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On the transfer of convergence between two sequences in
Banach spaces

DAN ŞTEFAN MARINESCU and EUGEN PĂLTĂNEA

ABSTRACT. Let (X, ∥ ·∥) be a Banach space and T : A → X a contraction mapping, where A ⊂ X is a closed
set. Consider a sequence {xn} ⊂ A and define the sequence {yn} ⊂ X , by yn = xn +T

(
xσ(n)

)
, where {σ(n)}

is a sequence of natural numbers. We highlight some general conditions so that the two sequences {xn} and
{yn} are simultaneously convergent. Both cases: 1) σ(n) < n, for all n, and 2) σ(n) ≥ n, for all n, are discussed.
In the first case, a general Picard iteration procedure is inferred. The results are then extended to sequences of
mappings and some appropriate applications are also proposed.

1. INTRODUCTION

Our study focuses on a particular problem of convergence in Banach spaces. A com-
prehensive treatment of Banach space theory can be found, for example, in [6] and [10].
The problem we are studying is related to the Banach’s contraction mapping principle. The
theory of fixed points is intensively studied in the literature. Rich information on this
topic can be found in the monographs [2] and [3].

Given a closed subsetA of a Banach space (X, ∥·∥), we consider a contraction mapping
T : A → X and we study the simultaneous convergence of the sequences {xn} ⊂ A and
{yn} ⊂ X linked by a relation of the type

yn = xn + T (xσ(n)), n = 1, 2, . . . .

Here, {σ(n)} is a sequence of non-negative integers. We study two situations. In the first
case, we suppose that σ(n) < n, for all n. Note that the proposed convergence theorem
highlights a general Picard iteration procedure. The second case studied refers to the
dual condition σ(n) ≥ n, for all n. If T is a non self mapping, i.e., the closed set A is
not invariant with respect to T (T (A) ̸⊂ A), then the Picard-Banach fixed point theorem
cannot be used in the proofs. However, if T (A) ⊂ A, which happens for example when
A = X , then the results could be obtained by applying the Picard-Banach fixed point
theorem. The results are then extended to sequences of mappings.

Although such kind of problems is common in literature, we do not know a systematic
study of this topic in the general framework of Banach spaces. For X = R, a particular
related study can be found in [13].

Our results could be used to solve a wide class of problems. We illustrate some such
applications in Section 3.

In the following, we will denote N = {0, 1, 2, . . .} and Ni = {i, i+ 1, i+ 2, . . .}, where i
is a positive integer.
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2. MAIN RESULTS

Firstly we study the case of a sequence {σ(n)} of natural numbers with the property
σ(n) < n, for all n. The following theorem provides a general convergence criterion in a
Banach space.

Theorem 2.1. Let (X, ∥ · ∥) be a Banach space and let T : A → X be a contraction mapping
defined on a closed subset A of X . Let us consider a positive integer i and a function σ : Ni → N,
with the properties lim

n→∞
σ(n) = ∞ and σ(n) < n, for all n ∈ Ni. Let {xn}∞n=0 ⊂ A and define

the sequence {yn}∞n=i by yn = xn + T (xσ(n)), for all n ∈ Ni. Then {xn}∞n=0 is convergent if and
only if {yn}∞n=i is convergent.

Proof. Assume that {xn} converges to u. Since A is closed, we have u ∈ A. From the
assumption lim

n→∞
σ(n) = ∞ and taking into account the continuity on the set A of the

contraction mapping T , we conclude that {yn} converges to u+ T (u).
Let us prove the converse implication. From the hypothesis, there is a ∈ [0, 1) such that

∥T (x)−T (y)∥ ≤ a∥x−y∥, for all x, y ∈ A. Since {yn}∞n=i is assumed to be convergent, there
is C > 0 such that ∥yn∥ ≤ C, for all n ∈ Ni. First of all, we will prove that the sequence
{xn}∞n=0 is also bounded. Let us denote Mn = max{∥x0∥, ∥x1∥, . . . , ∥xn∥}, n ∈ N, and
K = C +Mi + ∥T

(
xσ(i)

)
∥. We will prove by induction the inequalities

(2.1) ∥xn∥ ≤Mi +K
(
1 + a+ . . .+ an−i

)
, for all n ∈ Ni.

For n = i, we have ∥xi∥ ≤ Mi < Mi + K. Suppose now that, for a given n ∈ Ni, the
following inequalities are true:

(2.2) ∥xk∥ ≤Mi +K
(
1 + a+ . . .+ ak−i

)
, for k = i, . . . , n.

From the assumption, we have σ(n+ 1) ∈ {0, 1, . . . , n}. Then we obtain

∥xn+1∥ =
∥∥yn+1 − T

(
xσ(n+1)

)∥∥ =
∥∥yn+1 − T

(
xσ(i)

)
+

[
T
(
xσ(i)

)
− T

(
xσ(n+1)

)]∥∥
≤ ∥yn+1∥+

∥∥T (
xσ(i)

)∥∥+ a
∥∥xσ(i) − xσ(n+1)

∥∥
≤ C +

∥∥T (
xσ(i)

)∥∥+ a
∥∥xσ(i)∥∥+ a

∥∥xσ(n+1)

∥∥ ≤ K + aMn.

We have ∥xk∥ ≤Mi < Mi +K
(
1 + a+ . . .+ an−i

)
, for k = 0, . . . , i− 1. Then, from (2.2),

we deduce Mn ≤Mi +K
(
1 + a+ . . .+ an−i

)
. Therefore

∥xn+1∥ ≤ K + a
[
Mi +K

(
1 + a+ . . .+ an−i

)]
≤Mi +K

(
1 + a+ . . .+ an−i + an+1−i

)
.

Thus, inequalities (2.1) are proved. Let us denote M = Mi +
K

1− a
. From (2.1) we find

∥xn∥ ≤M, for all n ∈ Ni. Clearly, ∥xn∥ ≤Mi < M, for n = 0, . . . , i− 1. As follows,

∥xn∥ ≤M, for all n ∈ N,

that is, the sequence {xn}∞n=0 is bounded. Let us define

∆n = sup{∥xp − xq∥ : p, q ∈ N, p, q ≥ n}, n ∈ N.

We have ∆n ≤ 2M and ∆n ≥ ∆n+1, for all n ∈ N.

Suppose ε > 0 and denote ε1 =
ε(1− a)

2
. Since {yn}∞n=i is convergent, it is a Cauchy

sequence. Then, there is n1 ∈ Ni such that ∥yp − yq∥ < ε1, for all p, q ∈ Ni, with p, q ≥ n1.
Based on the assumption lim

n→∞
σ(n) = ∞, we define the sequence of natural numbers

{nk}∞k=1 by the recurrence relation

nk+1 = min{m ∈ Ni : σ(p) ≥ nk, for all p ≥ m}, for k = 1, 2, . . .
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Note that {nk}∞k=1 is a strictly increasing sequence of positive integers. The following
relations

(2.3) ∆nk
≤ ε1

(
1 + a+ . . .+ ak−1

)
+ 2Mak, k ≥ 1,

will be proved by induction. For p, q ∈ Ni, with p, q ≥ n1, we have

∥xp − xq∥ =
∥∥[yp − T

(
xσ(p)

)]
−
[
yq − T

(
xσ(q)

)]∥∥ ≤ ∥yp − yq∥+
∥∥T (

xσ(p)
)
− T

(
xσ(q)

)∥∥
< ε1 + a

∥∥xσ(p) − xσ(q)
∥∥ ≤ ε1 + 2aM.

It turns out that ∆n1 ≤ ε1 + 2aM.
Suppose now that (2.3) holds for a positive integer k. For p, q ∈ Ni, with p, q ≥ nk+1,

we have σ(p), σ(q) ≥ nk ≥ n1. As follows, we obtain

∥xp − xq∥ < ε1 + a∥xσ(p) − xσ(q)∥ ≤ ε1 + a∆nk
≤ ε1

(
1 + a+ . . .+ ak−1 + ak

)
+ 2Mak+1.

Then ∆nk+1
≤ ε1(1 + a + . . . + ak−1 + ak) + 2Mak+1. Thus, (2.3) is proved by induction.

In relation (2.3), by choosing a positive integer k1 such that ak1 <
ε

4M
, we obtain

∆nk1
≤ ε1

(
1 + a+ . . .+ ak1−1

)
+ 2Mak1 < ε1 ·

1

1− a
+ 2M · ε

4M
= ε.

Hence ∥xp − xq∥ < ε, for all p, q ∈ N, p, q ≥ nk1
. Since ε > 0 is arbitrarily chosen, we

conclude that {xn}∞n=0 is a Cauchy sequence. So the sequence {xn}∞n=0 is convergent. □

Remark 2.1. In the particular case A = X , i = 1 and σ(n) = n− 1, for all n ≥ 1, the result
of Theorem 2.1 can be derived from Banach’s contraction mapping principle.

Thus, denote lim
n→∞

yn = ℓ and consider the a-contraction mapping U = ℓ − T : X → X .

Let u ∈ X be the unique fixed point of U , that is u+ T (u) = ℓ. We will prove lim
n→∞

xn = u.
For all n ∈ N1, we have

∥xn−u∥ = ∥yn−T (xn−1)−ℓ+T (u)∥ ≤ ∥yn−ℓ∥+∥T (u)−T (xn−1)∥ ≤ ∥yn−ℓ∥+a∥xn−1−u∥.

We easily obtain by induction ∥xn − u∥ ≤
n∑

k=1

an−k∥yk − ℓ∥ + an∥x0 − u∥, for all n ∈ N1.

Then, from Silverman-Toeplitz theorem (see, for example, [9]) we get

lim
n→∞

n∑
k=1

an−k∥yk − ℓ∥ =
1

1− a
lim
n→∞

∥yn − ℓ∥ = 0.

Therefore, lim
n→∞

∥xn − u∥ = 0, that is, the sequence {xn}∞n=0 converges to u.

Remark 2.2. The condition lim
n→∞

σ(n) = ∞ cannot be removed from the hypothesis of
Theorem 2.1.

The following elementary example supports the above remark. Consider two distinct
elements of A, let us say x0 and x1, such that T (x0) ̸= T (x1), and define σ(n) = 0, for odd
positive integers n, and σ(n) = 1, for even positive integers n > 1. Then {xn}∞n=0 and
{yn}∞n=1 cannot be simultaneously convergent.

The following general Picard iteration procedure is inferred.

Corollary 2.1. Let T : X → X be a contraction mapping defined on a Banach space X . Let
us consider a positive integer i and a function σ : Ni → N, with the properties lim

n→∞
σ(n) = ∞

and σ(n) < n, for all n ∈ Ni. Assume that a sequence {xn}∞n=0 of X satisfies the recurrent
relation xn = T

(
xσ(n)

)
+ yn, for all n ∈ Ni, where {yn}∞n=i is a sequence of X with the property

lim
n→∞

yn = 0. Then {xn}∞n=0 converges to the unique fixed point of T .
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Proof. We have yn = xn + (−T )(xσ(n)), n ≥ i. Since yn → 0 and −T is a contraction
mapping, Theorem 2.1 ensures the convergence of {xn}∞n=0. Let u ∈ X be the limit of
{xn}∞n=0. Since T is continuous and yn → 0, we get u = T (u). □

We now propose some extensions of Theorem 2.1 for sequences of functions. In this
context, we recall the following classical result due to Bonsall (see the monograph [5]): if
a sequence {Tn}∞n=1 of contraction mappings of a complete metric space, with the same Lipschitz
constant, is pointwise convergent to a contraction mapping T , then the sequence of the fixed points
of Tn, n ≥ 1, converges to the fixed point of T . This result has been extended by many
researchers. We mention the papers [1], [7], [11], [12], [15] and [16].

Our first result deals with the uniform convergence of a sequence of functions to a
contraction mapping.

Theorem 2.2. Let (X, ∥ · ∥) be a Banach space and let T : A → X be a contraction mapping
defined on a closed subset A of X . Let us consider a positive integer i and a function σ : Ni → N,
with the properties lim

n→∞
σ(n) = ∞ and σ(n) < n, for all n ∈ Ni. Suppose a sequence of mappings

Tn : A→ X, n ≥ i,which uniformly converges to T onA. Consider the sequences {xn}∞n=0, with
the terms in A, and {yn}∞n=i, defined by yn = xn + Tn

(
xσ(n)

)
, for all n ∈ Ni. Then {xn}∞n=0 is

convergent if and only if {yn}∞n=i is convergent.

Proof. Assume that {xn}∞n=0 converges to u ∈ clX(A) = A. To prove the convergence
of sequence {yn}∞n=i it is enough to show lim

n→∞
Tn

(
xσ(n)

)
= T (u). Assume ε > 0. Since

the contraction mapping T is a continuous function on A and lim
n→∞

σ(n) = ∞, there is

n1 ∈ Ni such that
∥∥T (

xσ(n)
)
− T (u)

∥∥ <
ε

2
, for all n ∈ Ni, n ≥ n1. On the other hand,

there is n2 ∈ Ni such that ∥Tn(x) − T (x)∥ < ε

2
, for all x ∈ A and for all n ∈ Ni, n ≥ n2.

Therefore,
∥∥Tn (xσ(n))− T (u)

∥∥ ≤
∥∥Tn (xσ(n))− T

(
xσ(n)

)∥∥ +
∥∥T (

xσ(n)
)
− T (u)

∥∥ < ε, for
all n ∈ Ni, n ≥ max{n1, n2}. Hence lim

n→∞
Tn(xσ(n)) = T (u). So, lim

n→∞
yn = u+ T (u).

Assume now that {yn}∞n=i is convergent. Let us consider the sequence {zn}∞n=i, defined
by zn = xn + T

(
xσ(n)

)
, n ∈ Ni. We will show that {zn}∞n=i is a Cauchy sequence.

Let ε be an arbitrary positive number. The convergence of {yn}∞n=i involves the exis-
tence of n1 ∈ Ni with the property ∥yp − yq∥ ≤ ε

3
, ∀ p, q ∈ Ni, p, q ≥ n1. Since {Tn}∞n=i

is uniformly convergent to T on A, there is n2 ∈ Ni such that ∥Tn(x) − T (x)∥ < ε

3
, for all

x ∈ A and for all n ∈ Ni, with n ≥ n2. Thus, for p, q ∈ Ni, with p, q ≥ max{n1, n2}, we
obtain

∥zp − zq∥ =
∥∥(yp − yq) +

[
T
(
xσ(p)

)
− Tp

(
xσ(p)

)]
+

[
Tq

(
xσ(q)

)
− T

(
xσ(q)

)]∥∥
≤ ∥yp − yq∥+

∥∥T (
xσ(p)

)
− Tp

(
xσ(p)

)∥∥+
∥∥Tq (xσ(q))− T

(
xσ(q)

)
)
∥∥ < ε

3
+
ε

3
+
ε

3
= ε.

Hence we conclude that {zn}∞n=i is a Cauchy sequence. As follows, {zn}∞n=i is convergent.
From Theorem 2.1, we conclude that {xn}∞n=0 is also convergent. □

The pointwise convergence of a sequence of mappings {Tn} to a contraction mapping
T do not ensure the result of Theorem 2.2. However, we provide below a version of this
theorem that regards this kind of convergence.

Theorem 2.3. Let Tn : X → X, n ≥ 1 be sequence of a-contractions mappings defined on a
Banach space X , such that {Tn}∞n=1 is pointwise convergent to T : X → X . Assume a sequence
{xn}∞n=0 in X such that {yn}∞n=1, defined by yn = xn +Tn(xn−1), for all n ∈ N1, is convergent.
Then {xn}∞n=0 is convergent.
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Proof. From the pointwise convergence of {Tn} to T , we easily deduce that the limit map-
ping T is also an a-contraction on X . Let ℓ ∈ X be the limit of {yn}∞n=1. Denote by u ∈ X
the fixed point of the a-contraction U = ℓ− T , that is, u = ℓ− T (u). For n ≥ 1, we have

∥xn − u∥ = ∥[yn − Tn(xn−1)]− [ℓ− T (u)]∥

≤ ∥yn − ℓ∥+ ∥Tn(u)− Tn(xn−1)∥+ ∥T (u)− Tn(u)∥ ≤ a∥xn−1 − u∥+ tn,

where tn := ∥yn − ℓ∥+ ∥Tn(u)− T (u)∥, with lim
n→∞

tn = 0. We obtain by induction:

∥xn − u∥ ≤ an∥x0 − u∥+
n∑

k=1

an−ktk, n = 1, 2, . . . .

From Silverman-Toeplitz theorem, we get lim
n→∞

n∑
k=1

an−ktk =
1

1− a
lim

n→∞
tn = 0. Then

lim
n→∞

∥xn − u∥ = 0, that is, {xn}∞n=0 converges to u. □

We are now studying the complementary case σ(n) ≥ n, n ∈ N.

Theorem 2.4. Let (X, ∥ · ∥) be a Banach space and consider a contraction mapping T : A → X ,
where A ⊂ X is a closed set. Let σ : N → N be a sequence of natural numbers, with the property
σ(n) ≥ n, for all n ∈ N. For a bounded sequence {xn}∞n=0 with the terms in A, we define the
sequence yn = xn+T

(
xσ(n)

)
, for all n ∈ N. Then {xn}∞n=0 is convergent if and only if {yn}∞n=0

is convergent.

Proof. Since σ(n) ≥ n, for all n ∈ N, we have lim
n→∞

σ(n) = ∞. Then the convergence of

{xn}∞n=0 involves the convergence of {yn}∞n=0 (see the first part of the proof of Theorem
2.1).

Suppose now that {yn}∞n=0 is convergent. Since {xn}∞n=0 is bounded, there is a positive
constant M such that ∥xn∥ ≤M, for all n ∈ N. Following the line of proving Theorem 2.1,
we define {∆n}∞n=0 by

∆n = sup{∥xp − xq∥ : p, q ∈ N, p, q ≥ n}, n ∈ N.

We have ∆n ≤ 2M and ∆n ≥ ∆n+1, for all n ∈ N. Since T is a contraction, there is
a ∈ [0, 1) such that ∥T (x)− T (y)∥ ≤ a∥x− y∥, for all x, y ∈ A.

Suppose ε > 0 and denote ε1 =
ε(1− a)

2
. The convergent sequence {yn}∞n=0 is a

Cauchy sequence. Then there is n1 ∈ N such that ∥yp − yq∥ < ε1, for all p, q ∈ N, with
p, q ≥ n1. For p, q ∈ N, with p, q ≥ n1, we have σ(p), σ(q) ≥ n1 and

∥xp − xq∥ =
∥∥[yp − T

(
xσ(p)

)]
−
[
yq − T

(
xσ(q)

)]∥∥ ≤ ∥yp − yq∥+
∥∥T (

xσ(p)
)
− T

(
xσ(q)

)∥∥
< ε1 + a∥xσ(p) − xσ(q)∥ ≤ ε1 + a∆n1 .

Therefore ∆n1 ≤ ε1 + a∆n1 . So, ∆n1 ≤ ε1
1− a

=
ε

2
< ε. It follows

∥xp − xq∥ ≤ ∆n1
< ε, for all p, q ∈ N, p, q ≥ n1.

We conclude that {xn}∞n=0 is a Cauchy sequence. So, {xn}∞n=0 is convergent. □

Remark 2.3. Theorem 2.4 does not hold without the assumption on {xn} to be bounded.

Counterexample. DefineA = {λv, λ ∈ R} ⊂ X , where v ∈ X\{0}. Consider the contraction
mapping T : A → X, T (x) = −2−1x, x ∈ A, and sequences xn = 2nv and σ(n) = n + 1,
for all n ∈ N. Then yn = xn + T (xn+1) = 0, for all n ∈ N, but ∥xn∥ = 2n∥v∥ → ∞.
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Remark 2.4. Theorem 2.4 can be extended to sequences of functions with the limit T , in
the similar frame as in Theorem 2.2 and Theorem 2.3.

Remark 2.5. If A = X and lim
n→∞

yn = ℓ, then {xn} converges to the unique fixed point of

the contraction U = ℓ− T . In particular, for X = R, the function g(x) = x+ T (x), x ∈ R,
is invertible and u = g−1(ℓ) (see [13]).

3. APPLICATIONS

We illustrate the above theoretical results with some interesting applications. The first
two examples show that the proved transfer of convergence between sequences in Banach
spaces allows a deeper understanding of some known results for real sequences. State-
ment (i) of Example 3.1 extends Problem 11e, p. 97, in [4], while Theorem 1, p. 102, in [4]
is extended by Example 3.2. The last example provides two criteria for uniform conver-
gence in the Banach space of real continuous functions, defined on a compact topological
space. A version (for λ = 1/2) of the statement (ii) of Example 3.3 is presented in [8].

Example 3.1. Let {xn}∞n=0 be a sequence in the complex Banach space X . Assume a posi-
tive integer i and λ ∈ C, with |λ| < 1. The following two statements hold.

(i) {xn + λxn−i}∞n=i is convergent if and only if {xn}∞n=0 is convergent. In addition,

lim
n→∞

xn = ℓ ⇔ lim
n→∞

(xn + λxn−i) = (1 + λ)ℓ.

(ii) If {xn}∞n=0 is bounded, then {xn + λxn+i}∞n=0 is convergent if and only if {xn}∞n=0

is convergent. In addition,

lim
n→∞

xn = ℓ ⇔ lim
n→∞

(xn + λxn+i) = (1 + λ)ℓ.

Proof. We apply Theorem 2.1 and Theorem 2.4, respectively, for the contraction mapping
T (x) = λx, x ∈ X . In both cases (i) and (ii), the connection between the limits of the two
sequences is obvious. □

Example 3.2. Let {xn}∞n=0 be a sequence in the complex Banach space X . Assume that
equation zp + ap−1z

p−1 + . . . + a0 = 0 with complex coefficients has the roots in the
unit open disc U(0, 1) = {z ∈ C, |z| < 1}. Then {yn}∞n=0, defined by yn = xn+p +
p−1∑
k=0

akxn+k, n ∈ N, is convergent if and only if {xn}∞n=0 is convergent. In addition,

lim
n→∞

xn = ℓ ⇔ lim
n→∞

yn = ℓ (1 + a0 + a1 + . . .+ ap−1) .

Proof. Obviously, if {xn}∞n=0 is convergent, then {yn}∞n=0 is convergent. The converse
implication will be proved by induction. From Example 3.1, (i), the statement is true for
p = 1. Assume now that the property is true for a positive integer p. Let a0, a1, . . . , ap ∈ C
such that equation zp+1+apz

p+. . .+a1z+a0 = 0 has all the roots inU(0, 1). Let λ ∈ U(0, 1)
be a root of the above equation. Then

zp+1 + apz
p + . . .+ a1z + a0 = (z − λ)(zp + bp−1z

p−1 + . . .+ b0),

where equation zp + bp−1z
p−1 + . . . + b0 = 0 has the roots in U(0, 1). Suppose that the

sequence yn = xn+p+1 + apxn+p + . . .+ a1xn+1 + a0xn, n ∈ N, is convergent. We have

yn = xn+p+1 + (bp−1 − λ)xn+p + . . .+ (b0 − λb1)xn+1 − λb0xn = zn+1 − λzn,

where zn = xn+p + bp−1xn+p−1 + . . . + b0xn, for all n ∈ N. From Example 3.1, (i), we
deduce that {zn}∞n=0 is convergent. Hence {xn}∞n=0. Thus, the property is true for p + 1.
The equivalence between the two limits is obvious. □
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Example 3.3. Let (X, T ) be a compact topological space and let (C(X), ∥ · ∥∞) be the
Banach space of the continuous functions φ : X → R, where ∥φ∥∞ = supt∈X |φ(t)|.

(i) If T : C(X) → C(X) is a contraction mapping and {φn}∞n=0 is a sequence in C(X)
such that
(a) the sequence of functions {ψn}∞n=1 defined by ψn = φn + T (φn−1), n ≥ 1, is

pointwise convergent to a function ψ ∈ C(X),
(b) ψn+1(t) ≥ ψn(t), for all t ∈ X and n ∈ N1,

then {φn}∞n=0 is uniformly convergent to a function φ ∈ C(X), i.e. {φn}∞n=0 is
convergent to φ in the Banach space (C(X), ∥ · ∥∞).

(ii) Let {φn}∞n=0 be a sequence in C(X). If
(a) {φn}∞n=1 is pointwise convergent to a function φ ∈ C(X),
(b) there is λ ∈ (−1, 1) such that φn+2(t) ≥ (1− λ)φn+1(t) + λφn(t), for all t ∈ X

and n ∈ N,
then {φn}∞n=0 is uniformly convergent to φ.

Proof. (i) From Dini’s theorem (see [14]) it results that the convergence of {ψn}∞n=1 to ψ
is uniform, that is, the convergence holds in the Banach space (C(X), ∥ · ∥∞). Therefore,
from Theorem 2.1, {φn}∞n=0 is convergent in the Banach space (C(X), ∥ · ∥∞).
(ii) Consider the sequence {ψn}∞n=0, defined by ψn = φn+1 + λφn, for all n ∈ N. From
(a) and (b), we deduce that {ψn}∞n=0 is pointwise convergent to (1 + λ)φ ∈ C(X) and
ψn+1(t) ≥ ψn(t), for all t ∈ X and n ∈ N. Dini’s theorem ensures the convergence of
{ψn}∞n=0 to (1 + λ)φ in the Banach space (C(X), ∥ · ∥∞). So, by applying Example 3.1 (i),
we get the conclusion. □
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