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On approximating fixed points of weak enriched
contraction mappings via Kirk’s iterative algorithm in
Banach spaces

WORAPHAK NITHIARAYAPHAKS and WUTIPHOL SINTUNAVARAT

ABSTRACT. Recently Berinde and Păcurar [Approximating fixed points of enriched contractions in Banach
spaces. J. Fixed Point Theory Appl. 22 (2020), no. 2., 1–10], first introduced the idea of enriched contraction
mappings and proved the existence of a fixed point of an enriched contraction mapping using the well-known
fact that any fixed point of the averaged mapping Tλ, where λ ∈ (0, 1], is also a fixed point of the initial mapping
T . In this work, we introduce the idea of weak enriched contraction mappings, and a new generalization of an
averaged mapping called double averaged mapping. The first attempt is to prove the existence and uniqueness
of the fixed point of a double averaged mapping associated with a weak enriched contraction mapping. Based
on this result on Banach spaces, we give some sufficient conditions for the equality of all fixed points of a double
averaged mapping and the set of all fixed points of a weak enriched contraction mapping. Moreover, our results
show that an appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a weak enriched
contraction mapping. An illustrative example for showing the efficiency of our results is given.

1. INTRODUCTION AND PRELIMINARIES

First, we will introduce basic notations and needed definitions. For each a self-mapping
T on a nonempty set X , ζ ∈ X is called a fixed point of T if Tζ = ζ, and we denote the set
of all fixed points of T by Fix{T}. For each λ ∈ [0, 1], the averaged mapping associated
with T is defined by Tλ := (1−λ)I+λT, where I is an identity mapping. It is well-known
that Fix(Tλ) = Fix(T ) for all λ ∈ (0, 1].

The useful result in the theory of metric spaces to guarantee the existence and unique-
ness of the fixed point of a self-mapping on a metric space was introduced by Banach in
his Ph.D. thesis [3]. The statement of this theorem is as follows:

Theorem 1.1 (Banach fixed point theorem [3]). Let (X, d) be a complete metric space and T be
a self-mapping on X . If T satisfies a Banach contractive condition, i.e., there is k ∈ [0, 1) such that
for every x, y ∈ X , we have d(Tx, Ty) ≤ kd(x, y). Then T has a unique fixed point. Moreover,
for each x0 ∈ X , the fixed point of T can be approximated by the Picard iteration {xn}, which is
defined by xn = Txn−1 for all n ∈ N.

Many researchers use this theorem to prove the existence and uniqueness of solutions
in various nonlinear problems, i.e., differential equations, integral equations, optimization
problems, etc. (see [1, 11, 17] and references therein).

Next, we will recall some important fixed point iterations needed in this paper. For a
mapping T from a convex subset D of a normed space (X, ∥ · ∥) into itself and a given
x0 ∈ D, the Picard iteration {xn} ⊆ D is defined by

xn := Txn−1
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for all n ∈ N. From Theorem 1.1, we know that the Picard iteration converges to a fixed
point of T if D is complete and T satisfies the Banach contractive condition. However, if
the Banach contractive condition is slightly weaker, the Picard iteration need not converge
to a fixed point of the mapping T . So, we need to consider other iteration procedures, such
as the Krasnoselskij iteration {xn} ⊆ D, which is defined by

xn := (1− λ)xn−1 + λTxn−1

for all n ∈ N, where x0 ∈ D and λ ∈ [0, 1] (see more details in [10]). It is easy to see that the
Krasnoselskij iteration is the generalization of the Picard iteration. The other important
iteration procedure is the Kirk’s iteration order k ∈ N, which is a sequence {xn} ⊆ D
defined by

xn := α0xn + α1Txn + α2T
2xn + . . .+ αkT

kxn,

where x0 ∈ D, α1 > 0 and αi ≥ 0 for i = 0, 2, 3, . . . , k such that
∑k

i=0 αi = 1 (see more
details in [13]).

Recently, Berinde and Păcurar [6] extended Theorem 1.1 (in the case of Banach spaces)
by proving the fixed point result of enriched contraction mappings via the setting of the
Picard iteration of the averaged mapping, which is the Krasnoselskij iteration. The state-
ment of this theorem is as follows:

Theorem 1.2 ([6]). Let T be a self-mapping on a Banach space X . If T is an enriched contraction
mapping, i.e. there exist b ∈ [0,∞) and θ ∈ [0, b+ 1) such that for each x, y ∈ X , we have

(1.1) ∥b(x− y) + Tx− Ty∥ ≤ θ∥x− y∥.

Then |Fix(T )| = 1 and there is λ ∈ (0, 1] such that for each x0 ∈ X , the Krasnoselskij iteration
{xn} ⊆ D defined by

xn := (1− λ)xn−1 + λTxn−1

for all n ∈ N converges to a unique fixed point of T .

The proof of Theorem 1.2 has three essential steps as follows:
• to prove the existence of the fixed point of the averaged mapping Tλ := (1−λ)I+
λT ;

• to show the uniqueness of the fixed point of the averaged mapping;
• to use the well-known that Fix(T ) = Fix(Tλ).

Now a day enriched mappings are interesting to many researchers to extend the results
of a fixed point theorem (see [7], [12])

This work aims to introduce the new contractive condition covering the enriched con-
tractive condition, which is called a weak enriched contraction mapping, and to present a
new mapping called a double averaged mapping, which is a generalization of the idea of
an averaged mapping.

For the first result related to such two mappings, we prove the existence and unique-
ness of a fixed point of a double averaged mapping constructed from a weak enriched
contraction mapping. This result also shows that an appropriate Kirk’s iterative scheme
can approximate a fixed point of this double averaged mapping. Moreover, some suffi-
cient conditions for the equality of the set of all fixed points of a double averaged map-
ping, and the set of all fixed points of a weak contraction mapping are presented in this
paper. Based on this result, an appropriate Kirk’s iterative algorithm can be used to ap-
proximate a fixed point of a weak enriched contraction mapping. We also give an example
to support our main result. Meanwhile, many results in the literature can not be applied
in our illustrative example.



On approximating fixed points of weak enriched contraction mappings ... 425

2. WEAK ENRICHED CONTRACTION MAPPINGS AND DOUBLE AVERAGED MAPPINGS

Inspired by the benefit of a class of enriched contraction mappings due to Berinda and
Păcurar [6], we attempt to give evolution to this class by inventing the class of mappings
covering all enriched contraction mappings. Each element in this class is called a weak
enriched contraction mapping defined by the following definition.

Definition 2.1. Let C be a convex subset of a normed space (X, ∥ · ∥). A self-mapping T
on C is called a weak enriched mapping if there exist nonnegative real numbers a, b and
w ∈ [0, a+ b+ 1) such that

(2.2) ∥a(x− y) + Tx− Ty + b(T 2x− T 2y)∥ ≤ w∥x− y∥

for every x, y ∈ C.

If we set b = 0 in (2.2), it reduces to an enriched contraction mapping, which is a
generalization of a Banach contraction mapping.

Since (1.1) implies that

∥Tx− Ty∥ ≤ ∥b(x− y)∥+ ∥b(x− y) + Tx− Ty∥
≤ (b+ θ)∥x− y∥

for all x, y ∈ X , if T is an enriched contraction mapping, then it is Lipschitz continuous
with a Lipschitz constant b + θ, and then it is continuous. This shows that a discontinu-
ous mapping is not an enriched contraction mapping. However, this situation does not
hold for weak enriched contraction mappings because (2.2) does not imply the continuity
of T . Moreover, there is a discontinuous mapping satisfying (2.2) (see later in Example
2.1). Therefore, a presented contraction mapping is a real proper generalization of two fa-
mous contraction mappings consisting of a Banach contraction mapping and an enriched
contraction mapping.

In Theorem 1.2, the proof uses the well-known fact that Fix(T ) = Fix(Tλ) for all λ ∈
(0, 1), but this fact is not sufficient to guarantee the existence of a fixed point for weak
enriched contraction mappings. It brings to the motivation for inventing a new mapping
with a similar property to the abovementioned and can help prove a fixed point result
for weak enriched contraction mappings. This new mapping, named a double averaged
mapping, is defined by

(2.3) Tα1,α2
:= (1− α1 − α2)I + α1T + α2T

2,

where α1 > 0, α2 ≥ 0 and α1 + α2 ∈ (0, 1]. It is easy to see that Tλ = Tα1,0, where
α0 = λ, and then Tα1,α2

is a generalization of Tλ. Now, we will show the existence and
uniqueness of a fixed point of a double averaged mapping related to a weak enriched
contraction mapping as follows:

Theorem 2.3. Let C be a closed convex subset of a Banach space (X, ∥ · ∥) and T : C → C be
a weak enriched contraction mapping. Then there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1]
such that the following assertions hold:

(F1) |Fix(Tα1,α2)| = 1;
(F2) for any given x0 ∈ C, the iteration {xn} ⊆ C given by

(2.4) xn = (1− α1 − α2)xn−1 + α1Txn−1 + α2T
2xn−1

for all n ∈ N converges to the unique fixed point of Tα1,α2 .

Proof. Since T is a weak enriched contraction, there are a, b satisfying the condition (2.2).
If b = 0, T is an enriched contraction and so the result follows from [6]. We need to prove



426 Woraphak Nithiarayaphaks and Wutiphol Sintunavarat

for a ≥ 0 and b > 0. Define α1 := 1
a+b+1 > 0 and α2 := b

a+b+1 ≥ 0. Then the equation (2.2)
becomes ∥∥∥∥(1− α2

α1
− 1

)
(x− y) + Tx− Ty +

α2

α1
(T 2x− T 2y)

∥∥∥∥ ≤ w∥x− y∥

for all x, y ∈ C. Since α1 > 0, the above inequality becomes

∥(1− α1 − α2)(x− y) + α1(Tx− Ty) + α2(T
2x− T 2y)∥ ≤ ζ∥x− y∥

for all x, y ∈ C, where ζ = wα1 ∈ [0, 1). In view of (2.3), the above inequality implies that

(2.5) ∥Tα1,α2
x− Tα1,α2

y∥ ≤ ζ∥x− y∥
for all x, y ∈ C. Now, for a given x0 ∈ C, define a sequence {xn} ⊆ C by xn = Tα1,α2

xn−1

for n ∈ N. For each n ∈ N, we have

∥xn+1 − xn∥ = ∥Tα1,α2
xn − Tα1,α2

xn−1∥
≤ ζ∥xn − xn−1∥.

By repeating the same process, we obtain

(2.6) ∥xn+1 − xn∥ ≤ ζn∥x1 − x0∥
for all n ∈ N. This implies that {xn} is a Cauchy sequence in C. Using the completeness
of C, there is a point x∗ ∈ C such that xn → x∗ as n → ∞. From (2.5), we get

∥xn+1 − Tα1,α2
x∗∥ = ∥Tα1,α2

xn − Tα1,α2
x∗∥

≤ ζ∥xn − x∗∥.(2.7)

Taking n → ∞ in (2.7), we get ∥x∗ − Tα1,α2x
∗∥ = 0, that is, Tα1,α2x

∗ = x∗. This implies
that x∗ ∈ Fix(Tα1,α2

).
Finally, we assume that Tα1,α2

have more than one fixed points, denoted x∗ and z∗ such
that x∗ ̸= z∗. By (2.5), we have

(2.8) ∥x∗ − z∗∥ = ∥Tα1,α2
x∗ − Tα1,α2

z∗∥ ≤ ζ∥x∗ − z∗∥ < ∥x∗ − z∗∥,
which is a contradiction and so |Fix(Tα1,α2

)| = 1. □

Next, we give an illustrative example supporting Theorem 2.3.

Example 2.1. Let X = R be a usual normed space and T be a self-mapping on [−1, 1] ⊆ X
defined by

(2.9) Tx =

{
x2; x ∈ [−1, 0)
1− x; x ∈ [0, 1].

By setting a = b = 1, we will show that T is a weak enriched contraction mapping with
such a, b and any w ∈ [1, a + b + 1). Without loss of generality, we may assume that
x, y ∈ [−1, 1] with x ≤ y. We consider three cases for x, y. First, for each x, y ∈ [−1, 0), we
have

∥a(x− y) + Tx− Ty + b(T 2x− T 2y)∥ = ∥x− y + x2 − y2 + (1− x2)− (1− y2)∥
= ∥x− y∥
≤ w∥x− y∥.

Next, for each x, y ∈ [0, 1], we have

∥a(x− y) + Tx− Ty + b(T 2x− T 2y)∥ = ∥x− y + (1− x)− (1− y) + x− y∥
= ∥x− y∥
≤ w∥x− y∥.
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Finally, for each x ∈ [−1, 0) and y ∈ [0, 1], we have

∥a(x− y) + Tx− Ty + b(T 2x− T 2y)∥ = ∥x− y + x2 − (1− y) + (1− x2)− y∥
= ∥x− y∥
≤ w∥x− y∥.

Hence, T is a weak enriched contraction mapping with a = b = 1 and any w ∈ [1, a+b+1).
Hence, Theorem 2.3 can be used in this example. From the proof of Theorem 2.3, we can
define α1 := 1

a+b+1 = 1
3 and α2 := b

a+b+1 = 1
3 . Then |Fix(Tα1,α2

)| = 1 and the following
iteration

(2.10) xn = (1− α1 − α2)xn−1 + α1Txn−1 + α2T
2xn−1

for all n ∈ N, where x0 ∈ [−1, 1], converges to the unique fixed point of T 1
3 ,

1
3

.

In the above example, it can be seen that Theorem 2.3 can help to be concluded only
the existence and uniqueness of a fixed point of the mapping T 1

3 ,
1
3

. Therefore, in the next
section, we will give some sufficient conditions to yield that the fixed point of T 1

3 ,
1
3

is also
a fixed point of T .

3. SUFFICIENT CONDITIONS FOR THE EQUALITY OF FIX(T ) AND FIX(Tα1,α2
)

The previous section shows the existence and uniqueness of a fixed point of a dou-
ble averaged mapping associated with a weak enriched mapping, which is insufficient to
yield the fixed point of a weak enriched mapping. This section aims to give sufficient con-
ditions for the equality of sets of all fixed points of a double averaged mapping associated
with a weak enriched mapping and of the same weak enriched mapping. We begin with
the following remark.

Remark 3.1. For each self-mapping T on a closed convex subset C of a normed space
X and a given α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1], the double averaged mapping
Tα1,α2

: C → C given by

(3.11) Tα1,α2x = (1− α1 − α2)x+ α1Tx+ α2T
2x

has the property that Fix(T ) ⊆ Fix(Tα1,α2
).

The inclusion in the above remark may be strict, as the next example shows.

Example 3.2. Let T : C → C be defined by Tx = x2 for all x ∈ C. It is easy to see
that the fixed point equation Tx = x has two solutions, that is, Fix(T ) = {0, 1}. If we set
α1 = α2 = 1

3 , then T 1
3 ,

1
3
x = 1

3x + 1
3x

2 + 1
3x

4, and so the fixed point equation T 1
3 ,

1
3
x = x,

that is,
1

3
x+

1

3
x2 +

1

3
x4 = x

having four fixed points, that is, Fix(T 1
3 ,

1
3
) =

{
0, 1, 1

2 (−1± 7i)
}

. Then Fix(T ) ⊆ Fix(Tα1,α2
).

Now, we give the sufficient condition to yiled that Fix(T ) = Fix(Tα1,α2
) as follows.

Lemma 3.1. Let T be a self-mapping on a closed convex subset C of a normed space (X, ∥ · ∥).
Suppose that there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that the following assertion
holds:

(W1) for each c ∈ [0, 1) and z ∈ Fix(Tα1,α2
), we have

(3.12) ∥z − Tz∥ ≤ ∥z − (1− c)Tz − cT 2z∥.
Then Fix(T ) = Fix(Tα1,α2).
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Proof. From Remark 3.1, we have Fix(T ) ⊆ Fix(Tα1,α2
). If Fix(Tα1,α2

)=∅, then Fix(T ) = ∅
and so Fix(Tα1,α2

) = Fix(T ). In the remaining proof, we will assume that Fix(Tα1,α2
) ̸= ∅.

Let z ∈ Fix(Tα1,α2). Putting c := α2

α1+α2
∈ [0, 1) in (3.12), we have

∥z − Tz∥ ≤
∥∥∥∥z − α1

α1 + α2
Tz − α2

α1 + α2
T 2z

∥∥∥∥
=

1

α1 + α2
∥z − (1− α1 − α2)z − α1Tz − α2T

2z∥

= ∥z − Tα1,α2z∥
= 0,

which implies that z∈Fix(T ). Hence, Fix(Tα1,α2)⊆Fix(T ). Therefore, Fix(T )=Fix(Tα1,α2).
□

Remark 3.2. For each self-mapping T on a closed convex subset C of a normed space
(X, ∥ · ∥), if there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that Tz ∈ Fix(T ) for
all z ∈ Fix(Tα1,α2

), that is, Tz = T 2z for all z ∈ Fix(Tα1,α2
), then T satisfies the condition

(W1). For instance, a constant mapping and an identity mapping satisfy the condition
(W1).

Next, we give another sufficient condition to guarantee the equality of a set of all fixed
points of a weak enriched mapping and a set of all fixed points of a double averaged
mapping associated with this weak enriched mapping, where this property keeps the
generality of an averaged mapping.

Lemma 3.2. Let T be a self-mapping on a closed convex subset C of a normed space (X, ∥ · ∥).
Suppose that there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that the following assertion
holds:

(W2) there exists a nonnegative real number k < 1 such that

(3.13) ∥Tα1,α2
x− Tx∥ ≤ k∥x− Tx∥

for all x ∈ C.

Then Fix(T ) = Fix(Tα1,α2).

Proof. From Remark 3.1, we have Fix(T ) ⊆ Fix(Tα1,α2). If Fix(Tα1,α2) = ∅, then Fix(T ) = ∅
and so Fix(Tα1,α2) = Fix(T ). In the remaining proof, we will suppose that Fix(Tα1,α2) ̸= ∅.
Now, for each z ∈ Fix(Tα1,α2

), we have

∥z − Tz∥ = ∥Tα1,α2
z − Tz∥ ≤ k∥z − Tz∥(3.14)

and so ∥z − Tz∥ = 0, that is, z = Tz. Then z ∈ Fix(T ) and so Fix(Tα1,α2
) ⊆ Fix(T ).

Therefore, Fix(T ) = Fix(Tα1,α2
). □

It is easy to see that the averaged mapping satisfies (3.13) with a constant k = 1 − λ,
where λ ∈ (0, 1) is a constant coresponding with the averaged mapping.

Example 3.3. Let X = R be a usual normed space and T be a self-mapping on X defined
by Tx = 1− x for all x ∈ X . There are α1 = 1

3 and α2 = 1
3 such that

∥Tα1,α2
x− Tx∥ =

∥∥∥∥13x+
1

3
(1− x) +

1

3
x− (1− x)

∥∥∥∥
=

∥∥∥∥23x− 2

3
(1− x)

∥∥∥∥
=

2

3
∥x− Tx∥.
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Therefore, (W2) holds with k = 2
3 . Moreover, it is easy to see that Fix(T ) = Fix(Tα1,α2

) ={
1
2

}
.

Lemma 3.3. Let T be a self-mapping on a closed convex subset C of a normed space (X, ∥ · ∥).
Suppose that there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that Fix(Tα1,α2

) ̸= ∅ and
the following assertion holds:

(W3) for each x ∈ Fix(Tα1,α2
), there exists a closed convex subset B ⊆ C that contains x such

that T (B) ⊆ B and T satisfies (3.13) only on set B.

Then Fix(T |B) = Fix(Tα1,α2 |B).

Proof. It straints forward from Lemma 3.2 with the restriction of T on B. □

Next, we establish the fixed point theorem for weak enriched contraction mappings via
the help of all the above lemmas.

Theorem 3.4. Let T be a self-mapping on a closed convex subset C of a Banach space (X, ∥ · ∥)
and T : C → C be a weak enriched contraction mapping. Then there are α1 > 0 and α2 ≥ 0 with
α1 + α2 ∈ (0, 1] such that (F1) and (F2) hold. Moreover, if T, α1 and α2 satisfy (W1) or (W2) or
(W3), then

(T1) |Fix(T )| = 1;
(T2) for any given x0 ∈ C, the iteration {xn} ⊆ C given by

(3.15) xn = (1− α1 − α2)xn−1 + α1Txn−1 + α2T
2xn−1

for all n ∈ N converges to the unique fixed point of T .

Proof. From Theorem 2.3, there are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that (F1)
and (F2) hold, that is, |Fix(Tα1,α2

)| = 1 and the iteration in (3.15) converges to the fixed
point of Tα1,α2

. Since α1 and α2 satisfy (W1) or (W2) or (W3), the results follows from
Lemma 3.1 or Lemma 3.2 or Lemma 3.3, respectively. □

Finally, we give an example to illustrate the condition (W3) and Theorem 3.4 as follows:

Example 3.4. Let T be a self-mapping defined in Equation (2.9). Example 2.1 concluded
the existence and uniqueness of the fixed point of Tα1,α2

. First, we observes that if x ∈
[−1, 0), then T 1

3 ,
1
3
x ∈ [0, 1] and if x ∈ [0, 1], then T 1

3 ,
1
3
x ∈ [0, 1]. This means that the set of

fixed points of T 1
3 ,

1
3

contained in [0, 1]. Since T ([0, 1]) ⊆ [0, 1] and there is k = 2
3 such that

for each x ∈ [0, 1], we have

∥T 1
3 ,

1
3
x− Tx∥ =

∥∥∥∥23x− 2

3
(1− x)

∥∥∥∥ ≤ 2

3
∥x− Tx∥.

Hence, (W3) hold. By Theorem 3.4, we get Fix(T ) = Fix(T 1
3 ,

1
3
). Moreover, for each x0 ∈

[−1, 1], the iteration (3.15) having the following form

x1 =
1

3
x0 +

1

3
Tx0 +

1

3
T 2x0

=

{
1
3x0 +

1
3x

2
0 +

1
3 (1− x2

0) if x0 ∈ [−1, 0)
1
3x0 +

1
3 (1− x0) +

1
3x0 if x0 ∈ [0, 1]

=
1

3
(x0 + 1) ∈ [0, 1],
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x2 =
1

3
x1 +

1

3
Tx1 +

1

3
T 2x1

=
1

3
x1 +

1

3
(1− x1) +

1

3
x1

=
1

3
(x1 + 1)

=
1

3

(
1

3
(x0 + 1) + 1

)
=

1

32
(x0 + 1) +

1

3
∈ [0, 1],

...

xn =
1

3n
(x0 + 1) +

n∑
i=1

1

3i
for all n ∈ N(3.16)

converges to the unique fixed point 2
3 of T . Figure 1 shows the behavior of the conver-

gence for the above iterations with several initial points. Meanwhile, Figure 2 shows the
behavior of the divergence for the Picard iterations with several initial points.
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FIGURE 1. Convergence behavior of the iteration (3.16) with x0 = −1,−0.4, 0, 0.4, 1.

0 5 10 15 20 25

Iteration number

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
a
lu

e
 o

f 
x

n

The convergence behaviour of the iteration with many initial values

Thi initial point x
0
=-1

Thi initial point x
0
=-0.4

Thi initial point x
0
=0

Thi initial point x
0
=0.4

Thi initial point x
0
=1

FIGURE 2. Convergence behavior of the Picard iteration with x0 = −1,−0.4, 0, 0.4, 1.
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4. CONCLUSION AND OPEN QUESTION

In this paper, we introduced two new mappings: a weak enriched contraction mapping
and a double averaged mapping. Moreover, we proved that for each self-mapping T on
a closed convex subset of a Banach space satisfying the weak enriched contractive condi-
tion, there are α1 > 0 and α2 ≥ 0 with α1+α2 ∈ (0, 1] such that Tα1,α2

has the unique fixed
point, and an appropriate Kirk iteration procedure can approximate it. Last but not least,
we give three sufficient conditions for the equality of Fix(T ) and Fix(Tα1,α2). In addition,
we gave an illustrative example of a mapping satisfying the weak enriched contractive
condition, but it does not satisfy the enriched contractive condition. This example shows
the efficiency of our main theorem.

This paper points out that we used the Krik iteration order 2 to construct a weak en-
riched contractive condition. However, it is easy to see that all results in this paper can be
extend by using the idea of the Krik iteration order k for any k ∈ N.

Finally, we give open questions to the reader for further study as follows:
• Can we remove or generalize each condition of Lemmas 3.1, 3.2, or 3.3?
• If we extend all results in this paper by using the idea of the Krik iteration or-

der k for any k ∈ N, under which conditions can we conclude the existence and
uniqueness of a fixed point of weak enriched mapping?

• Can we use the idea in this paper to investigate convex contraction mappings?
The reader can see more details on convex contraction mappings in [4, 8, 9, 15]
and references therein.

• Can we use the idea in this paper to extend a definition of enrich nonexpansive
mapping and invent fixed point results for such new mappings? The reader can
see more details on enrich nonexpansive mappings in [5].

• Can we mix the idea in this paper and fixed point results for decreasing convex
orbital operators in Hilbert spaces in [16] to investigate some new development?

• Can we use the sufficient condition of the equality of the fixed point of a double
averaged mapping and its initial mapping to extend the results of other types of
enriched mappings (see in [7, 12])?
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Fund. Math. 3 (1922), 133–181.

[4] Berinde, V. Approximating fixed points of almost convex contractions in metric spaces. Ann. Acad. Rom. Sci.
Ser. Math. Appl. 12 (2020), no. (1-2), 11–23.

[5] Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in
Hilbert spaces. Carpathian J. Math. 35 (2019), no. 3, 293–304.



432 Woraphak Nithiarayaphaks and Wutiphol Sintunavarat
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