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Convergence theorem for an intermixed iteration in
p-uniformly convex metric space

KANYANEE SAECHOU and ATID KANGTUNYAKARN*

ABSTRACT. In this paper, we first introduce the intermixed algorithm in p-uniformly convex metric spaces,
and then we prove ∆-convergence of the proposed iterative method for finding a common element of the sets
of fixed points of finite families of nonexpansive mappings in the framework of complete p-uniformly convex
metric spaces. Furthermore, we apply our main theorem to prove ∆-convergence to solve the minimization
problems in the framework of complete p-uniformly convex metric spaces. Finally, we give two examples in Lp

spaces and numerical examples to support our main results.

1. INTRODUCTION

The iteration construction for approximating fixed points problem of convergence
theorems is usually divided into two categories. One is weak convergence, such as the
Mann iteration algorithm [19] and the Ishikawa iteration algorithm [12]. On the other
hand are the algorithms with strong convergence, such as the Halpern iteration algorithm
[10] and the viscosity algorithm [21].

In 1967, Halpern [10] proposed the Halpern iteration for nonexpansive mapping S : C →
C and the sequence {xn} generated by x0, u ∈ C and

xn+1 = αnu+ (1− αn)Sxn, for all n ≥ 0,

where C is a closed convex subset of a real Hilbert space H and he proved the strong
convergence of {xn} to PF (S)(x0) provided that αn = n−θ with θ ∈ (0, 1).

By extended the Halpern iteration. Moudafi [21] introduced the viscosity algorithm for
a contraction f : C → C and a nonexpansive mapping T : C → C. The sequence {xn}
generated by x1 ∈ C and

xn+1 = αnf(xn) + (1− αn)Txn, for all n ≥ 0,

where C is a closed convex subset of a real Hilbert space H and {αn} is a sequence in the
interval (0, 1). Then he proved the sequence {xn} converges strongly to z = PF (T )f(z) un-
der some suitable condition αn. After that, many researchers have modified the viscosity
algorithm in which the sequence {xn} is involved in the sequence {yn} and the definition
of the sequence {yn} is also involved in the sequence {xn}, see, for instance [31, 27, 28].

In 2015, Yao et al. [31] proposed the intermixed algorithm for two strict pseudo-
contractions S and T . The sequences {xn} and {yn} generated by x0, y0 ∈ C and

{
xn+1 = (1− βn)xn + βnPC (αnf(yn) + (1− k − αn)xn + kTxn) , for all n ≥ 0,

yn+1 = (1− βn)yn + βnPC (αng(xn) + (1− k − αn)yn + kSyn) , for all n ≥ 0,

(1.1)
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where T : C → C is a λ-strictly pseudo-contraction, f, g : C → H are a ρ1 and ρ2-
contraction, respectively, k ∈ (0, 1 − λ) is a constant and {αn}, {βn} are two real num-
ber sequences in (0, 1). Furthermore, they proved that the iterative sequences {xn} and
{yn} defined by (1.1) converge independently to PF (T )f(y

∗) and PF (S)g(x
∗), respectively,

where x∗ ∈ F (T ) and y∗ ∈ F (S). Obviously, lim
n→∞

∥xn−yn∥ is an essential tool for proving
the theorem in Hilbert space. So, proving convergence of the intermixed theorem in the
p-uniformly convex metric space requires creating an apparatus similar to lim

n→∞
∥xn−yn∥.

A nonempty metric space (X, d) is said to be a geodesic space if every two points x, y ∈ X
are joined by a geodesic path c : [0, d(x, y)] → X such that c(0) = x and c(d(x, y)) = y.
In this case, c is called an isometry, and the image of c is called a geodesic segment joining
x to y. When this image is unique, it is denoted by [x, y]. The metric space X is said
to be uniquely geodesic if every two points of X are joined by exactly one geodesic seg-
ment. The foundation examples of geodesic spaces are normed vector spaces, complete
Riemannian manifolds, and polyhedral complexes of piecewise constant curvature, etc.

Let x, y ∈ X and t ∈ [0, 1]. We write tx⊕ (1− t)y for the unique point z in the geodesic
segment joining from x to y such that

d(z, x) = td(x, y) and d(y, z) = (1− t)d(x, y).

A function f : X → (−∞,∞] is called convex if for any geodesic [x, y] := {tx⊕ (1− t)y :
0 ≤ t ≤ 1} joining x, y ∈ X , we have

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y),

and is called uniformly convex [6] if there exists a strictly increasing function ϕ : R+ → R+

such that
f(

1

2
x⊕ 1

2
y) ≤ 1

2
f(x) +

1

2
f(y)− ϕ (d(x, y)) .

In 1994, Ball, Carlen and Lieb [3] introduced the notion of p-uniform convexity which
plays an essential role in Banach space theory. Recall that a normed space (X, ∥ · ∥) is said
to be p-uniformly convex for 2 ≤ p < ∞ if and only if there exists a constant c ≥ 1 such
that for any x, y ∈ X , ∥∥∥∥x+ y

2

∥∥∥∥p ≤ 1

2
∥x∥p + 1

2
∥y∥p − 1

cp

∥∥∥∥x− y

2

∥∥∥∥p .
For any fixed 2 ≤ p < ∞, a geodesic space (X, d) is called to be p-uniformly convex with
parameter c [17, 22, 25] if there exists a constant 0 < c ≤ 1 such that for any x, y, z ∈ X
and any geodesic γ : [0, 1] → X with γ(0) = x and γ(1) = y,

dp(z, γ(t)) ≤ (1− t)dp(z, x) + tdp(z, y)− ct(1− t)dp(x, y), t ∈ [0, 1].

Over the past decade, Naor and Silberman [22] introduced p-uniformly convex metric
space for 1 < p < ∞ as following: A metric space (X, d) is called p-uniformly convex with
parameter c > 0 if and only if (X, d) is a geodesic space and

(1.2) dp (z, (1− t)x⊕ ty) ≤ (1− t)dp(z, x) + tdp(z, y)− c

2
t(1− t)dp(x, y),

for all x, y, z ∈ X , t ∈ [0, 1]. Furthermore, every closed and convex subset of a p-uniformly
convex normed space is a p-uniformly convex metric space with the same parameter [1].
Moreover, when p = 2 = c in (1.2), we obtain the CAT (0) property [22, 4]. In addition,
numerous problems in Finster geometry and metric geometry, the nonlinearization of the
geometry of Banach space and other related fields reduce to find an element of (1.2), see
more detail in [17, 23, 24, 25, 26].

Many mathematicians proposed their algorithms for solving various problems in the
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framework of complete p-uniformly convex metric spaces, see, for instance [29, 6].
Recently, Godwin et al. [29] introduced a modified Mann type proximal point algo-

rithm involving nonexpansive mapping. Moreover, they proved that the sequence gener-
ated by the algorithm converges to a common solution of finite families of minimization
problems and a common element of the set of solutions of the fixed point of a nonexpan-
sive mapping in the framework of complete p-uniformly convex metric spaces as follows:

Theorem 1.1. For p > 1, let X be a complete p-uniformly convex metric space with parameter
c ≥ 2, and let fi : X → (−∞,∞], for all i = 1, 2, ..., N , be finite families of proper, convex
and lower semi-continuous functions. Let the p-resolvent Jλ(i) of f be ∆-demiclosed at 0 for all
i = 1, 2, ..., N , and let T : X → X be a nonexpansive mapping. Suppose that Γ := F (T ) ∩
(
⋂N
i=1 argminy∈X fi(y)) ̸= ∅, and for arbitrary x1 ∈ X , let the sequence {xn} be generated by{

yn = J
λ
(N)
n

◦ J
λ
(N−1)
n

◦ ... ◦ J
λ
(2)
n

◦ J
λ
(1)
n
(xn),

xn+1 = αnxn ⊕ (1− αn)Tyn, for all n ≥ 1,

where {λ(i)
n } are a sequence such that λ(i)

n > λ(i) > 0 for all n ≥ 1, i = 1, 2, ..., N , and {αn} is a
sequence in [a, b] for some a, b ∈ (0, 1). Then {xn} ∆-converges to some x∗ ∈ Γ.

Inspired and motivated by K-mapping in [15], we define K-mapping in p-uniformly
convex metric space as follows.

Definition 1.1. Let p > 0 and (X, d) be a complete p-uniformly convex metric space with
c > 0. Let {Ti}Ni=1 be finite families of nonlinear mappings of X into itself and let λi ∈ [0, 1]
for all i = 1, 2, ..., N . Define a mapping K : X → X by

U1 =λ1T1 ⊕ (1− λ1)I,

U2 =λ2T2U1 ⊕ (1− λ2)U1,

U3 =λ3T3U2 ⊕ (1− λ3)U2,

...

UN−1 =λN−1TN−1UN−2 ⊕ (1− λN−1)UN−2,

K = UN =λNTNUN−1 ⊕ (1− λN )UN−1.

This mapping is called the K-mapping generate by T1, T2, ..., TN and λ1, λ2, ..., λN .

Based on the result mentioned above, we first introduce the intermixed algorithm
in p-uniformly convex metric spaces to prove ∆-convergence of the proposed iterative
method for finding a common element of the sets of fixed points of finite families of
nonexpansive mappings by using the concept of the K-mapping in the framework of
complete p-uniformly convex metric spaces. Moreover, we apply our main theorem to
prove ∆-convergence to solve the minimization problems in the framework of complete
p-uniformly convex metric spaces. Finally, we give two examples in Lp spaces and nu-
merical examples to support our main results.

2. PRELIMINARIES

In this section, we recall some definitions and lemmas that will be needed to prove
our main results. Let {xn} be a bounded sequence in a metric space X , and let r(·, {xn}) :
X → [0,∞) be a continuous functional defined by

r(x, {xn}) = lim sup
n→∞

d(x, xn).
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The asymptotic radius of {xn} is given by

r({xn}) := inf{r(x, {xn}) : x ∈ X},
while the asymptotic center of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
A sequence {xn} in X is said to be ∆-convergent to a point x ∈ X if A({xnk

}) = {x} for
every subsequence {xnk

} of {xn}. In this case, we write ∆- lim
n→∞

xn = x (see [8, 16]). The
notion of ∆-convergence in metric spaces was introduced by Lim [18].

Remark 2.1. Let X be a complete p-uniformly convex metric space. Then
(i) every bounded sequence in X has a unique asymptotic center (see [9]),

(ii) every bounded sequence in X has a ∆-convergent subsequence (see [29]).

Definition 2.2. A mapping T : X → X is called nonexpansive mapping if

d(Tx, Ty) ≤ d(x, y), for all x, y ∈ X.

Definition 2.3. A mapping T : X → X is called the fixed point problem is to find x ∈ X
such that

Tx = x,

the set of fixed points of T is denoted by F (T ).

Definition 2.4. Let X be a complete convex metric space, and let T : X → X be any
nonlinear mapping. The mapping T is said to be ∆-demiclosed at 0 if, for any bounded
sequence {xn} in X such that ∆− lim

n→∞
xn = z and lim

n→∞
d(xn, Txn) = 0, then z = Tz.

Lemma 2.1. (See [7]) Let X be a complete CAT (0) space, and let T : X → X be a nonexpansive
mapping. Then T is ∆-demiclosed at 0.

Remark 2.2. (see [29]) Following the same argument as in the proof of Lemma 2.1, one
can easily show that Lemma 2.1 holds if X is a complete p-uniformly convex metric space.

The following lemma is crucial for proving our main theorem.

Lemma 2.2. Let p > 0 and (X, d) be a complete p-uniformly convex metric space with c > 0.

Let {Ti}Ni=1 be finite families of nonexpansive mappings of X into itself with
N⋂
i=1

F (Ti) ̸= ∅ and

λi ∈ (0, 1) for all i = 1, 2, ..., N − 1 and λN ∈ (0, 1]. Let K be the K-mapping generated by

T1, T2, ..., TN and λ1, λ2, ..., λN . Then F (K) =

N⋂
i=1

F (Ti).

Proof. It easy to see that
N⋂
i=1

F (Ti) ⊆ F (K). Let x0 ∈ F (K) and x∗ ∈
N⋂
i=1

F (Ti). By the

definition of K, we have

dp(x0, x
∗) =dp(Kx0, x

∗)

=dp(λNTNUN−1x0 ⊕ (1− λN )UN−1x0, x
∗)

≤λNdp(x∗, TNUN−1x0) + (1− λN )dp(x∗, UN−1x0)

− c

2
λN (1− λN )dp(TNUN−1x0, UN−1x0)(2.3)

≤dp(x∗, UN−1x0)

≤λN−1d
p(x∗, TN−1UN−2x0) + (1− λN−1)d

p(x∗, UN−2x0)
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− c

2
λN−1(1− λN−1)d

p(TN−1UN−2x0, UN−2x0)

≤dp(x∗, UN−2x0)

...

≤dp(x∗, U2x0)

≤λ2d
p(x∗, T2U1x0) + (1− λ2)d

p(x∗, U1x0)

− c

2
λ2(1− λ2)d

p(T2U1x0, U1x0)

≤λ2d
p(x∗, U1x0) + (1− λ2)d

p(x∗, U1x0)

− c

2
λ2(1− λ2)d

p(T2U1x0, U1x0)(2.4)

≤dp(x∗, U1x0)

≤λ1d
p(x∗, T1x0) + (1− λ1)d

p(x∗, x0)−
c

2
λ1(1− λ1)d

p(T1x0, x0)

≤λ1d
p(x∗, x0) + (1− λ1)d

p(x∗, x0)−
c

2
λ1(1− λ1)d

p(T1x0, x0)

=dp(x∗, x0)−
c

2
λ1(1− λ1)d

p(T1x0, x0).(2.5)

This implies that
c

2
λ1(1− λ1)d

p(T1x0, x0) ≤ 0.

We obtain that
dp(T1x0, x0) = 0,

it follow that T1x0 = x0, that is x0 ∈ F (T1).
From the definition of U1 and x0 ∈ F (T1), we obtain

dp(U1x0, x0) =dp(λ1T1x0 ⊕ (1− λ1)x0, x0)

≤λ1d
p(T1x0, x0) + (1− λ1)d

p(x0, x0)−
c

2
λ1(1− λ1)d

p(T1x0, x0)

=0,

then,

(2.6) U1x0 = x0.

By (2.4) and (2.6), we have
c

2
λ2(1− λ2)d

p(T2x0, x0) ≤ 0.

We obtain that
dp(T2x0, x0) = 0,

it follow that T2x0 = x0, that is x0 ∈ F (T2).
From the definition of U2, (2.6) and x0 ∈ F (T2), we obtain

dp(U2x0, x0) =dp(λ2T2U1x0 ⊕ (1− λ2)U1x0, x0)

≤λ2d
p(T2U1x0, x0) + (1− λ2)d

p(U1x0, x0)−
c

2
λ2(1− λ2)d

p(T2U1x0, x0)

=λ2d
p(T2x0, x0) + (1− λ2)d

p(x0, x0)−
c

2
λ2(1− λ2)d

p(T2x0, x0)

=0,

then,

(2.7) U2x0 = x0.
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By using the same argument, we can conclude that Tix0 = x0 and Uix0 = x0 for all
i = 1, 2, ..., N − 1.
By (2.3), we have

c

2
λN (1− λN )dp(TNx0, x0) ≤ 0.

We obtain that
dp(TNx0, x0) = 0,

it follow that TNx0 = x0, that is x0 ∈ F (TN ).

Therefore x0 ∈
N⋂
i=1

F (Ti).

Hence F (K) ⊆
N⋂
i=1

F (Ti). □

Now, we give the following example in R to support Lemma 2.2.

Example 2.1. Let R be the set of real numbers, and let X = R2 be endowed with a metric
d : R2 × R2 defined by

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2,

for all x = (x1, x2),y = (y1, y2) ∈ R2. Then (R2, d) is a complete p-uniformly convex
metric space with p = 2 and parameter c = 2, and with the geodesic joining x to y given
by

(1− t)x⊕ ty = ((1− t)x1 + ty1, (1− t)x2 + ty2),

for all x = (x1, x2),y = (y1, y2) ∈ R2 and t ∈ [0, 1].
For every i = 1, 2, ..., N , let the mappings Ti : R2 → R2 be defined by

Ti(x) = (
x1

2i
,
x2

3i
),

for all x = (x1, x2) ∈ R2. Suppose that K is the K-mapping generated by T1, T2, ..., TN
and λ1, λ2, ..., λN where λi =

1
i+1 , for all i = 1, 2, ..., N . Then (0, 0) ∈ F (K) = ∩Ni=1F (Ti).

3. MAIN RESULTS

In this section, we prove ∆-convergence of the sequences {xn} and {yn} generated
by (3.8) for finding a common element of the sets of fixed points of finite families of non-
expansive mappings in the framework of complete p-uniformly convex metric spaces.

Theorem 3.2. For p > 1, let X be a complete p-uniformly convex metric space with parameter
c ≥ 2, and let {Ti}Ni=1 and {Si}Ni=1 be finite families of nonexpansive mappings from X into itself

with ξ =

N⋂
i=1

F (Ti) ∩
N⋂
i=1

F (Si) ̸= ∅. For every N ∈ N, let KT : X → X be the K-mapping

generated by T1, T2, ..., TN and λ1, λ2, ..., λN , let KS : X → X be the K-mapping generated by
S1, S2, ..., SN and η1, η2, ..., ηN , where {λi}Ni=1 and {ηi}Ni=1 are the sequences in [a, b] and [c, d]
with 0 < a ≤ b < 1 and 0 < c ≤ d < 1, respectively. For given x1, y1 ∈ X , let the sequences
{xn} and {yn} be generated byxn+1 = αnyn ⊕ (1− αn)

(
βn

1−αn
KTxn ⊕ γn

1−αn
xn

)
,

yn+1 = αnxn ⊕ (1− αn)
(

βn

1−αn
KSyn ⊕ γn

1−αn
yn

)
,

(3.8)

for all n ∈ N, where {αn}, {βn}, {γn} are the sequences in (0, 1) with αn + βn + γn = 1 and
0 < s ≤ αn, βn, γn ≤ q < 1, for all n∈ N and for some s, q > 0. Then, the sequences {xn} and
{yn} ∆-converge to some x∗ ∈ ξ.
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Proof. Let z ∈ ξ.
From the definition of KT and (1.2), we have

dp(KTxn, z) =dp(λNTNUN−1xn ⊕ (1− λN )UN−1xn, z)

≤λNdp(TNUN−1xn, z) + (1− λN )dp(UN−1xn, z)

− c

2
(λN )(1− λN )dp(TNUN−1xn, UN−1xn)

≤λNdp(UN−1xn, z) + (1− λN )dp(UN−1xn, z)

=dp(UN−1xn, z)

=λN−1d
p(TN−1UN−2xn, z) + (1− λN−1)d

p(UN−2xn, z)

− c

2
(λN−1)(1− λN−1)d

p(TN−1UN−2xn, UN−2xn)

≤λN−1d
p(UN−2xn, z) + (1− λN−1)d

p(UN−2xn, z)

=dp(UN−2xn, z)

...

≤dp(U2xn, z)

=λ2d
p(T2U1xn, z) + (1− λ2)d

p(U1xn, z)

− c

2
(λ2)(1− λ2)d

p(T2U1xn, U1xn)

≤λ2d
p(U1xn, z) + (1− λ2)d

p(U1xn, z)

=dp(U1xn, z)

=λ1d
p(T1xn, z) + (1− λ1)d

p(xn, z)

− c

2
(λ1)(1− λ1)d

p(T1xn, xn)

≤λ1d
p(xn, z) + (1− λ1)d

p(xn, z)

=dp(xn, z).(3.9)

Using the same method as derived in (3.9), we have

(3.10) dp(KSyn, z) ≤ dp(yn, z).

From the definition of xn, (1.2) and (3.9), we have

dp(xn+1, z) =dp
(
αnyn ⊕ (1− αn)

(
βn

1− αn
KTxn ⊕ γn

1− αn
xn

)
, z

)
≤αnd

p(yn, z) + (1− αn)d
p

(
βn

1− αn
KTxn ⊕ γn

1− αn
xn, z

)
− c

2
(αn)(1− αn)d

p

(
yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn

)
(3.11)

≤αnd
p(yn, z) + (1− αn)

(
βn

1− αn
dp(KTxn, z) +

γn
1− αn

dp(xn, z)

− c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KTxn, xn)

)

≤αnd
p(yn, z) + (1− αn)

(
βn

1− αn
dp(xn, z) +

γn
1− αn

dp(xn, z)
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− c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KTxn, xn)

)

=αnd
p(yn, z) + (1− αn)

(
dp(xn, z)−

c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KTxn, xn)

)
(3.12)

≤αnd
p(yn, z) + (1− αn)d

p(xn, z).(3.13)

From the definition of yn, (1.2) and (3.10), we have

dp(yn+1, z) =dp
(
αnxn ⊕ (1− αn)

(
βn

1− αn
KSyn ⊕ γn

1− αn
yn

)
, z

)
≤αnd

p(xn, z) + (1− αn)d
p

(
βn

1− αn
KSyn ⊕ γn

1− αn
yn, z

)
− c

2
(αn)(1− αn)d

p

(
xn,

βn
1− αn

KSyn ⊕ γn
1− αn

yn

)
(3.14)

≤αnd
p(xn, z) + (1− αn)

(
βn

1− αn
dp(KSyn, z) +

γn
1− αn

dp(yn, z)

− c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KSyn, yn)

)

≤αnd
p(xn, z) + (1− αn)

(
βn

1− αn
dp(yn, z) +

γn
1− αn

dp(yn, z)

− c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KSyn, yn)

)

=αnd
p(xn, z) + (1− αn)

(
dp(yn, z)−

c

2

(
βn

1− αn

)(
γn

1− αn

)
dp(KSyn, yn)

)
(3.15)

≤αnd
p(xn, z) + (1− αn)d

p(yn, z).(3.16)

From (3.13) and (3.16), we get

dp(xn+1, z)+dp(yn+1, z)

≤αnd
p(yn, z) + (1− αn)d

p(xn, z) + αnd
p(xn, z) + (1− αn)d

p(yn, z)

=dp(yn, z) + dp(xn, z),

which implies that lim
n→∞

(dp(xn, z) + dp(yn, z)) exists for all z ∈ ξ.

Thus {xn} and {yn} are bounded.
From (3.12), we have
(3.17)

(1−αn)
( c
2

)( βn
1− αn

)(
γn

1− αn

)
dp(KTxn, xn) ≤ αnd

p(yn, z)+(1−αn)d
p(xn, z)−dp(xn+1, z).

From (3.15), we have
(3.18)

(1−αn)
( c
2

)( βn
1− αn

)(
γn

1− αn

)
dp(KSyn, yn) ≤ αnd

p(xn, z)+(1−αn)d
p(yn, z)−dp(yn+1, z).
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Combining (3.17) and (3.18), we have( c
2

)( βnγn
1− αn

)
(dp(KTxn, xn) + dp(KSyn, yn))

≤αnd
p(yn, z) + (1− αn)d

p(xn, z)− dp(xn+1, z)

+ αnd
p(xn, z) + (1− αn)d

p(yn, z)− dp(yn+1, z)

= (dp(xn, z) + dp(yn, z))− (dp(xn+1, z) + dp(yn+1, z)) .(3.19)

From (3.19) and the conditions of {αn}, {βn} and {γn}, we obtain that

lim
n→∞

(dp(KTxn, xn) + dp(KSyn, yn)) = 0,

it implies that

(3.20) dp(KTxn, xn) → 0 and dp(KSyn, yn) → 0 as n → ∞.

From (3.11) and (3.9), we have

dp(xn+1, z)

≤αnd
p(yn, z) + (1− αn)d

p

(
βn

1− αn
KTxn ⊕ γn

1− αn
xn, z

)
− c

2
(αn)(1− αn)d

p

(
yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn

)
≤αnd

p(yn, z) + (1− αn)

(
βn

1− αn
dp(xn, z) +

γn
1− αn

dp(xn, z)

)
− c

2
(αn)(1− αn)d

p

(
yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn

)
=αnd

p(yn, z) + (1− αn)d
p(xn, z)

− c

2
(αn)(1− αn)d

p

(
yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn

)
,

which implies that

c

2
(αn)(1− αn)d

p

(
yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn

)
≤αnd

p(yn, z) + (1− αn)d
p(xn, z)− dp(xn+1, z).(3.21)

From (3.14), (3.10), and by using the same process above, we have

dp(yn+1, z) =αnd
p(xn, z) + (1− αn)d

p(yn, z)

− c

2
(αn)(1− αn)d

p

(
xn,

βn
1− αn

KSyn ⊕ γn
1− αn

yn

)
,

which implies that

c

2
(αn)(1− αn)d

p

(
xn,

βn
1− αn

KSyn ⊕ γn
1− αn

yn

)
≤αnd

p(xn, z) + (1− αn)d
p(yn, z)− dp(yn+1, z).(3.22)

Combining (3.21) and (3.22), we get

c

2
(αn) (1− αn)

(
dp(yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn) + dp(xn,
βn

1− αn
KSyn ⊕ γn

1− αn
yn)

)
≤αn (d

p(xn, z) + dp(yn, z)) + (1− αn)(d
p(yn, z) + dp(xn, z))

− (dp(yn+1, z) + dp(xn+1, z))
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=dp(yn, z) + dp(xn, z)− (dp(yn+1, z) + dp(xn+1, z)).

(3.23)

From (3.23) and the condition of {αn}, we obtain that

lim
n→∞

(
dp(yn,

βn
1− αn

KTxn ⊕ γn
1− αn

xn) + dp(xn,
βn

1− αn
KSyn ⊕ γn

1− αn
yn)

)
= 0,

then
(3.24)

dp(yn,
βn

1− αn
KTxn⊕

γn
1− αn

xn) → 0 and dp(xn,
βn

1− αn
KSyn⊕

γn
1− αn

yn) → 0 as n → ∞.

From the definition of yn, we get

dp(yn+1, xn) =dp
(
αnxn ⊕ (1− αn)

(
βn

1− αn
KSyn ⊕ γn

1− αn
yn

)
, xn

)
≤αnd

p(xn, xn) + (1− αn)d
p

(
βn

1− αn
KSyn ⊕ γn

1− αn
yn, xn

)
.(3.25)

From (3.24) and (3.25), we have

(3.26) dp(yn+1, xn) → 0 as n → ∞.

Similarly way (3.26), we have

dp(xn+1, yn) → 0 as n → ∞.

From (3.26), we have

lim sup
n→∞

d(x, xn) ≤ lim sup
n→∞

d(x, yn+1) + lim sup
n→∞

d(yn+1, xn)

= lim sup
n→∞

d(x, yn+1), for all x ∈ X,

then

(3.27) r(x, {xn}) ≤ r(x, {yn+1}).
By using the same method as (3.27), we have

lim sup
n→∞

d(x, yn+1) ≤ lim sup
n→∞

d(x, xn) + lim sup
n→∞

d(xn, yn+1)

= lim sup
n→∞

d(x, xn), for all x ∈ X,

then

(3.28) r(x, {yn+1}) ≤ r(x, {xn}).
From (3.27) and (3.28), we have

(3.29) r(x, {xn}) = r(x, {yn+1}), for all x ∈ X.

So, we get

(3.30) r({xn}) = r({yn+1}).
Since {xn} is bounded and X is a complete p-uniformly convex metric space, then, by
Remark 2.1 (i), {xn} have a unique asymptotic center. That is, A({xn}) = {x∗}.
From (3.29) and A({xn}) = {x∗}, we get

(3.31) r(x∗, {xn}) = r({xn}) = r(x∗, {yn+1}).
From (3.29) and (3.30), we have

A({xn}) ={x ∈ X; r(x, {xn}) = r({xn})}
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={x ∈ X; r(x, {yn+1}) = r({yn+1})}
=A({yn+1}).

It follows that A({xn}) = A({yn+1}) = {x∗}.
Let {xnk

} and {ynk
} be any subsequences of {xn} and {yn}, respectively, such that A({xnk

}) =
A({ynk+1}) = {u}.
From (3.20), we have

lim
k→∞

dp(KTxnk
, xnk

) = 0 and lim
k→∞

dp(KSynk+1, ynk+1) = 0.

By Remark 2.1 (ii), 2.2 and by the ∆-demicloseness of KT and KS at 0, we obtain that

u ∈ F (KT ) and u ∈ F (KS). From Lemma 2.2, then u ∈
N⋂
i=1

F (Ti) and u ∈
N⋂
i=1

F (Si).

Hence u ∈ ξ.
From (3.26), we have

lim sup
k→∞

d(xnk
, u) ≤ lim sup

k→∞
d(xnk

, ynk+1) + lim sup
k→∞

d(ynk+1, u)

= lim sup
k→∞

d(ynk+1, u)

≤ lim sup
k→∞

d(ynk+1, x
∗)

≤ lim sup
k→∞

d(ynk+1, xnk
) + lim sup

k→∞
d(xnk

, x∗)

= lim sup
k→∞

d(xnk
, x∗)

=r(x∗, {xnk
})

=r({xnk
})

= inf{r(z∗, {xnk
}) : z∗ ∈ X}

≤r(u, {xnk
})

= lim sup
k→∞

d(xnk
, u),

which implies that x∗ = u.
Therefore, {xn} ∆-converges to x∗ ∈ ξ.
Similarly, as derived above and since A({xn}) = A({yn+1}) = {x∗}, we also have {yn}
∆-converges to x∗ ∈ ξ. □

Corollary 3.1. For p > 1, let X be a complete p-uniformly convex metric space with parameter
c ≥ 2, and let {Ti}Ni=1 be finite families of nonexpansive mappings from X into itself with ξ =
N⋂
i=1

F (Ti) ̸= ∅. For every N ∈ N, let KT : X → X be the K-mapping generated by T1, T2, ..., TN

and λ1, λ2, ..., λN , where {λi}Ni=1 are the sequences in [a, b] with 0 < a ≤ b < 1. For given
x1 ∈ X , let the sequence {xn} be generated by

(3.32) xn+1 = αnxn ⊕ (1− αn)

(
βn

1− αn
KTxn ⊕ γn

1− αn
xn

)
,

for all n ∈ N, where {αn}, {βn}, {γn} are the sequences in (0, 1) with αn + βn + γn = 1 and
0 < s ≤ αn, βn, γn ≤ q < 1, for all n∈ N and for some s, q > 0. Then, the sequence {xn}
∆-converges to some x∗ ∈ ξ.

Proof. If we put {Ti}Ni=1 ≡ {Si}Ni=1, {λi}Ni=1 = {ηi}Ni=1 and xn = yn, in Theorem 3.2, we
obtain the desired conclusion. □
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4. APPLICATION

In this section, we apply our main theorem to prove ∆-convergence to solve the
minimization problems in the framework of complete p-uniformly convex metric spaces.

Let f be a real-valued function defined on metric space X . The minimization problem
(MP) is to find a point x ∈ X such that

f(x) = inf
y∈X

f(y),

which is denoted by x := argmin
y∈X

f(y). The MP is very important problems in opti-

mization theory, convex analysis, nonlinear analysis and geometry, see more detail in
[30, 20, 14].

In 2016, Choi and Ji [6] introduced the notion of p-resolvent map of a proper, convex
and lower semi-continuous function f in p-uniformly convex metric space X as follows:
For x ∈ X and λ > 0,

Jfλ (x) = argmin
y∈X

[
f(y) +

1

2λ
dp(y, x)

]
.

Clearly, the p-resolvent mapping generalizes the Moreau-Yosida resolvent mapping de-
fined in CAT (0) spaces. Moreover, Choi and Ji [6] proved the convergence of the proxi-
mal point algorithm by the p-resolvent map in p-uniformly convex metric spaces.

Before proving Theorem 4.3, we need the following lemma.

Lemma 4.3. (See [29]) For p > 1, let (X, d) be a p-uniformly convex metric space with parameter
c ≥ 2, and let f : X → (−∞,+∞] be a convex, lower semi-continuous function not identically
∞. Let Jfλ be the p-resolvent mapping of f such that F (Jfλ ) ̸= ∅. Then, for all λ > 0, we have the
following:

(i) x∗ ∈ F (Jfλ ) if and only if x∗ is a minimizer of f ;
(ii) dp(x∗, Jfλx) + dp(Jfλx, x) ≤ dp(x∗, x) for all x ∈ X and x∗ ∈ F (Jfλ );

(iii) Jfλ is a generalized quasi-nonexpansive mapping, i.e.,

dp(Jfλx, x
∗) ≤ dp(x, x∗) for all x ∈ X,x∗ ∈ F (Jfλ );

(iv) dp(Jλx, x) ≤ dp(Jµx, x) for all λ < µ and x ∈ X .

Theorem 4.3. For p > 1, let X be a complete p-uniformly convex metric space with parameter
c ≥ 2. For all i = 1, 2, ..., N , let {fi}, {gi}, X → (−∞,∞), be finite families of proper, convex
and lower semi-continuous functions and let J i

λf
i

and J i
λg
i

be the p-resolvent mappings of fi and

gi, respectively, with ξ =

(
N⋂
i=1

argmin
y∈X

fi(y)

)
∩

(
N⋂
i=1

argmin
y∈X

gi(y)

)
̸= ∅. For every N ∈ N,

let Kf : X → X be the K-mapping generated by J1
λf
1

, J2
λf
2

, ..., JN−1

λf
N−1

, JN
λf
N

and λ1, λ2, ..., λN , let

Kg : X → X be the K-mapping generated by J1
λg
1
, J2
λg
2
, ..., JN−1

λg
N−1

, JN
λg
N

and η1, η2, ..., ηN , where

{λi}Ni=1 and {ηi}Ni=1 are the sequences in [a, b] and [c, d] with 0 < a ≤ b < 1 and 0 < c ≤ d < 1,
respectively, for all λfi , λ

g
i > 0, for all i = 1, 2, ..., N . For given x1, y1 ∈ X , let the sequences

{xn} and {yn} be generated byxn+1 = αnyn ⊕ (1− αn)
(

βn

1−αn
Kfxn ⊕ γn

1−αn
xn

)
,

yn+1 = αnxn ⊕ (1− αn)
(

βn

1−αn
Kgyn ⊕ γn

1−αn
yn

)
,

(4.33)

for all n ∈ N, where {αn}, {βn}, {γn} are the sequences in (0, 1) with αn + βn + γn = 1 and
0 < s ≤ αn, βn, γn ≤ q < 1, for all n∈ N and for some s, q > 0. Then, the sequences {xn} and
{yn} ∆-converge to some x∗ ∈ ξ.
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Proof. For all i = 1, 2, ..., N , we replace Ti ≡ J i
λf
i

and Si ≡ J i
λg
i

in Theorem 3.2.

From Lemma 4.3 (iii) and the definitions of Kf and Kg , we have

dp(Kfxn, z) ≤ dp(xn, z) and dp(Kgyn, z) ≤ dp(yn, z), for all z ∈ ξ.

From Lemma 4.3 (i), we have
N⋂
i=1

F (J i
λf
i

)=

N⋂
i=1

argmin
y∈X

fi(y) and
N⋂
i=1

F (J iλg
i
)=

N⋂
i=1

argmin
y∈X

gi(y),

for all N ∈ N.
By using the same method in Theorem 3.2, we can conclude Theorem 4.3. □

Corollary 4.2. For p > 1, let X be a complete p-uniformly convex metric space with parameter
c ≥ 2. For all i = 1, 2, ..., N , let {fi} : X → (−∞,∞) be finite families of proper, convex
and lower semi-continuous functions and let J i

λf
i

be the p-resolvent mappings of fi with ξ =

N⋂
i=1

argmin
y∈X

fi(y) ̸= ∅. For every N ∈ N, let Kf : X → X be the K-mapping generated

by J1
λf
1

, J2
λf
2

, ..., JN−1

λf
N−1

, JN
λf
N

and λ1, λ2, ..., λN , where {λi}Ni=1 are the sequences in [a, b] with

0 < a ≤ b < 1, for all λfi > 0, for all i = 1, 2, ..., N . For given x1 ∈ X , let the sequence {xn} be
generated by

(4.34) xn+1 = αnxn ⊕ (1− αn)

(
βn

1− αn
Kfxn ⊕ γn

1− αn
xn

)
,

for all n ∈ N, where {αn}, {βn}, {γn} are the sequences in (0, 1) with αn + βn + γn = 1 and
0 < s ≤ αn, βn, γn ≤ q < 1, for all n∈ N and for some s, q > 0. Then, the sequence {xn}
∆-converges to some x∗ ∈ ξ.

Proof. For all i = 1, 2, ..., N . If we put fi ≡ gi, J iλf
i

≡ J i
λg
i
, {λi}Ni=1 = {ηi}Ni=1 and xn = yn,

in Theorem 4.3, we obtain the desired conclusion. □

Remark 4.3. Theorem 4.2 can be reduced as follows:
(i) If we put N = 1, in Theorem 4.3, then we obtainxn+1 = αnyn ⊕ (1− αn)

(
βn

1−αn
J1
φ1
xn ⊕ γn

1−αn
xn

)
,

yn+1 = αnxn ⊕ (1− αn)
(

βn

1−αn
J1
ψ1
yn ⊕ γn

1−αn
yn

)
,

for all n ∈ N, by using the same mappings and parameters as in Theorem 4.3.
Then, the sequences {xn} and {yn} ∆-converge to some x∗ ∈ (argminy∈X f(y)) ∩
(argminy∈X g(y)).

(ii) If we put f ≡ g, J1
φ1

≡ J1
ψ1

and xn = yn in Remark 4.3 (i), then we obtain

(4.35) xn+1 = αnxn ⊕ (1− αn)

(
βn

1− αn
J1
φ1
xn ⊕ γn

1− αn
xn

)
,

for all n ∈ N, by using the same mappings and parameters as in Remark 4.3 (i).
Then, the sequence {xn} ∆-converges to some x∗ ∈ argminy∈X f(y).

5. NUMERICAL EXAMPLES

In this section, we give the following examples to support Theorem 3.2 and Theorem
4.3.
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Example 5.2. Let X = Lp(W,F, µ) be a measure space, where W = [0, 1], F is σ-algebra
on W , and µ : F → [0,∞). Let a metric d : Lp × Lp → R be defined by

d(f, g) = (

∫
W

|f − g|pdµ)
1
p , for all p ≥ 1, f, g ∈ Lp(W,F, µ),

and with the geodesic joining x to y given by

(1− t)x⊕ ty = (1− t)x+ ty, for all t ∈ [0, 1].

For every i = 1, 2, ..., N , let the mappings Ti : X → X be defined by

Ti(f(x)) =
f(x)

2i
, for all f ∈ X and x ∈ W,

and let the mappings Si : X → X be defined by

Si(g(x)) =
g(x)

3i
, for all g ∈ X and x ∈ W.

Let KT be the K-mapping generated by T1, T2, ..., TN and λ1, λ2, ..., λN where λi =
1
i+1 , for all i = 1, 2, ..., N , and KS be the K-mapping generated by S1, S2, ..., SN and
η1, η2, ..., ηN where ηi =

1
i+2 , for all i = 1, 2, ..., N .

Let x1, y1 ∈ X and the sequences {xn} and {yn} generated by (3.8), where αn = n+2
6n ,

βn = 2n−1
6n , and γn = 3n−1

6n , for all n ∈ N. By the definitions of KT and KS , we have
0 ∈ (∩Ni=1F (Ti)) ∩ (∩Ni=1F (Si)) ≡ ξ. For every n ∈ N, we can rewrite (3.8) as follows:

xn+1 =(
n+ 2

6n
)yn ⊕ (

5n− 2

6n
)

(
(
2n− 1

5n− 2
)KTxn ⊕ (

3n− 1

5n− 2
)xn

)
,

yn+1 =(
n+ 2

6n
)xn ⊕ (

5n− 2

6n
)

(
(
2n− 1

5n− 2
)KSyn ⊕ (

3n− 1

5n− 2
)yn

)
.

From Theorem 3.2, we can conclude that the sequences {xn} and {yn} ∆-converge to 0.
We have given a numerical example to guarantee the convergence of Theorem 3.2, we

give f(x) = x2 and g(x) = 2x2−x, for all x ∈ W . The table 1 and figure 1 show the values
of {xn} and {yn}, where x1 = −1, y1 = 1 and n = N = 25.

TABLE 1. The values of {xn} and {yn} with x1 = −1, y1 = 1 and n = N = 25

n xn yn

1 -1.0000 1.0000
2 0.1250 -0.0370
3 0.0508 -0.0224
...

...
...

13 0.0018 0.0019
...

...
...

23 0.0001 0.0001
24 0.0000 0.0000
25 0.0000 0.0000
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FIGURE 1. The convergences of {xn} and {yn} with x1 = −1, y1 = 1 and
n = N = 25

Example 5.3. In this example, we use the same mappings and parameters as in Example
5.2 unless the following mappings fi and gi, for all i = 1, 2, ..., N . Define fi(h(x)) =

i(h(x))2 and gi(ĥ(x)) = i|ĥ(x)|, for all h, ĥ ∈ X and x ∈ W .
For every i = 1, 2, ..., N , let the mappings J i

λf
i

: X → X be defined by

J i
λf
i

(r(x)) = argmin
r̂∈X

[fi(r̂(x)) +
1

2λfi
dp(r̂(x), r(x))],

where λfi = 1
i2+1 and for all r(x) ∈ X , and x ∈ W ,

and let the mappings J i
λg
i
: X → X be defined by

J iλg
i
(q(x)) = argmin

q̂∈X
[gi(q̂(x)) +

1

2λgi
dp(q̂(x), q(x))],

where λgi =
1

2i+1 and for all q(x) ∈ X , and x ∈ W .
Let Kf be the K-mapping generated by J1

λf
1

, J2
λf
2

, ..., JN
λf
N

and λ1, λ2, ..., λN where λi =

1
i+1 , for all i = 1, 2, ..., N , and Kg be the K-mapping generated by J1

λg
1
, J2
λg
2
, ..., JN

λg
N

and
η1, η2, ..., ηN where ηi =

1
i+2 , for all i = 1, 2, ..., N .

Let x1, y1 ∈ X and the sequences {xn} and {yn} generated by (4.33), where the param-
eters {αn}, {βn}, and {γn} define as the same in Example 5.2. By the definitions of Kf and
Kg , we have 0 ∈ (∩Ni=1 argminy∈X fi(y)) ∩ (∩Ni=1 argminy∈C gi(y)) ≡ ξ. For every n ∈ N,
we can rewrite (4.33) as follows:

xn+1 =(
n+ 2

6n
)yn ⊕ (

5n− 2

6n
)

(
(
2n− 1

5n− 2
)Kfxn ⊕ (

3n− 1

5n− 2
)xn

)
,

yn+1 =(
n+ 2

6n
)xn ⊕ (

5n− 2

6n
)

(
(
2n− 1

5n− 2
)Kgyn ⊕ (

3n− 1

5n− 2
)yn

)
.

From Theorem 4.3, we can conclude that the sequences {xn} and {yn} ∆-converge to 0.
We have given a numerical example to guarantee the convergence of Theorem 4.3, we

give h(x) = ĥ(x) = r(x) = r̂(x) = q(x) = q̂(x) = x, for all x ∈ W . The table 2 and figure 2
show the values of {xn} and {yn}, where x1 = −1, y1 = 1, p = 2 and n = N = 30.
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TABLE 2. The values of {xn} and {yn} with x1 = −1, y1 = 1, p = 2 and
n = N = 30

n xn yn

1 -1.0000 1.0000
2 0.1250 0.0278
3 0.0772 0.0601
...

...
...

15 0.0036 0.0041
...

...
...

28 0.0001 0.0001
29 0.0000 0.0000
30 0.0000 0.0000

FIGURE 2. The convergences of {xn} and {yn} with x1 = −1, y1 = 1,
p = 2 and n = N = 30
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