we get

‖xk+1 − zk‖2 ≥ ‖xk+1 − xk‖2 − 2α∗kL‖xk − xk+1‖2 + 2α∗k(Φ(xk+1)− Φ(xk)) + α2
k‖Φ́(xk)‖2

= (1− 2Lα∗k)‖xk+1 − xk‖2 + 2α∗k(Φ(xk+1)− Φ(xk)) + α2
k‖Φ́(xk)‖2.(2.14)

Hence from (2.11), (2.12) and (2.14), we get

‖xk+1 − ū‖2 ≤ ‖xk − ū‖2 − 2α∗k〈xk − ū, Φ́(xk)〉 − (1− 2Lα∗k)‖xk+1 − xk‖2

−2α∗k(Φ(xk+1)− Φ(xk)).

Rearranging the above statement, we have

‖xk+1 − ū‖2 + 2α∗k+1(Φ(xk+1)− inf Φ)

≤ ‖xk − ū‖2 + 2α∗k(Φ(xk)− inf Φ)− 2α∗k〈q̄k − ū, Φ́(xk)〉
− (1− 2Lα∗k)‖xk+1 − xk‖2 − 2(α∗k − α∗k+1)(Φ(xk+1)− inf Φ).

Note that, if (α∗k) is non-increasing then we have (α∗k − α∗k+1)(Φ(xk+1)− inf Φ) ≥ 0. That
is

1

2
‖xk+1 − ū‖2 + α∗k+1(Φ(xk+1)− inf Φ)

≤ 1

2
‖xk − ū‖2 + α∗k(Φ(xk)− inf Φ)− α∗k〈xk − ū, Φ́(xk)〉

− 1

2
(1− 2Lα∗k)‖xk+1 − xk‖2.

This is the required result. �

The following results can easily be adopted from [15, Lemma 2.2 & 2.3].

Lemma 2.3. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert spaceH with the derivative Φ́. Let D be a nonempty closed and convex subset ofH and for
each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive multivalued
mappings satisfying the endpoint condition and demiclosedness principle where (ηi)

N
i=1 ⊂ (0, 1).

Let Π =
⋂N
i=1 Fix(Si) 6= ∅. Assume that the condition (C5) holds, then for all k ≥ 0, any

ε ∈ (0, 2) and for any ū ∈ Π the sequence (xk) given by (2.6) satisfies

(2.15) 〈xk − ū, Φ́(xk)〉 ≥ 1

1 + Ψεα∗k
(ΨεUk − (Dε + dΨεα∗k)),
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where

Uk :=
1

2
‖xk − ū‖2 + α∗k(Φ(xk)− inf Φ),

d := Φ(ū)− inf Φ,

Dε :=
‖Φ́(ū)‖2

2(2− ε)Ψ
.

Assume further that the conditions (C1) and (C4) hold and suppose (α∗k) ⊂ (0, 1
2L ] (when L 6= 0).

Then we have for all k ≥ 0,

(2.16) Uk ≤ U0e
− Ψε

1+Ψεα0
(
∑k
r=0 αr−α0) + (Dε + dΨεα0)

1 + 2Ψεα0

Ψε
e

2Ψε
1+Ψεα0 .

Lemma 2.4. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert spaceH with the derivative Φ́. Let D be a nonempty closed and convex subset ofH and for
each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive multivalued
mappings satisfying the endpoint condition and demiclosedness principle where (ηi)

N
i=1 ⊂ (0, 1).

Let Π =
⋂N
i=1 Fix(Si) 6= ∅. Assume that the conditions (C1)-(C2), (C4) and (C5) hold, then the

sequence (xk) generated by (2.6) is bounded.

3. MAIN RESULTS

In this section, we first prove some preliminary results to establish the strong conver-
gence of the Algorithm (2.6).

Lemma 3.5. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert space H with the derivative Φ́. Let D be a nonempty closed and convex subset of H
and for each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive
multivalued mappings satisfying the endpoint condition and the demiclosedness principle where
(ηi)

N
i=1 ⊂ (0, 1). Let Π =

⋂N
i=1 Fix(Si) 6= ∅. Assume that the conditions (C3) and (C5) hold

and the sequence (xk) generated by (2.6) is bounded and satisfies ‖xk+1 − xk‖ → 0, then xk ⇀ ū
implies ū ∈ Π and

lim inf
k→∞

〈xk − ū, Φ́(ū)〉 ≥ 0,

where ū is the solution of (1.1) or (1.2).

Proof. Let (xkm) be a subsequence of (xk) which converges weakly to an element x∗ in
H. Assume that ‖xk+1 − xk‖ → 0, α∗k → 0 and (xk) is bounded. Consequently, zkm :=

xkm −α∗kmΦ́(xkm) converges weakly to x∗. Utilizing (C3) and the boundedness of Φ́(xkm),
we have α∗km‖Φ́(xkm)‖ → 0. From (2.6), we get

N∑
i=1

~i‖w(i)
km
− zkm‖ =

1

βk
‖xkm+1 − zkm‖ → 0, {i = 1, 2, · · · , N}.

From the demiclosed principle and the endpoint condition for Si, we obtain that {x∗} =
Six∗, i ∈ {1, 2, · · · , N}. Since xkm ⇀ x∗ ∈ H as m → ∞, therefore we have xkm+1 ⇀ x∗
and zkm ⇀ x∗ as m→∞. Hence x∗ ∈ Π.
The term 〈xk − ū, Φ́(ū)〉 is bounded, as (xk) is bounded. Observe that

lim inf
k→∞

〈xk − ū, Φ́(ū)〉 = lim
m→∞

〈xkm − ū, Φ́(ū)〉,

and hence lim infk→∞〈xk − ū, Φ́(ū)〉 = 〈x∗ − ū, Φ́(ū)〉. As ū is a solution of (1.2), we have
〈x∗ − ū, Φ́(ū)〉 ≥ 0. This is the required result. �
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Lemma 3.6. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert space H with the derivative Φ́. Let D be a nonempty closed and convex subset of H
and for each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive
multivalued mappings satisfying the endpoint condition and the demiclosedness principle where
(ηi)

N
i=1 ⊂ (0, 1). Let Π =

⋂N
i=1 Fix(Si) 6= ∅. Assume that the condition (C2), (C4) and (C5)

hold and the sequence (xk) generated by (2.6) has a subsequence (xkm) such that:
(I) (xkm) ⊂ Γ := {x ∈ H : 〈x− ū, Φ́(x)〉 ≤ 0}, where ū is the solution of (1.1) or (1.2);

(II) ‖xkm+1 − xkm‖ → 0 as k →∞;
Then the sequence (xkm) converges strongly to ū.

Proof. Observe that the condition (C5) implies that Ψ‖xkm − ū‖2 ≤ 〈xkm − ū, Φ́(xkm)−
Φ́(ū)〉. Then (I) infers that

(3.17) Ψ‖xkm − ū‖2 ≤ −〈xkm − ū, Φ́(ū)〉.

From (3.17), we obtain ‖xkm − ū‖ ≤
Φ́(ū)

Ψ so therefore, (xkm) as well as Γ are bounded.
Consequently, a subsequence (xkm) ∈ H converges weakly to a point x∗ ∈ H and utilizing
(II), we obtain ‖xkm − xkm+1‖ → 0 as m→∞. Moreover from (2.6), we have

βkm

∥∥∥zkm − N∑
i=1

~iw(i)
km

∥∥∥ ≤ βkm

N∑
i=1

~i‖zkm − w
(i)
km
‖(3.18)

=
1

βkm
‖xkm+1

− zkm‖ → 0, as m→∞.

By using (C4) and since (α∗k) → 0, zkm converges weakly to ū. Note that x∗ ∈ Π, (as
proved in Lemma 3.5) and utilizing (3.17) and (1.2) entails

lim sup
k→+∞

‖xkm − ū‖2 ≤ −(
1

Ψ
)〈x∗ − ū, Φ́(ū)〉 ≤ 0.

Hence limm→+∞ ‖xkm − ū‖ = 0. This completes the proof. �

Lemma 3.7. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert spaceH with the derivative Φ́. Let D be a nonempty closed and convex subset ofH and for
each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive multivalued
mappings satisfying the endpoint condition and demiclosedness principle where (ηi)

N
i=1 ⊂ (0, 1).

Let Π =
⋂N
i=1 Fix(Si) 6= ∅. Assume that the conditions (C1)-(C5) hold. Assume that the

sequence (xk) given by (2.6) satisfies:
(I) ‖xk+1 − xk‖ → 0,

(II) limk→∞ ‖xk − ū‖ exists,
where ū is the solution of (1.1) or (1.2). Then the sequence (xk) converges strongly to ū.

Proof. It is observed from Lemma 2.4 that (xk) is bounded. Suppose that limk→∞ ‖xk−
ū‖ = µ > 0 and utilizing Lemma 3.5, we have lim infk→∞〈xk − ū, Φ́(ū)〉 ≥ 0 and also from
(C5), we get

〈xk − ū, Φ́(xk)〉 ≥ Ψ‖xk − ū‖2 + 〈xk − ū, Φ́(ū)〉.
After simplification, we obtain

lim inf
k→∞

〈xk − ū, Φ́(xk)〉 ≥ Ψµ2.

Also, from Lemma 2.2, there exists k0 ≥ 0 such that for k ≥ k0,

Vk+1 − Vk ≤ −α∗k(
1

2
Ψµ2),
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where Vk := 1
2‖xk − ū‖

2 + α∗k(Φ(xk)− inf Φ). This implies that

(
1

2
Ψµ2)

k∑
m=k0

α∗k ≤ Vk0
− Vk+1.

The only logical reasoning for the above estimate to be true is µ = 0. Because if
∑
α∗k =∞

then for k →∞ implies that the right hand side of the above estimate is bounded whereas
the left hand side is unbounded. This completes the proof. �

Theorem 3.1. Let Φ be a convex, bounded below and Gâteaux differentiable function on a real
Hilbert space H with the derivative Φ́. Let D be a nonempty closed and convex subset of H
and for each i = {1, 2, · · · , N}, let Si : D → CB(D) be a finite family of ηi-demicontractive
multivalued mappings satisfying the endpoint condition and the demiclosedness principle where
(ηi)

N
i=1 ⊂ (0, 1). Let Π =

⋂N
i=1 Fix(Si) 6= ∅. Assume that (C1)-(C5) hold then the sequence (xk)

given by (2.6) converges strongly to ū, where ū is the unique solution of (1.1) or (1.2).

Proof. It follows from Lemma 2.3 that if Vk = 1
2‖xk − ū‖

2 + α∗k(Φ(xk) − inf Φ), then
both (Vk) and (xk) are bounded. Hence, there exists a constant M ≥ 0 such that ‖〈xk −
ū, Φ́(xk)〉‖ ≤M for all k ≥ 0, utilizing Lemma 2.2, it yields

(3.19) Vk+1 − Vk +
1

2
(1− 2Lα∗k)‖xk+1 − xk‖2 ≤Mα∗k.

For simplification, we consider the following two cases:
Case A. In the first instance, we assume that (Vk) is monotone, i.e., for large enough k0,
(Vk)k≥k0

is either non-increasing or non-decreasing. In addition, (Vk) is bounded and
hence it is convergent. Using (C2), that limk→+∞ ‖xk − ū‖ exists. Utilizing (3.19) and
limk→∞ ‖Vk+1 − Vk‖ = 0, we have

(3.20) lim
k→∞

‖xk+1 − xk‖ = 0.

Now consider the re-arranged estimate (2.9) and using (A2), we have

βk(1− ηi − βk)

N∑
i=1

~i‖zk − w(i)
k ‖

2 ≤ ‖xk − ū‖2 − ‖xk+1 − ū‖2

≤ (‖xk − ū‖+ ‖xk+1 − ū‖)‖xk+1 − xk‖.
Letting k →∞ and utilizing (3.20), we have

(3.21) βk(1− ηi − βk)

N∑
i=1

~i‖zk − w(i)
k ‖

2 = 0.

It is observed that
N∑
i=1

~i‖w(i)
k − zk‖ =

1

βk
‖xk+1 − zk‖, i = {1, 2, · · · , N}.

The above estimate implies that

(3.22) lim
k→∞

‖zk − xk+1‖ = 0.

From (3.20), (3.22) and the following triangular inequality:

‖zk − xk‖ ≤ ‖zk − xk+1‖+ ‖xk+1 − xk‖,
we get

(3.23) lim
k→∞

‖zk − xk‖ = 0.
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TABLE 1. Computation of Multivalued HSDA

.

No. of Iterations CPU Time

Case I Case II Case III Case I Case II Case III

Multivalued HSDA 57 75 68 0.049071 0.031480 0.039675

Hence from Lemma 3.7, we deduce that ū ∈ Π.
Case B. Conversely, suppose (Vk) is not monotone sequence and for all k ≥ k0 (for some
k0 large enough) let a mapping g : N→ N defined by

(3.24) g(k) := max{m ∈ N;m ≤ k, Vk ≤ Vk+1}.

Note that, g is a non-decreasing sequence imply that g(k) → +∞ as k → +∞ and Vgk ≤
Vg(k)+1 for k ≥ k0, so therefor by using (3.19), it yields

(3.25)
1

2
(1− 2Lα∗g(k))‖xg(k)+1 − xg(k)‖2 ≤Mαgk → 0,

hence, ‖xg(k)+1−xg(k)‖ → 0. Utilizing Lemma 2.2, for any n ≥ 0, the inequality Vn+1 < Vn

holds provided that xn /∈ Γ := {x ∈ H; 〈x − ū, Φ́(x)〉 ≤ 0}. Consequently, we have
xg(k) ∈ Γ for all k ≥ k0 (since Vg(k) ≤ Vg(k)+1). By using Lemma 3.6, we conclude that
‖xg(k) − ū‖ → 0 and it follows that

lim
k→∞

Vg(k) = lim
k→∞

Vg(k)+1 = 0.

Moreover, for k ≥ k0, it is mention that Vk ≤ Vg(k)+1 if k 6= g(k) that is , if g(k) < k,
because we have Vn > Vn+1 for g(k) + 1 ≤ n ≤ k − 1. It follows that for all k ≥ k0,
0 ≤ Vk ≤ max{Vg(k), Vg(k)+1} → 0, hence limk→∞ Vk = 0. This completes the proof. �

4. NUMERICAL EXPERIMENT AND RESULTS

This section provides effective viability of Algorithm 2.6 supported by a suitable exam-
ple.

Example 4.1. LetH = R the set of all real numbers with the inner product defined by 〈x, y〉 = xy,
for all x, y ∈ R and induced usual norm | · |. Let D ⊂ H and Φ : R → (−∞,∞] be defined by
Φ(x) = 1

2‖f̃x − g‖2 with Ãx = 0 = g. Then Φ is a proper, convex and lower semicontin-
uous function. Since Ã is a continuous linear function (see[16]). Let a multivalued mapping
S : R → CB(D) be defined as follows: if x ∈ (−∞, 0], take Sx = [−( 9x

2 ),−5x]; if x ∈ (0,∞),
take Sx = [−5x,−( 9x

2 )]. In order to compute (xk+1), for each i ∈ {1, 2, · · · , N}, take Si = S.
By Example 2.2 in Ref.[14], we know that S is a multivalued demicontractive operator with a con-
stant η = 96

121 . Choose w(i)
k = −5zk, βk = 1

100k+1 , N = 2×105. We compute our HSDA defined
in Theorem 3.1 (i.e., Algorithm 2.6) for different initial inputs. The stopping criteria is defined as
Error=Ek = ‖xk − xk−1‖ < 10−4. The different cases of initial inputs are given as follows:
Case I: x0 = 4, α∗ = 1

6

Case II: x0 = −2, α∗ = 1
4

Case III: x0 = 2.7, α∗ = 1
2

The error plotting ‖xk − xk−1‖ of Multivalued HSDA are illustrated in Figure 3.
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FIGURE 1. Computational results of Multivalued HSDA. Case I
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FIGURE 2. Computational results of Multivalued HSDA. Case II

Conclusion. In this paper, we have devised a HSDA for computing the convex mini-
mization problems over the set of FPP for multivalued mappings in Hilbert space. The
theoretical framework of the algorithm has been strengthened with an appropriate nu-
merical example. We would like to emphasize that the above mentioned problems occur
naturally in many applications, therefore, iterative algorithms are inevitable in this field
of investigation. As a consequence, our theoretical framework constitutes an important
topic of future research.
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FIGURE 3. Computational results of Multivalued HSDA. Case III
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