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Aggregation Function Constructed from Copula

VARAYUT BOONYASRI1 and SANTI TASENA2

ABSTRACT. In this work, we show that a slight change in the Sklar’s formula tremendously affects the class
of aggregation functions it represents. While the original formula can only be used to construct d-increasing
aggregation functions, this new formula can be used to construct any continuous aggregation function excepted
possibly those belong to the boundary of this set. In particular, all continuous aggregation functions can be
approximated by aggregation functions in this form. This shows that it is sufficient to only consider aggregation
functions in this form for most cases. Construction examples via this method are also given.

1. INTRODUCTION

In order to get information over a sheer volume of data existed nowadays, we are
forced to aggregate data. For instance, we might use the average to represent a set of
data. Other aggregation functions might also be used depending on the situation. A
natural question is whether we can classify aggregation functions or, more importantly,
whether we can use this classification to construct an appropriate aggregation function.
After all, the more choices we have, the better it is to find an appropriate one.

Over the years, several construction methods have been introduced. This includes, for
example, the constructions based on partial information such as constraints [7, 11], forms
[20, 15, 16], properties [25, 32], or values on subsets of domains such as diagonal sections
and curved sections [2, 8, 17, 19, 21, 29, 34, 43]. Another example is the transformations of
aggregation functions such as flippings [14, 24], polynomial transformations [3, 6, 10, 33,
40, 42, 41], compositions [18, 31] and others [27, 28, 30]. Penalty-based constructions also
gain interest in recent years [1, 4, 5, 13, 12, 23, 35, 36, 39, 42, 38].

We are interested in Sklar’s copula-based method [37]. Originally, Sklar used copulas
to construct multivariate distribution functions. Specifically, he demonstrates that any
multivariate distribution function can be constructed as a composition of a copula and its
marginal distribution functions. Following his idea, several copula construction methods
have been proposed in literature.

Mathematically, multivariate distribution functions can be considered as a special type
of aggregation functions. Thus, it is natural to question whether the Sklar’s method can
be extended to aggregation functions. This has been shown to be true for bivariate 2-
increasing aggregation functions [18]. We also believe that the proof can also be extended
to the multivariate k-increasing aggregation functions. This two-step method simplifies
the selection process of aggregation functions. The abundance of copulas constructed
over the years is also helpful in constructing aggregation functions. Therefore, we want
to adjust this method for a reasonable larger class of aggregation functions.

In this work, we make a slight change to the Sklar’s formula. This can be viewed as
a mixture of transformation methods and composition methods. Nevertheless, this new
formula allows us to construct aggregation functions belonged to a dense class in the
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space of aggregation functions including strictly increasing aggregation functions. In fact,
this method only fails to construct aggregation functions lying in the boundary. Therefore,
it should be widely adaptable.

In the next section, we will review basic terminologies used throughout this work. In
Section 3, we will present our construction along with some examples. Its properties will
be presented in Section 4, however.

2. PRELIMINARIES

For simplicity, we will assume that the data is numerical with values in the unit interval
I = [0, 1]. An element of Ik will be denoted by the vector notation x⃗ = (x1, . . . , xk) with
special cases for the zero vector 0⃗ = (0, . . . , 0) and the vector 1⃗ = (1, . . . , 1). Denote
also e⃗i = (ei1, . . . eik) and e⃗−i = 1⃗ − e⃗i where eij = 1 if i = j and eij = 0 otherwise.
Comparisons between two vectors will be done component-wise. For example, x⃗ < y⃗ if
and only if xi < yi for all i. The notation x⃗ ⪇ y⃗ will stand for x⃗ ≤ y⃗ but x⃗ ̸= y⃗.

Definition 2.1. A function A : Ik → I is called an aggregation function if it is nondecreasing
with A

(
0⃗
)
= 0 and A

(
1⃗
)
= 1. The volume VA of A is defined by

VA

((
a⃗, b⃗
])

=
∑

x⃗∈
∏k

i=1{ai,bi}

(−1)
N(x⃗,⃗a)

A (x⃗)

for all interval
(
a⃗, b⃗
]
⊆ Ik. Here, N (x⃗, a⃗) is the number of i such that xi = ai. A k-variate

aggregation function is k-increasing if its volume is always non-negative. A semi-copula is
an aggregation function S : Ik → I such that

(2.1) S (xe⃗i + e⃗−i) = x

for all x ∈ I and all i = 1, . . . , k. A k-increasing semi-copula is also called a copula. Equiv-
alently, a copula is a k-increasing (aggregation) function C such that W ≤ C ≤ M point-
wisely where

W (x⃗) = max

(
0,

k∑
i=1

xi − k + 1

)
, and

M (x⃗) = min (x1, . . . , xk)

for all x⃗ ∈ Ik.

It can also be shown that any semi-copula S satisfies L ≤ S ≤ M where

L (x⃗) =

{
x, x⃗ = xe⃗i + e⃗−i;

0, otherwise.

In particular, the average function Mean defined by

Mean (x1, . . . , xk) =
1

k

k∑
i=1

xi

for all (x1, . . . , xk) ∈ Ik is an aggregation function which is not a semi-copula. Note that
M is a copula while W and L are semi-copulas. Therefore, semi-copulas are not necessary
continuous. Copulas, on the other hand, are always continuous. In fact, a copula is 1-
Lipschitz, that is,

|C (x⃗)− C (y⃗)| ≤
k∑

i=1

|xi − yi|
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for any copula C and any x⃗, y⃗ ∈ Ik. It follows that the first-order partial derivatives of a
copula exist with values lying in I almost everywhere.

The important of copulas immerses from Sklar Theorem. Given any k-variate copula
C and any univariate distribution functions F1, . . . , Fk, it can be easily proved that the
function F defined by

(2.2) F (x⃗) = C (F1 (x1) , . . . , Fk (xk))

for all x⃗ ∈ Rk is a multivariate distribution function with marginals F1, . . . , Fk. Sklar
Theorem [37] states that the converse of the above statement holds, that is, any multivari-
ate distribution functions can be constructed via equation (2.2). This result allows us to
model multivariate distribution functions in two steps – first model the marginals sepa-
rately, then connect these marginals together using copulas. This method could also be
applied to aggregation functions. In 2008, Durante et al. [18] show that this is possible
for bivariate 2-increasing aggregation functions. A straightforward extension can also be
done for k-increasing aggregation functions.

In this work, we will show that this two-step method is also possible for almost all ag-
gregation functions if we were to replace copulas with linear combinations of copulas and
the product function. Even though this is only a slight change comparing to equation (2.2)
and the work of [18], its effect is surprising. This new formula can be used to construct all
aggregation functions excepted possibly those that belong to the (geometric) boundary of
this convex set. Therefore, we may also used copulas already constructed in literature to
construct aggregation functions.

We will divide our results into two sections. The next section presents our construction
method along with construction examples. Construction properties will be presented in
Section 4.

3. CONSTRUCTION METHOD

In this section, we will present our construction method. We will defer the discussion
of its properties, nevertheless, to the next section. Recall that a scaling function is simply a
nondecreasing function on I sending 1 to 1.

A⃗ (x⃗) = (A1 (x1) , . . . , Ak (xk))

for all x⃗ ∈ Ik where A1, . . . , Ak are scaling functions.
Denote Π the product function and let F ◦G stand for the composite function of F and

G. Given a scaling vector A⃗ and a constant c ∈ R, we may construct a function A by letting

(3.3) A = (1− c)C ◦ A⃗+ cΠ ◦ A⃗

where the copula C is chosen so that ∂iC ≥ c (∂iC − ∂iΠ) a.e. on Range
(
A⃗
)

for all i =
1, . . . , k and

C ◦ A⃗
(
0⃗
)
= −

(
c

1− c

) k∏
i=1

Ai (0) .

This two conditions are also necessary for A to be an aggregation function. Notice that for
the copula C to exists, the above equation must statisfies the Fréchet-Hoeffding bounds.
That is, C ◦ A⃗

(
0⃗
)
≥ W ◦ A⃗

(
0⃗
)

. This implies c /∈ (0, 1) when Ai(0) > 0 for all i.

Also, we only require the values of C on Range
(
A⃗
)

. Thus, we actually require sub-
copulas. Since any subcopula can be extended to a copula, the difference is subtle. Still,
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using only Range
(
A⃗
)

can increase a range of parameter(s) in (subcopula) family, see for
instance, Example 3.1.

It will be proved in the next section that A is indeed an aggregation function. Since
there are already abundant families of copulas being constructed in literature, this method
will be very useful in practice.

At first glance, this might seem to be a rather trivial extension from the case c = 0
in [18]. Its effect, nevertheless, is tremendous. Consider the case of quadratic aggrega-
tion functions, for example. Recall that any quadratic bivariate aggregation function is a
convex combination of πij and ζij , where i, j ∈ {1, 2}, defined by

(3.4)
πij (x⃗) = xixj ,

ζij (x⃗) = xi + xj − xixj

for all x⃗ = (x1, x2) ∈ I2 [40]. Since there are 6 of such πij and ζij , the set of quadratic
bivariate aggregation functions can be represent by a octahedron with πij and ζij as its
vertices. (See Figure (1).) Now, it can be easily proved that any aggregation function of
the form

A = a1π11 + a2π22 + b1π12 + b2ζ12 + c1ζ11 + c2ζ22

where b1 < b2 is not 2-increasing. Thus, the set of such A correspond to to the lower half of
the octahedron in Figure 1 on page 386. Therefore, the case c = 0 in equation (3.3) can only
represent half of quadratic bivariate aggregation functions. On the contrary, only 2 sides
of the boundary of the octahedron can not be written in the form (3.3). This means the for-
mula (3.3) can be used to constructed most of quadratic bivariate aggregation functions.
See Corollary 4.1 for the proof of this fact. In general, we also know that any aggregation
function can be approximated by aggregation functions constructed by the formula (3.3),
see Theorem 4.2.

π12

ζ22
ζ11

π11

π22

ζ12

FIGURE 1. The set of bivariate quadratic aggregation functions presented
as a solid octahedron, and its elements that can not be written in the form
(3.3) (dark gray color).

In general, this construction method can produced almost all aggregation functions
excepted possibly those that belong to the boundary of the set of aggregation functions.
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This implies that it is sufficient to only consider aggregation functions in this form for
most cases. This is the beauty of formula (3.3).

Next, we will provide examples for our construction method. The focus will be on
bivariate aggregation functions. Construction of multivariate aggregation functions can
be done analogously.

The first example provides a simple situation where we varies the scaling functions but
fixed the copulas while the second example focuses on the usage of different copulas to
construct distinct aggregation functions. It is also possible to vary both scaling functions
and copulas using the idea from these examples.

Example 3.1. Assume that we know how the data should be combined together. For
example, via the function Cθ defined by

Cθ (u, v) = uv + θuv (1− u) (1− v)

for all u, v ∈ [a, 1]. Note that Cθ is the Eyraud-Farlie–Gumbel–Morgenstern (EFGM) cop-
ula when its domain is I2 and −1 ≤ θ ≤ 1. Notice, however, that (1− c)Cθ+cΠ = C(1−c)θ

for any constant c. Thus, we might as well assume c = 0 but increase the possible range
of θ to the whole real line. This means Cθ does not have to be a copula in this example.

The value u (1− u) can be interpreted as the fuzziness of u and similarly for v (1− v).
So θuv (1− u) (1− v) represents overall fuzziness of the data (u, v). Thus, Cθ (u, v) can be
viewed as a combination between the truthful level and the fuzziness level of (u, v).

Sometimes data have to be scaled before combined. In this case, the aggregation A (u, v)
of (u, v) can be written as

A (u, v) = Cθ (F (u) , G (v))

for some scaling functions F : I → I and G : I → I. We will assume that F (0) = G (0) for
simplicity and denote this common value by a. To guarantee that A is nondecreasing, we
must have ∂1Cθ ≥ 0 and ∂2Cθ ≥ 0 on [a, 1]

2. Direct computation yields

1− θ ≥ 0, and 1 + θ (1− 2a) ≥ 0

which is guaranteed, e.g., if we choose θ = − (1− a)
−2. Note that this value of θ does not

actually depend on the shape of F or G but only through the fact that Range (F ) ,Range (G) ⊆
[a, 1]. In other words, there are several choices of F and G to choose from. For instance,
we could choose F to be one of the following functions.

(1) An exponential scaling of the form

F (u) = ae−u ln a

for all u ∈ Ia.
(2) A sigmoid function such as

F (u) = a+ α tanh (u)

or
F (u) = a+ α

u√
1 + u2

for all u ∈ Ia.
(3) A polynomial function of the form

(3.5) F (u) = a+ α

� u

a

xk0 (1− x)
kl+1

l∏
i=1

(x− ti)
2ki dx

for all u ∈ Ia where a < ti < 1 are all distinct and ki are positive integers.
Here, α is simply a scaling constant forcing F (1) = 1.



388 Varayut Boonyasri and Santi Tasena

Example 3.2. In this example, we will consider a construction of aggregation functions
with fixed scaling functions. For instance, we may use the scaling function of the Mean :
I → I which is equal to

F (x) =
1

2
(1 + x)

for all x ∈ I. Now, we may consider an aggregation function A : I2 → I in the form

A (x, y) = (1− c)C (F (x) , F (y)) + cF (x)F (y)

for all x, y ∈ I. Here, the constant c and the copula C must be chosen so that 0 =
(1− c)C

(
1
2 ,

1
2

)
+ 1

4c,

(3.6) ∂1C (u, v) ≥ c (∂1C (u, v)− v)

and

∂2C (u, v) ≥ c (∂2C (u, v)− u)

for all u, v ∈ Range (F ) =
[
1
2 , 1
]
. Otherwise, A would not be an aggregation func-

tion. There are several choices of copulas to choose from. One choice would be the
Ali–Mikhail–Haq copula Cθ given by

Cθ (u, v) =
uv

1 + θ (1− u) (1− v)

for all u, v ∈ I where −1 ≤ θ ≤ 1. Since we only require Cθ to be a subcopula with domain[
1
2 , 1
]2, we can extend the range of θ. Direct computation show that −4 < θ ≤ 1 in this

case. Then

Cθ

(
1

2
,
1

2

)
=

1

4 + θ

so that

c = −
1

4+θ
1
4 − 1

4+θ

= − 4

4 + θ − 4
= −4

θ
.

Also,

∂1Cθ (u, v) =
v + θv (1− v)

(1 + θ (1− u) (1− v))
2

which implies

∂1Cθ (u, v)− v =
θv (1− v)

(
u2 − (1− u)

2
(1 + θ (1− v))

)
(1 + θ (1− u) (1− v))

2 .
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Since Cθ is symmetric, it is sufficient to satisfy inequality (3.6). For θ < 0, ∂1Cθ (u, v)−
v < 0 and hence

max

{
∂1Cθ (u, v)

∂1Cθ (u, v)− v
:
1

2
≤ u, v ≤ 1

}

= max

 1 + θ (1− v)

θ (1− v)
(
u2 − (1− u)

2
(1 + θ (1− v))

) :
1

2
≤ u, v ≤ 1


= max

 −t

(1− t)
(
u2 − (1− u)

2
t
) :

1
2 ≤ u ≤ 1,

1 + θ
2 ≤ t ≤ 1


= −min

 t

(1− t)
(
u2 − (1− u)

2
t
) :

1
2 ≤ u ≤ 1,

1 + θ
2 ≤ t ≤ 1


= −min

{
t

(1− t)
: 1 +

θ

2
≤ t ≤ 1

}
= −

1 + θ
2

1−
(
1 + θ

2

)
= 1 +

2

θ
.

This forces

c = −4

θ
≥ 1 +

2

θ

which is equivalent to θ ≥ −6.
For θ > 0, ∂1Cθ (u, v)−v > 0 if and only if 1+θ (1− v) ≤ u2

(1−u)2
. Write t = 1+θ (1− v).

Now,

min

 t

(1− t)
(
u2 − (1− u)

2
t
) :

1
2 ≤ u ≤ 1,

1 ≤ t ≤ 1 + θ
2

t ≤ u2

(1−u)2


= min

 t

(t− 1)
(
u2 − (1− u)

2
t
) :

√
t√

t+1
≤ u ≤ 1,

1 ≤ t ≤ 1 + θ
2


= min

{
t

(t− 1)
: 1 ≤ t ≤ 1 +

θ

2

}
= 1 +

2

θ
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and

max

 t

(t− 1)
(
u2 − (1− u)

2
t
) :

1
2 ≤ u ≤ 1,

1 ≤ t ≤ 1 + θ
2

t ≥ u2

(1−u)2


= −min

 t

(t− 1)
(
(1− u)

2
t− u2

) :
1
2 ≤ u ≤

√
t√

t+1
,

1 ≤ t ≤ 1 + θ
2


= −min

{
4t

(t− 1)
2 : 1 ≤ t ≤ 1 +

θ

2

}

= −
4
(
1 + θ

2

)(
θ
2

)2
= − 1

θ2
− 1

2θ
.

Therefore, we must have

1 +
2

θ
≥ −4

θ
≥ − 1

θ2
− 1

2θ

which is always true for θ > 0. Hence

A (x, y) =

(
1 +

4

θ

)
C (F (x) , F (y))− 4

θ
F (x)F (y)

=

(
1 + 4

θ

)
(1 + x) (1 + y)

4 + θ (1− x) (1− y)
− 1

θ
(1 + x) (1 + y)

=
1

θ

(
4 + θ

4 + θ (1− x) (1− y)
− 1

)
(1 + x) (1 + y)

=
1

θ

(
θ − θ (1− x) (1− y)

4 + θ (1− x) (1− y)

)
(1 + x) (1 + y)

=
(1 + x) (1 + y) (1− (1− x) (1− y))

4 + θ (1− x) (1− y)

is an aggregation function whenever −4 < θ ≤ 1.
Similar constructions can also be done with other families of copulas.

4. CONSTRUCTION PROPERTIES

In this section, we will discuss important properties of our construction. First, we will
recall the definition of scaling functions.

Definition 4.2. The ith scaling associated with an aggregation function A : Ik → I is a
function Ai : I → I defined by

Ai (x) = A (xe⃗i + e⃗−i)

for all x ∈ I. Denote also A⃗ : Ik → Ik where

A⃗ (x⃗) = (A1 (x1) , . . . , Ak (xk))

for all x⃗ ∈ Ik. The function A⃗ is called the scaling vector of A.

Note that an aggregation function is a semi-copula if and only if all of its associated
scaling functions are the identity function.
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Theorem 4.1. Let A⃗ : Ik → Ik be a continuous scaling vector, c be a constant and C be a copula.
If ∂iC ≥ c (∂iC − ∂iΠ) a.e. on Range

(
A⃗
)

for all i = 1, . . . , k and that

C ◦ A⃗
(
0⃗
)
= −

(
c

1− c

) k∏
i=1

Ai (0) ,

then the function A given by (3.3) is a continuous aggregation function with A⃗ as its associated
scaling vector. Moreover, any k-times continuously differentiable aggregation function with a
strictly increasing scaling vector can be constructed this way.

Proof. Let S = (1− c)C + cΠ. Since ∂iC exists, ∂iS = (1− c) ∂iC + c∂iΠ also exists
and we have ∂iS ≥ 0 on Range

(
A⃗
)

. Thus, S is nondecreasing which also implies A is

nondecreasing. Clearly, A
(
1⃗
)
= S

(
1⃗
)
= 1 while

A
(
0⃗
)
= (1− c)C ◦ A⃗

(
0⃗
)
+ cΠ ◦ A⃗

(
0⃗
)
= 0.

Therefore, A is an aggregation function.
Next, assume that A : Ik → I is a k-times continuously differentiable aggregation func-

tion with a strictly increasing associated scaling vector A⃗ : Ik → Ik. Then its associated
scaling Ai are also continuously differentiable and strictly increasing. Therefore, their
inverse exists, strictly increasing, and also continuously differentiable.

Denote a⃗ = A⃗
(
0⃗
)

. Then we have Range
(
A⃗
)
=
[
a⃗, 1⃗
]
. Define S (x1, . . . , xk) =

A
(
A−1

1 (x1) , . . . , A
−1
k (xk)

)
for all (x1, . . . , xk) ∈

[
a⃗, 1⃗
]
. By chain rule, its mixed partial

derivative ∂1 · · · ∂kS also exists and continuous. Notice that S is nondecreasing with

Si (u) = S (ue⃗i + e⃗−i)

= A
(
A−1

i (u) e⃗i + e⃗−i

)
= Ai

(
A−1

i (u) e⃗i + e⃗−i

)
= u

for all u ≥ ai. We will recursively extended S per coordinate as follows. First, we set
T1 = S if a1 = 0 otherwise, set

T1 (x⃗) =

{
x1

a1
S (a1, x2, . . . , xk) , x1 ≤ a1;

S (x1, x2, . . . , xk) , otherwise;

whenever x⃗ ∈ Ik with xi ≥ ai for all i ̸= 1. Then we have T1 is an extension of S which is
k-times continuously differentiable almost everywhere (excepted possibly when x1 = a1).
Also,

T1 (ue⃗i + e⃗−i) = u

whenever either u ∈ I and i = 1 or u ≥ ai and i > 1. Now, we extends Ti : Ii ×∏k
j=i+1 [aj , 1] → I to Ti+1 : Ii+1 ×

∏k
j=i+1 [aj , 1] → I, whenever i < k, by setting Ti+1 = Ti

if ai+1 = 0; otherwise, set

Ti+1 (x⃗) =

{
xi+1

ai+1
S (x1, . . . , xi, ai+1, xi+2, . . . , xk) , xi+1 ≤ ai+1;

S (x1, x2, . . . , xk) , otherwise;

for all x⃗ ∈ Ik with xj ≥ aj for all j > i + 1. Again, Ti+1 is k-times continuously differen-
tiable almost everywhere (excepted possibly when xi+1 = ai+1). Now, we have T = Tk
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is an extension of S which is k-times continuously differentiable almost everywhere (ex-
cepted possibly when xi = ai for some i). Moreover,

T (ue⃗i + e⃗−i) = u

for all u ∈ I and all i. In particular,
T (x⃗) = 0

whenever xi = 0 for some i. We can then define

c = min

((
min

∀i,ui ̸=ai

∂1 · · · ∂kT (u⃗)

)
, 0

)
and

C (u⃗) =
1

1− c

�

[⃗0,u⃗]

(∂1 · · · ∂kT − c)

=
1

1− c
(VT ([0, u⃗])− cVΠ ([0, u⃗]))

=
1

1− c
(T (u⃗)− cΠ(u⃗))

for all u⃗ ∈ Ik. Since C is an integration of a nonnegative function, it must be k-increasing.
Since both T and Π satisfy equation (2.1), so is C. Therefore, C is a copula. Notice that,
we actually have

C (u⃗) =
1

1− c
(S (u⃗)− cΠ(u⃗))

whenever u⃗ ∈ Range
(
A⃗
)

. The constant c can also be written in term of S. Therefore, the
choice of extension T does not actually matter. Also,

C
(
A⃗
(
0⃗
))

=
1

1− c

(
S
(
A⃗
(
0⃗
))

− cΠ
(
A⃗
(
0⃗
)))

=
1

1− c

(
A
(
0⃗
)
− c

k∏
i=1

Ai (0)

)

= −
(

c

1− c

) k∏
i=1

Ai (0) .

By construction, formula (3.3) must hold as desired. □

Remark 4.1. Note that the constant c in the above proof is not unique. It can actually be
replaced by any number less than (min ∂1 · · · ∂1T ) ∧ 0.

As mentioned before, any quadratic aggregation function can be written in the form of
(3.3). Its proof is a simple consequence of the above theorem.

Corollary 4.1. Any bivariate quadratic aggregation function can be written in the form of (3.3)
for some copula C and some constant c unless it is either a convex combination of π11, ζ11, and ζ12
or a convex combination of π22, ζ22, and ζ12.

Proof. Since a quadratic bivariate function is continuously twice differentiable, we only
have to consider the monotonicity condition. Let

A = a1π11 + a2π22 + b1π12 + b2ζ12 + c1ζ11 + c2ζ22
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be a quadratic bivariate aggregation function. Then

A′
i (x) = 2ci + b1 + 2 (ai − ci)x

≥ 0.

since A is nondecreasing. If A′
i (x) = 0 for some x ∈ I , then we must actually have

A′
i (x) = 0 on either [0, x] or [x, 1] which further implies A′

i (x) = 0 on I2 due to the mono-
tonicity of linear functions. Since all coefficients are nonnegative, the latter is equivalent
to ai = ci = b1 = 0. Therefore, exactly one of the following cases occurs:

• A⃗ is strictly increasing,
• a1 = c1 = b1 = 0,
• a2 = c2 = b1 = 0.

If A⃗ is strictly increasing, we are immediately done. Otherwise, A is either a convex com-
bination of π11, ζ11, and ζ12 or a convex combination of π22, ζ22, and ζ12 as desired. □

In corollary 4.1, we see that only quadratic aggregation functions on the boundary of
the set can not be written in the form (3.3). This situation also holds in general – only
aggregation functions on the boundary of the set can not be written in the form (3.3).

Theorem 4.2. The set of aggregation functions constructed via (3.3) is dense in the space of
continuous aggregation functions. Furthermore, it contains all the interior of the space.

Proof. Denote A the set of continuous aggregation functions, B the set of aggregation func-
tions in the form (3.3), and S the set of smooth strictly increasing aggregation functions,
all with the same dimension d. We already know S ⊆ B ⊆ A. If we can show that S is
dense in A, then so is B. To do this, we will used the Bernstein polynomial. Let A ∈ A,
and define

An (x⃗) =

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗
) d∏

i=1

B (n, ki, xi)

for all x⃗ ∈ Id where B (n, k, x) =
(
n
k

)
xk (1− x)

n−k.
It is well-known that An converges to A uniformly. Moreover, An are smooth since they
are polynomial, An

(
0⃗
)
=A

(
0⃗
)∏d

i=1 B (n, 0, 0)=0, and An

(
1⃗
)
=A

(
1⃗
)∏d

i=1 B (n, n, 1)=

1. Thus, it remains to show that An are nondecreasing. For this, notice that

∂jAn (x⃗) =

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗
) d∏

i=1,i̸=j

B (n, ki, xi)

 ∂jB (n, ki, xi)

= n

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗
) d∏

i=1,i̸=j

B (n, ki, xi)

 (B (n− 1, kj − 1, xj)−B (n− 1, kj , xj))

= n

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗ +

1

n
· e⃗j
)
B (n− 1, kj , xj)

d∏
i=1,i̸=j

B (n, ki, xi)

− n

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗
)
B (n− 1, kj , xj)

d∏
i=1,i̸=j

B (n, ki, xi)

= n

n·⃗1∑
k⃗=0⃗

(
A

(
1

n
· k⃗ +

1

n
· e⃗j
)
−A

(
1

n
· k⃗
))

B (n− 1, kj , xj)

d∏
i=1,i̸=j

B (n, ki, xi)
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with the convention that B (n− 1, k, x) = 0 when k < 0 or k > n − 1. Since A is non-
decreasing, the last line must also be nonnegative. Hence, An are nondecreasing. Set
Sn =

(
1− 1

n

)
An + 1

nΠ. Then Sn ∈ S are also smooth strictly increasing aggregation
functions and Sn → A uniformly to A. This finishes the proof of the first statement.

For the second statement, notice that the set S is also convex. Now, the fact that S is a
convex dense subset of a closed convex set A lying in a Banach space implies that S must
contain all the interior points of A. Since S ⊆ B, the same also holds for B. Therefore,
aggregation functions that can not be represented as (3.3) must lie on the boundary. □

Last, we will end this section by showing that our construction method can also be
used to construct aggregation functions with special properties. Recall that an aggregation
function A is idempotent if A

(
x · 1⃗

)
= x for all x ∈ I, and it is invariant if A (x⃗) does not

depends on the order of xi’s that appear in x⃗. In particular, all scaling functions associated
to an invariant aggregation function must be the same.

Corollary 4.2. The set of idempotent invariant aggregation functions in the form (3.3) is dense
in the set of idempotent invariant (continuous) aggregation functions. In this case, the diagonal
function δC of the copula C in (3.3) must be given by

(4.7) δC (a (x)) =
1

1− c

(
x− cad (x)

)
for all x ∈ I where a : I → I is its associated scaling function and d is its dimension.

Proof. First, we will prove the second statement. Let A be an idempotent invariant aggre-
gation function in the form (3.3) and a : I → I be its associated scaling function. Then we
must have

x = A
(
x · 1⃗

)
= (1− c)C ◦ A⃗

(
x · 1⃗

)
+ cΠ ◦ A⃗

(
x · 1⃗

)
= (1− c) δC (a (x)) + cad (x)

which yields the result via some algebraic manipulations.
Now, for the first statement, let A be an idempotent invariant (continuous) aggregation

function. Again, set

An (x⃗) =

n·⃗1∑
k⃗=0⃗

A

(
1

n
· k⃗
) d∏

i=1

B (n, ki, xi)

for all x⃗ ∈ Id. Then An are smooth invariant aggregation functions and An → A uniformly
to A. Set Bn =

(
1− 1

n

)
An+

1
nΠ. Then Bn are also smooth invariant aggregation functions,

Bn → A uniformly, and B⃗n are strictly increasing as well. Therefore, its diagonal function
bn = δBn

must also be smooth and strictly increasing and bn converges uniformly to the
identity function on I. Now, bn are univariate distribution functions, so its associated
quantile b−1

n must also converge uniformly to the identity function on I. Clearly, b−1
n are

smooth and strictly increasing.
Set

Dn (x⃗) = Bn

(
b−1
n (x1) , . . . , b

−1
n (xd)

)
for all x⃗ ∈ Id. Then Dn are idempotent invariant aggregation functions converges uni-
formly to A. Since Dn are also smooth and strictly increasing, they must be in the form
(3.3). □
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It should be mentioned that Corollary 4.2 only states that all diagonal functions must
be in the form of (4.7) but not the converse. After all, the range of possible number c will
depend on the scaling function a. This fact will be summarized in the following result
when the scaling function is continuously differentiable.

Theorem 4.3. Let a : I → I be a continuously differentiable strictly increasing scaling function.
Denote βd (x) = a(x)−x

a(x)(1−ad−1(x))
, γd (x) = 1

dad−1(x)a′(x)
, and ηd (x) = da′(x)−1

da′(x)(1−ad−1(x))
. Let δ

be a function that satisfies (4.7).
(1) If a (0) > 0, then δ can be extended to diagonal function if and only if either

c ≥
(

sup
0<x<1

βd (x)

)
∨
(

sup
0<x<1

γd (x)

)
∨
(

sup
0<x<1

ηd (x)

)
or

c ≤
(

inf
0<x<1

ηd (x)

)
∧ 0.

(2) If a (0) = 0, then δ is a diagonal function if and only if

c ≤
(

inf
0<x<1

βd (x)

)
∧
(

inf
0<x<1

γd (x)

)
∧
(

inf
0<x<1

ηd (x)

)
.

Proof. Notice that

δ′ (a (x)) a′ (x) =
1

1− c

(
1− cdad−1 (x) a′ (x)

)
for all x ∈ I. For δ to be a diagonal function, it must be point-wisely bounded by the
identity function, nondecreasing, and Lipschitz with constant d. The last two conditions
can be fulfill if 0 ≤ δ′ ≤ d.

In the case a (0) > 0, we may extend δ linearly by setting

δ (t) =
−cad−1 (0) t

1− c

for all t < a (0). Clearly, δ (t) ≤ t and 0 ≤ δ′ (t) ≤ 1 for all t < a (0) as long as 0 ≤
δ (a (0)) = −cad(0)

1−c ≤ a (0) which is a part of the conditions for the original δ with its
domain [a (0) , 1]. Thus, there is no need to verify the extension.

Denote αd (x) =
x

ad(x)
.

Case 1. a (0) = 0.

Then
1

1− c
= δ′ (a (0)) a′ (0) ≥ 0

which implies c < 1. Fix 0 < x < 1.
The fact that δ (a (x)) ≥ 0 can be simplified to x− cad (x) ≥ 0 which is equivalent to

c ≤ x

ad (x)
= αd (x) .

The fact that δ (a (x)) ≤ a (x) can be simplified to x − cad (x) ≤ (1− c) a (x) which is
equivalent to

c ≤ a (x)− x

a (x) (1− ad−1 (x))
= βd (x) .
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The fact that δ′ (a (x)) ≥ 0 is equivalent to 1− cdad−1 (x) a′ (x) ≥ 0, so we have

c ≤ 1

dad−1 (x) a′ (x)
= γd (x) .

The fact that δ′ (a (x)) ≤ d is equivalent to 1 − dcad−1 (x) a′ (x) ≤ d (1− c) a′ (x), so we
have

c ≤ da′ (x)− 1

da′ (x) (1− ad−1 (x))
= ηd (x) .

Now, limx→0+ αd (x) = ∞ and αd (1) = 1 > 1− 1
a′(0) = limx→0+ βd (x). Also,

α′
d (x) =

ad (x)− dxad−1 (x) a′ (x)

a2d (x)
= 0

if and only if a (x) = dxa′ (x) which leads to αd (x) = γd (x) at that point. Thus,

inf
0<x<1

αd (x) ≥
(

inf
0<x<1

βd (x)

)
∧
(

inf
0<x<1

γd (x)

)
which yields the desired result.

Case 2. a (0) > 0.

Then δ (a (0)) ≥ 0 implies − c
1−c ≥ 0 which is equivalent to either c ≤ 0 or c > 1. For

c ≤ 0, we may proceed as in the previous case to get

c ≤ min (αd (x) , βd (x) , γd (x) , ηd (x))

for all 0 < x < 1. Now, min (αd (x) , βd (x) , γd (x)) ≥ 0 so we are left with

c ≤
(

inf
0<x<1

ηd (x)

)
∧ 0.

For c > 1, we may also proceed similarly to get

c ≥ max (αd (x) , βd (x) , γd (x) , ηd (x))

for all 0 < x < 1. Now, αd (0) = 0 and αd (1) = 1 < β (0). Again, α′
d (x) = 0 if and only if

αd (x) = γd (x) for any 0 < x < 1. Thus,

sup
0<x<1

αd (x) ≤
(

sup
0<x<1

βd (x)

)
∨
(

sup
0<x<1

γd (x)

)
as desired. □

We will end this work by providing a few construction of idempotent invariant bivari-
ate aggregation functions using this method which in turn relies on the construction of a
copula from a diagonal function. For convenience, we will be using the copula Kδ defined
by

Kδ (u, v) = min

(
u, v,

1

2
(δ (u) + δ (v))

)
for all u, v ∈ I. It is know that Kδ is a copula whenever δ is a diagonal functions [22]. For
other constructions of copulas given diagonal functions, see for example, [17, 8, 9, 34, 26,
43].
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Example 4.3. Again, let a be the scaling function of the Mean : I → I, that is,

a (x) =
1 + x

2

for all x ∈ I.
In this case, β2 = γ2 = 1

a is decreasing while η2 = 0. Thus, we obtain the range of
possible c as either c ≥ 1

a(0) = 2 or c ≤ 0. For each c, we have the corresponding diagonal
function δ = δc given by

δc (t) =
1

1− c

(
2t− 1− ct2

)
whenever 1

2 ≤ t ≤ 1.
Next, we need to determine c for which ∂iKδ ≥ c (∂iKδ − ∂iπ) a.e. Since Kδ is symmet-

ric, it is sufficient to only consider the case i = 1. Note that Kδ (u, v) = v when (u, v) is
near

(
1, 1

2

)
, Kδ (u, v) = u when (u, v) is near

(
1
2 , 1
)
, and Kδ (u, v) =

1
2 (δ (u) + δ (v)) when

(u, v) is near diagonal section. Thus, all three cases are possible.
When Kδ (u, v) = u, we have ∂1Kδ = 1 so that ∂1Kδ ≥ c (∂1Kδ − ∂1π) become 1 ≥

c (1− v) where 1
2 ≤ v ≤ 1. This forces either c = 2 or c ≤ 0. When Kδ (u, v) = v, we have

∂1Kδ = 0 so that ∂1Kδ ≥ c (∂1Kδ − ∂1π) becomes 0 ≥ −cv which holds only for c ≥ 0.
When Kδ (u, v) =

1
2 (δ (u) + δ (v)), we have ∂1Kδ = 1

2δ
′ (u) so that ∂1Kδ ≥ c (∂1Kδ − ∂1π)

becomes δ′ (u) ≥ c (δ′ (u)− 2v) which holds for both c = 0 and c = 2.
Let

Ac (x, y) = (1− c)Kδc

(
x+ 1

2
,
y + 1

2

)
+

c

4
(x+ 1) (y + 1)

for all x, y ∈ I. Notice that A0 = Mean. Thus, A2 is another idempotent invariant aggre-
gation function with the same scaling function as the Mean.

Example 4.4. Let a (x) =
(
2
3

)1−x for all x ∈ I. Then a (x) ≥ x for all x ∈ I which implie a
is a scaling function of an idempotent invariant aggregation function. For this function a,
limx→1− η2 (x) = −∞. Thus, only positive

c ≥
(

sup
0<x<1

β2 (x)

)
∨
(

sup
0<x<1

γ2 (x)

)
∨
(

sup
0<x<1

η2 (x)

)
is possible.

Using graphical approach, we can see that η2 < 0 while both β2 and γ2 are nonincreas-
ing. Thus, δc given by

δc

((
2

3

)1−x
)

=
1

1− c

(
x− c

(
2

3

)2−2x
)

is a diagonal function if and only if c ≥ β2 (0) ∨ γ2 (0) = 3.
Next, we need to determine c for which ∂iKδ ≥ c (∂iKδ − ∂iπ) a.e. Since Kδ is symmet-

ric, it is sufficient to only consider the case i = 1. Note that Kδ (u, v) = v when (u, v) is
near

(
1, 2

3

)
, Kδ (u, v) = u when (u, v) is near

(
2
3 , 1
)
, and Kδ (u, v) =

1
2 (δ (u) + δ (v)) when

(u, v) is near the diagonal section. Thus, all three cases are possible.
When Kδ (u, v) = v, we have ∂1Kδ = 0 so that ∂1Kδ ≥ c (∂1Kδ − ∂1π) always holds

since the right side is negative. When Kδ (u, v) = u, we have ∂1Kδ = 1 so that ∂1Kδ ≥
c (∂1Kδ − ∂1π) becomes 1 ≥ c (1− v) for all u ≤ v ≤ 1 which yields c ≤ 3. When
Kδ (u, v) = 1

2 (δ (u) + δ (v)), we have ∂1Kδ = 1
2δ

′ (u) so that ∂1Kδ ≥ c (∂1Kδ − ∂1π) be-
comes δ′ (u) ≥ c (δ′ (u)− 2v) which always holds when c = 3.
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Therefore,

A (x, y) = −2Kδ3

((
2

3

)1−x

,

(
2

3

)1−y
)

+ 3

(
2

3

)2−x−y

= 3

(
2

3

)2−x−y

−min

(
2

(
2

3

)1−x∨y

,

(
2

3

)1−2x

+

(
2

3

)1−2y

− x+ y

2

)
is an idempotent invariant aggregation function with the scaling function given by a (x) =(
2
3

)1−x for all x ∈ I.

Last, for the case a (0) = 0, the following result holds.

Corollary 4.3. Let a : I → I be a continuously differentiable strictly increasing scaling function
and δ be a function that satisfies (4.7). If η2 ≥ 0, then the function A defined by

(4.8) A (x, y) = (1− c)Kδ (a (x) , a (y)) + ca (x) a (y)

for all x, y ∈ I is an idempotent invariant aggregation function with scaling function a whenever
0 ≤ c ≤ (inf0<x<1 β2 (x)) ∧ (inf0<x<1 γ2 (x)) ∧ (inf0<x<1 ηd (x)) .

Furthermore, all (1− c)Kδ + cπ are copulas with the same diagonal function a−1.

Proof. Clearly, β2 ≥ 0 and γ2 ≥ 0. Therefore, the condition η2 ≥ 0 guarantee the existence
of c. Since c ∈ I, we know (1− c)Kδ+cπ is a copula and that A is an idempotent invariant
aggregation function. Therefore, (1− c)Kδ + cπ must have the same diagonal function
which is a−1.

To see why we can not extend the range of c to a negative number, notice that Kδ (1, 0) =
0 which implies Kδ (u, v) = v in a neighborhood of (1, 0). For this case, ∂1Kδ = 0 so that
the condition ∂1Kδ ≥ c (∂1Kδ − ∂1π) becomes 0 ≥ −cv for small v > 0. This forces
c ≥ 0. □

Example 4.5. Let a (x) =
√
2x√

1+x2
for all x ∈ I be a sigmoid function. Then a (x) ≥ x for

all x ∈ I which implies a is a scaling function of an idempotent invariant aggregation
function.

In this case, β2 ≤ γ2 and β2 ≤ η2 pointwisely and β2 is nondecreasing. Thus, the range
of c becomes 0 ≤ c ≤ β2 (0) = 1− 1

a′(0) =
√
2−1√
2

.
For such c, let Ac (x, y) = (1− c)Kδc (a (x) , a (y)) + ca (x) a (y) where

δc (t) =
1

1− c

(
a−1 (t) + ct2

)
=

1

1− c

(
t√

2− t2
+ ct2

)
is the diagonal function corresponding to c as in (4.7). Then Ac is a family of idempotent
invariant aggregation functions with the same scaling function a.

Example 4.6. Consider an Ali–Mikhail–Haq copula defined by C (u, v) = uv
u+v−uv for all

u, v ∈ I. We will use our result to construct a family of copulas with the same diagonal
function of C which is given by δC (t) = t

2−t .
Let a = δ−1

C . Then a (x) = 2x
x+1 . Again, we found that β2 ≤ γ2 and β2 ≤ η2 pointwisely

while β2 is nondecreasing. Thus, we can choose c such that 0 ≤ c ≤ β2 (0) = 1− 1
a′(0) =

1
2 .

Now, any function Dc = (1− c)Kδc + cπ where

δc (t) =
1

1− c

(
t

2− t
+ ct2

)
for all t ∈ I is a copula with diagonal function δDc = δC whenever 0 ≤ c ≤ 1

2 .
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5. CONCLUSIONS AND DISCUSSIONS

In this work, we make a slight change to the Sklar’s formula which immensely ef-
fect the class of aggregation functions that can be constructed via this two-step method.
When proceed with the Sklar’s formula as in [18], only k-increasing aggregation functions
can be constructed. This leaves out many aggregation functions. For example, only half
of quadratic aggregation functions can be constructed via the Sklar’s formula while the
new formula only fails to represent some quadratic aggregation functions lying on the
boundary. This fact also holds in general. The new formula is able to represent any ag-
gregation function lying in the interior of this set. This is a vast improvement over the
Sklar’s formula – simple yet effective. This also means we could use a vast family of
copulas already constructed in literature to construct aggregation functions. One interest-
ing example would be using this method to construct aggregation functions with special
properties. This should provide many such aggregation functions. We also present an
example in the case of idempotent invariant aggregation functions. The construction for
other classes should be an interesting research topic in the future.

Another problem related to data representation is data prediction / regression. In the
latter case, aggregation functions can be used as a possible form of relationship between a
response variable and explanatory variables under the assumption of monotonicity. With
our result, this can be done by choosing a parametric family of copulas and scaling func-
tions. Then the best parameters are seek via, for example, the least square method. It
would also be interesting to see whether a two-step regression can be done by first work
on a regression of each explanatory variable to get the corresponding scaling function and
then follow by a regression on copulas. This is similar to how a joint distribution function
is estimated in a copula model - first estimate marginal distribution functions and then
estimate the copula. Whether this two-step method is possible for aggregation functions
will again be the future topic of study.
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