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Strong duality in parametric robust semi-definite linear
programming and exact relaxations

NITHIRAT SISARAT1 , RATTANAPORN WANGKEEREE2,3 and RABIAN WANGKEEREE2,3

ABSTRACT. This paper addresses the issue of which strong duality holds between parametric robust semi-
definite linear optimization problems and their dual programs. In the case of a spectral norm uncertainty set, it
yields a corresponding strong duality result with a semi-definite programming as its dual. We also show that
the dual can be reformulated as a second-order cone programming problem or a linear programming problem
when the constraint uncertainty sets of parametric robust semi-definite linear programs are given in terms of
affinely parameterized diagonal matrix.

1. INTRODUCTION

As we know, a semi-definite linear programming model problem (SDP) under data
uncertainty, due to modelling or estimation errors that come from the lack of information
[2, 4, 12, 23], arises in a wide range of engineering applications, in particular in control
theory analysis and design [6, 13, 14, 27]. It has also been extensively studied without
taking into account data uncertainty as a valuable modeling tool for many optimization
problems because SDP can efficiently be solved; see [5, 10, 15, 16, 18, 22, 26] and other
references therein.

In this paper, we will be mainly concerned with the parametric uncertain semi-definite
linear program that is defined as follows: for each parameter v := (v1, . . . , vm), vl ∈ Rn,
l ∈ {1, . . . ,m}, m,n ∈ N := {1, 2, . . .}, an uncertain semi-definite linear program can be
captured by the problem:

(UPv) inf
x∈Rn

{
cTx

∣∣∣ A0 +

n∑
i=1

xiAi ⪰ 0p

}
,

where c ∈ V (v) and Ai ∈ Vi, i = 1, . . . , n, are uncertain, and the uncertainty set V (v) ⊂ Rn

is assumed to be polytope given by V (v) := conv{v1, . . . , vm} while the uncertainty sets Vi,
i = 1, . . . , n, are assumed to be nonempty closed and convex sets in Sp.

Following the deterministic approach, a computationally powerful approach to dealing
with data uncertainty in optimization, the parametric robust semi-definite linear program
(PRSDLP) is defined as follows: for each parameter v ∈ Rm×n, a robust semi-definite linear
program (the robust counterpart of (UPv)) is given by

(RPv) inf
x∈Rn

{
max

c∈V (v)
cTx

∣∣∣ A0 +

n∑
i=1

xiAi ⪰ 0p, ∀Ai ∈ Vi, i ∈ I
}
,
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I := {0, 1, . . . , n}, where the uncertain objective and constraints are enforced for every
possible value of the data within the corresponding uncertainty sets. For a given param-
eter v ∈ Rm×n, model problem of the form (RPv) aims at finding a worst-case solution
that is immunized against the data uncertainty. Unfortunately, however, (RPv) may not
be easily solvable for certain classes of uncertainties.

The study of classes of robust programs which either possess relaxation/ duality prop-
erties with numerically tractable dual programs or permit numerically tractable approx-
imations has been made intensively by exploiting special algebraic features of the uncer-
tainty sets as well as linear or polynomial structures of objective/constraints; see [3, 7, 8,
11, 20, 21, 25]. For instance, in the case that there is no uncertain on the objective function,
the author in [19] have given necessary and sufficient conditions for the validity of strong
duality, in the sense that the optimal values of (RPv) equals the optimal value of its asso-
ciated dual and the optimal solution of the dual problem is attained. They also showed
that the dual can be reformulated as a simple semi-definite linear program under spectral
norm uncertainty [1, 2], and so is computationally tractable.

This work has facilitated a way of identifying the tractable class of parametric robust
semi-definite linear programs by examining the tractability of (RPv), and so, it provides us
with the motivation for establishing strong duality for parametric uncertain semi-definite
linear programs. We invite the reader to consult [17] for various characterizations of
strong duality in robust optimization problems.

To this aim, we first show that the closedness and the convexity of the characteristic
cone of the uncertain linear matrix inequality constraints A0 +

∑n
i=1 xiAi ⪰ 0p, ∀Ai ∈

Vi, i = 0, 1, . . . , n, is a necessary and sufficient condition for (RPv), where v ∈ Rm×n, to
have strong duality, whenever the optimal value of (RPv) is finite. This is done by first
transforming the (UPv) into a linear optimization problem with uncertain linear matrix
inequality constraints using a special variable transformation and then employing the
strong duality in [19]. We then provide the weakest condition that exhibits exact SDP
relaxations for a class of parametric robust semi-definite linear programs under spectral
norm uncertainty. We also present exact second-order cone programming (SOCP) and
linear programming (LP) relaxations when the constraint uncertainty sets of parametric
robust semi-definite linear programs are given in terms of affinely parameterized diagonal
matrix.

It is worth mentioning here that our results differ from the work in [19] which exam-
ined strong duality between the robust counterpart of an uncertain semi-definite linear
programming model problem with only uncertain constraints and the optimistic coun-
terpart of its uncertain dual. Note also that the objective function of (RPv) is not a linear
function, and so, [19, Theorem 2.2] cannot apply directly.

The rest of the paper is organized as follows. Section 2 presents uniform strong duality
results for the parametric robust semi-definite linear program (RPv) in terms of the robust
characteristic cone. Section 3 present a characterization in terms of uniform exact SDP
relaxation for the parametric robust semi-definite linear program (RPv) under spectral
norm uncertainty, where for each parameter v ∈ Rn×m, the relaxation problem of (RPv)
is a semi-definite linear program. Section 4 provides simple classes of uncertain semi-
definite linear programs with computationally dual programs when the data uncertainty
is affinely parametrized diagonal matrix.

Notations: Before we move to the next section, we introduce some necessary notations.
The notation Rn signifies the Euclidean space whose norm is denoted by ∥ · ∥ for each
n ∈ N. The origin of any space is denoted by 0 but we may use 0n for the origin of Rn

in situations where some confusion might be possible, while the symbol 0n stands for the
zero (n× n) matrix. For a nonempty set Ω ⊂ Rn, convΩ denotes the convex hull of Ω and
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clΩ stands for the closure of Ω, while conecoΩ := R+convΩ stands for the convex conical
hull of Ω ∪ {0n}, where R+ := [0,+∞) ⊂ R. As usual, the symbol In refers to the identity
(n×n) matrix. A symmetric (n×n) matrix A is said to be positive semi-definite, denoted
by A ⪰ 0n, whenever xTAx ≥ 0 for all x ∈ Rn. Note that A ⪰ 0n if and only if Tr(AB) ≥ 0
for all B ⪰ 0n, where Tr(·) refers to the trace operation. For Ai ∈ Sp, i ∈ I\{0}, the
linear operator Â : Rn → Sp is defined by Â(x) :=

∑n
i=1 xiAi. Then the adjoint operator

Â∗ : Sp → Rn is given by (Â∗(F ))i := (Tr(AiF )).

2. UNIFORM STRONG DUALITY FOR ROBUST SDPS

In this section, we present a characterization of an uniform strong duality for the para-
metric robust semi-definite linear program (RPv) in terms of the robust characteristic cone
which is defined by

C :=
⋃

Ai∈Vi, i∈I

{(−Tr(A1F ), . . . ,−Tr(AnF ),Tr(A0F ) + r)| F ⪰ 0p, r ≥ 0},

and the proof is motivated by Remark 2.1 along with Theorem 2.3 in [19] and Theorem
2.1 in [9].

Theorem 2.1. Assume that the parametric robust semi-definite linear program (PRSDLP) is fea-
sible, i.e., X := {x ∈ Rn | A0 +

∑n
i=1 xiAi ⪰ 0p, ∀Ai ∈ Vi, i ∈ I} ̸= ∅. Then, the following

statements are equivalent:

(i) C is closed and convex.
(ii) For each v ∈ Rn×m with inf (RPv) > −∞,

inf (RPv) = max
(Ai,F,λl)

{
− Tr(A0F ) | Tr(AiF ) =

m∑
l=1

vilλl, i ∈ I\{0},

m∑
l=1

λl = 1, Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I, l = 1, . . . ,m
}
.(2.1)

Proof. [(i)⇒(ii)] Let v ∈ Rn×m be such that inf (RPv) > −∞. Since V (v) = conv{v1, . . . , vm},
the problem (RPv) can be equivalently reformulated as

inf
(x,xn+1)∈Rn×R

{
xn+1 | vT

l x − xn+1 ≤ 0, l = 1, . . . ,m, A0 +

n∑
i=1

xiAi ⪰ 0p, ∀Ai ∈ Vi, i ∈ I
}
.(ARv)

Now, letting

V′
0 :=




0p

. . .
0p

A0

 A0 ∈ V0

 ,

V′
i :=




−vi

1Ip

. . .
−vi

mIp
Ai

 Ai ∈ Vi

 , i ∈ I\{0},

V′
n+1 :=




Ip

. . .
Ip

0p


 .
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It can be directly verified that problem (ARv) amounts to the following one

inf
(x,xn+1)∈Rn×R

{
xn+1

∣∣∣ A′
0 +

n+1∑
i=1

xiA
′
i ⪰ 0p, ∀A′

i ∈ V ′
i, i ∈ I ∪ {n+ 1}

}
.

(Formulating the characteristic cone of (ARv)): Let us first show that the characteristic
cone of problem (ARv), i.e.,⋃

A′
i∈V′

i, i∈I∪{n+1}

{(−Tr(A′
1F

′
), . . . ,−Tr(A′

nF
′
),−Tr(A′

n+1F
′
), Tr(A′

0F
′
) + r

′
)
∣∣∣ F ′ ⪰ 0p(m+1), r

′ ≥ 0},

is equivalent to the following one

(2.2) K := coneco{(vl,−1, 0) | l = 1, . . . ,m}+ Ĉ,

where

Ĉ := ∪Ai∈Vi, i∈I{(−Tr(A1F ), . . . ,−Tr(AnF ), 0,Tr(A0F ) + r) | F ⪰ 0p, r ≥ 0}.

Indeed, let (x, xn+1, α) ∈ K be arbitrary. Then, there exist λl ≥ 0, l = 1, . . . ,m, Ai ∈ Vi,
i ∈ I , F ⪰ 0p, and r ≥ 0 such that xi =

∑m
l=1 λlv

i
l − Tr(AiF ), i ∈ I\{0}, xn+1 = −

∑m
l=1 λl

and α = Tr(A0F ) + r. By letting r′ := r, for each i ∈ I\{0},

A′
0 :=


0p

. . .
0p

A0

 , A′
i :=


−vi

1Ip

. . .
−vi

mIp
Ai

 ,

A′
n+1 :=


Ip

. . .
Ip

0p

 , F ′ :=


λ1
p Ip

. . .
λm
p Ip

F

 ,

we obtain that

F ′ ⪰ 0p(m+1), Tr(A′
0F

′) + r′ = Tr(A0F ) + r = α

Tr(A′
iF

′
i ) =

m∑
l=1

Tr
(
−λlv

i
l

p
Ip

)
+ Tr(AiF ) = −xi for all i ∈ I\{0} and

Tr(A′
n+1F

′
n+1) =

m∑
l=1

Tr
(
λl

p
Ip

)
= −xn+1,

showing that
(x, xn+1, α)

∈
⋃

A′
i∈V′

i,

i∈I∪{n+1}

{(−Tr(A′
1F

′
), . . . ,−Tr(A′

nF
′
),−Tr(A′

n+1F
′
), Tr(A′

0F
′
) + r

′
)
∣∣∣ F ′ ⪰ 0p(m+1), r

′ ≥ 0}.

Conversely, let (x, xn+1, α) be an arbitrary element of the set⋃
A′

i∈V′
i,

i∈I∪{n+1}

{(−Tr(A′
1F

′
), . . . ,−Tr(A′

nF
′
),−Tr(A′

n+1F
′
), Tr(A′

0F
′
) + r

′
)
∣∣∣ F ′ ⪰ 0p(m+1), r

′ ≥ 0},

which in turn implies to the assertion that there exist A′
i ∈ Vi, i ∈ I ∪ {n + 1}, r′ ≥

0 and F ′ =


Z1 ∗ ∗

. . . ∗
∗ Zm

∗ ∗ Z

 ⪰ 0p(m+1), for some Z,Zl ∈ Sp, l = 1, . . . ,m, such that

α = Tr(A′
0F

′) + r′ = Tr(A0Z) + r′, xi = −Tr(A′
iF

′
i ) = −

∑m
l=1 Tr

(
−vilZl

)
− Tr(AiZ) for

all i ∈ I\{0} and xn+1 = −Tr(A′
n+1F

′
n+1) = −

∑m
l=1 Tr (Zl). For any B ⪰ 0p, letting
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B̃ :=


0p

. . .
0p

B

 , and B̃l, l = 1, . . . ,m, is the ((m + 1) × (m + 1)) diagonal block

matrix with B in the (l, l)th entry and zeros elsewhere. Then, it follows that B̃ ⪰ 0p(m+1)

and B̃l ⪰ 0p(m+1) for all l = 1, . . . ,m. As F ′ ⪰ 0p(m+1), we have that for each l = 1, . . . ,m,
Tr(ZB) = Tr(F ′B̃) ≥ 0 and Tr(ZlB) = Tr(F ′B̃l) ≥ 0 which imply that Z ⪰ 0p and Zl ⪰ 0p.
Letting λl := Tr(Zl) ≥ 0 for each l = 1, . . . ,m, we arrive at

(x, xn+1, α) =

m∑
l=1

λl(vl,−1, 0) + (−Â∗(Z), 0,Tr(A0Z) + r′) ∈ K.

(C is closed ⇔K is closed): Assume that K is closed and consider any sequence (xk, xk
n+1) →

(x, xn+1) as k → +∞, where (xk, xk
n+1) ∈ C, ∀k ∈ N. Then, there exist Ak

i ∈ Vi, i ∈ I ,
F k ⪰ 0p and rk ≥ 0 such that

(xk, xk
n+1) = (−Âk

∗
(F k),Tr(Ak

0F
k) + rk).

We first show that the sequence {rk} is bounded. Otherwise, by taking a subsequence if
necessary we may assume that rk → +∞ as k → +∞. By letting,

z̃k :=
1

rk
(−Âk

∗
(F k), 0,Tr(Ak

0F
k)) ∈ K

for all k ∈ N and z̃k = 1
rk
(xk, 0, xk

n+1) − (0n, 0, 1) → −(0n, 0, 1) as k → +∞. Since K is
closed, it follows that −(0n, 0, 1) ∈ K. Then, there exist λ̃l ≥ 0, l = 1, . . . ,m, Ãi ∈ Vi, i ∈ I ,
F̃ ⪰ 0p, and r̃ ≥ 0 such that

0n =

m∑
l=1

λ̃lvl −
̂̃
A

∗
(F̃ ), 0 = −

m∑
l=1

λ̃l, −1 = Tr(Ã0F̃ ) + r̃.

On the other hand, as X ̸= ∅, there is x0 ∈ Rn such that Ã0 +
∑n

i x
0
i Ãi ⪰ 0p. So,

0 ≤ Tr

((
Ã0 +

n∑
i=1

x0
i Ãi

)
F̃

)
= Tr(Ã0F̃ ) +

n∑
i=1

x0
i Tr(ÃiF̃ ) = Tr(Ã0F̃ ) = −1− r̃,

which contradicts the fact that r̃ ≥ 0 and hence the sequence {rk} must be bounded. Thus,
by passing to subsequence if necessary, we can assume that rk → r0 ≥ 0 as k → +∞.

Then, by letting zk := (−Âk
∗
(F k), 0,Tr(Ak

0F
k)), we obtain that zk ∈ K for all k ∈ N and

zk → (x, 0, xn+1 − r0) ∈ K as k → +∞. Therefore, we find λl ≥ 0, l = 1, . . . ,m, Ai ∈ Vi,
i ∈ I , F ⪰ 0p, and r ≥ 0 such that

x =

m∑
l=1

λlvl − Â∗(F ), 0 = −
m∑
l=1

λl, xn+1 − r0 = Tr(A0F ) + r,

and consequently, (x, xn+1) = (−Â∗(F ),Tr(A0F ) + r + r0) ∈ C. This shows that C is
closed.

Conversely, let C be closed. It can be verified that the closedness of C implies the
closedness of Ĉ and thus, we can employ [24, Corollary 9.1.3] to assert that

clK = clconeco{(vl,−1, 0) | l = 1, . . . ,m}+ clĈ

= coneco{(vl,−1, 0) | l = 1, . . . ,m}+ Ĉ = K,

which entails that K is closed.
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(Guaranteeing robust strong duality): Let us note that, by assumption, Ĉ is convex.
Therefore, K is convex as well by the expression (2.2). Now, invoking [19, Theorem 2.1]
with c := (0Tn , 1)

T , we see that the closedness together with the convexity of K guarantees
that the robust strong duality holds for the problem (ARv) with the attainment of the dual
problem. Namely,

inf (ARv) = max
(A′

i,F
′)

{
− Tr(A′

0F
′) | Tr(A′

iF
′) = 0, i ∈ I\{0},

Tr(A′
n+1F

′) = 1, A′
i ∈ V ′

i, F
′ ⪰ 0p(m+1), i ∈ I ∪ {n+ 1}

}
.(2.3)

We claim that the problem in the right hand-side of (2.3) is equivalent to the following
one

max
(Ai,F,λl)

{
− Tr(A0F ) | Tr(AiF ) =

m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I,

l = 1, . . . ,m
}
.

To see this, consider any A′
i ∈ V ′

i , F
′ ⪰ 0p(m+1), i ∈ I ∪ {n + 1} with Tr(A′

iF
′) = 0, ∀i ∈

I\{0} and Tr(A′
n+1F

′) = 1. Arguing as before, we arrive at Tr(A′
0F

′) = Tr(A0Z), 0 =

Tr(A′
iF

′
i ) =

∑m
l=1 Tr

(
−vilZl

)
+ Tr(AiZ), i ∈ I\{0} and 1 = Tr(A′

n+1F
′
n+1) =

∑m
l=1 Tr (Zl) ,

for some Z,Zl ⪰ 0p, l = 1, . . . ,m. Letting F := Z, λl := Tr (Zl) ≥ 0 for all l = 1, . . . ,m, we
get

max
(A′

i
,F ′)

{
− Tr(A′

0F
′
) | Tr(A′

iF
′
) = 0, i ∈ I\{0}, Tr(A′

n+1F
′
) = 1, A

′
i ∈ V′

i, F
′ ⪰ 0p(m+1), i ∈ I ∪ {n + 1}

}

≤ max
(Ai,F,λl)

{
− Tr(A0F ) | Tr(AiF ) =

m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I,

l = 1, . . . ,m
}
.

On the other hand, for any Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I , l = 1, . . . ,m with Tr(AiF ) =∑m
l=1 v

i
lλl, i ∈ I\{0} and

∑m
l=1 λl = 1, letting

F
′
:=


λ1
p Ip

. . .
λm
p Ip

F

 ⪰ 0p(m+1),

we have, Tr(A′
0F

′) = Tr(A0F ), Tr(A′
iF

′
i ) = −

∑m
l=1 v

i
lλl + Tr(AiF ) = 0, i ∈ I\{0} and

Tr(A′
n+1F

′
n+1) =

∑m
l=1 λl = 1. This gives us that

max
(Ai,F,λl)

{
− Tr(A0F ) | Tr(AiF ) =

m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I, l = 1, . . . ,m
}

≤ max
(A′

i
,F ′)

{
− Tr(A′

0F
′
) | Tr(A′

iF
′
) = 0, i ∈ I\{0},

Tr(A′
n+1F

′
) = 1, A

′
i ∈ V′

i, F
′ ⪰ 0p(m+1), i ∈ I ∪ {n + 1}

}
.

Hence, the equality holds, and completes the proof the implication (i) ⇒ (ii).
[(ii) ⇒ (i)] Assume that (ii) holds. Let (z, zn+1) ∈ clconvC. So, for each x ∈ X , we have

−zTx ≥ −zn+1 > −∞ (see e.g., in the proof of [19, Theorem 2.2]). Now, applying (ii) with
m := 1 and v := −z ∈ Rn, we obtain that

max
(Ai,F )

{
− Tr(A0F ) | Tr(AiF ) = −zi, i ∈ I\{0}, Ai ∈ Vi, F ⪰ 0p, i ∈ I

}
≥ −zn+1.
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It follows that there exist Ai ∈ Vi, i ∈ I , and F ⪰ 0p with Tr(AiF ) = −zi, such that zn+1 ≥
Tr(A0F ). Consequently, (z, zn+1) ∈ C, showing that clconvC ⊆ C and so, clconvC = C.
Therefore, C is closed and convex, thereby establishing the desired result. □

Remark 2.1. It should be noted that Theorem 2.1 differ from the work in [19] which ex-
amined strong duality between the robust counterpart of an uncertain semi-definite linear
programming model problem with only uncertain constraints and the optimistic counter-
part of its uncertain dual. Note also that the objective function of (RPv), in general, is not
a linear function, and so, [19, Theorem 2.2] cannot apply directly. Let us illustrate this
remark by the following simple example, which is motivated by [19, Example 2.1].

Example 2.1. Consider a parametric robust semi-definite linear programming problem
defined as follows: for each v = (v1, v2) ∈ R2×2, a robust semi-definite linear program is
given by

(EPv) inf
x∈R2

{
max

c∈V (v)
{c1x1 + c2x2}

∣∣∣ A0 + x1A1 + x2A2 ⪰ 03, ∀Ai ∈ Vi, i = 0, 1, 2
}
,

where x = (x1, x2)
T , c = (c1, c2)

T , the uncertainty set V (v) is a polytope given by V (v) =
conv{v1, v2} ⊆ R2 and the uncertainty sets Vi, i ∈ I = {0, 1, 2}, are given by

V0 = V2 =


1 0 0
0 0 0
0 0 0

 and V1 =


0 0 0
0 0 −a
0 −a 0

 a ∈ [0, 1]

 .

In this case,

C =
⋃

Ai∈Vi, i∈I

{(−Tr(A1F ),−Tr(A2F ),Tr(A0F ) + r)| F ⪰ 0p, r ≥ 0}

=
⋃

a∈[0,1]

(−2af5,−f1, f1 + r) F =

f1 f2 f3
f2 f4 f5
f3 f5 f6

 ⪰ 03, r ≥ 0


= R× (−R+)× R+,

which is closed and convex. So, we assert by Theorem 2.1 that strong duality holds for
all robust semi-definite linear programs (EPv), v ∈ R2×2, whenever inf (EPv) > −∞. Let
us now verify the optimal value of problem (EPv) with (for instance) v̄ := (v̄1, v̄2), v̄1 :=
(0,−1)T , v̄2 := (0, 1)T , which amounts to the following one

(EPv̄) inf
x∈R2

{|x2| | x1 = 0, x2 ≥ −1}.

It can be verified that x̄ := (0, 0)T is an optimal solution of problem (EPv̄) with the optimal
value inf (EPv̄) = 0. Consider the following the optimistic counterpart of (EPv̄):

max
(Ai,F,λ1,λ2)

{
− Tr(A0F ) | Tr(A1F ) = v̄11λ1 + v̄12λ2, Tr(A2F ) = v̄21λ1 + v̄22λ2,

λ1 + λ2 = 1, Ai ∈ Vi, F ⪰ 03, λ1 ≥ 0, λ2 ≥ 0 i ∈ I
}

(OPv̄)

= max
a∈[0,1]

max
F∈S3

max
(λ1,λ2)

{
− f1 − 2af5 = 0, f1 = −λ1 + λ2,

λ1 + λ2 = 1, F =

f1 f2 f3
f2 f4 f5
f3 f5 f6

 ⪰ 03, λ1 ≥ 0, λ2 ≥ 0
}
.

As F ⪰ 03, we get f1 ≥ 0 and so, max (OPv̄) = 0. This shows that the strong duality holds
for (EPv̄), that is, max (OPv̄) = 0 = min (EPv̄).
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We close this section with a remark that in the spacial case where there is no uncertainty
in the objective function, i.e. m := 1 and v := c with a given c ∈ Rn, the preceding theorem
collapses to the strong duality result for semi-definite linear programming problem under
constraint data uncertainly which was established in [19].

3. UNIFORM EXACT SDP RELAXATION

This section is devoted to presenting an application of our characterization of uniform
strong duality to classes of parametric robust semi-definite linear programming problems
with spectral norm uncertainty. In this circumstance, we show that the relaxation problem
of each robust semi-definite linear program is a single semi-definite linear program.

In what follows, let us consider the uncertain semi-definite programming problem with
spectral norm uncertainty:

(3.4) Ṽi := {Ai + ρi∆i |∆i ∈ Sp, ∥∆i∥spec ≤ 1},

where Ai ∈ Sp, ρi ≥ 0 and ∥∆i∥spec denotes the square root of the largest eigenvalue of the
matrix ∆T

i ∆i. In this case, the uncertainty set Ṽi is just a closed ball with center Ai and
radius ρi in the matrix space Sp.

In this way, we need the following proposition.

Proposition 3.1. [19, Proposition 3.1] Let Ṽi as in (3.4), Ai ∈ Sp. Then, the following state-
ments hold:

(i) The robust characteristic cone

C :=
⋃

Ai∈Ṽi, i∈I

{(−Tr(A1F ), . . . ,−Tr(AnF ),Tr(A0F ) + r)| F ⪰ 0p, r ≥ 0}

is convex.
(ii) For each fixed F ⪰ 0p, one has

[Tr((Ai − ρiIp)F ),Tr((Ai + ρiIp)F )] =
⋃

∥∆i∥spec≤1

{Tr((Ai + ρi∆i)F )}, i ∈ I,

and so,

(3.5) inf
∥∆i∥spec≤1

{Tr((Ai + ρi∆i)F )} = Tr((Ai − ρiIp)F ).

Theorem 3.2. Assume that the parametric robust semi-definite linear program (PRSDLP) is fea-
sible, i.e., X := {x ∈ Rn | A0 +

∑n
i=1 xiAi ⪰ 0p, ∀Ai ∈ Ṽi, i ∈ I} ̸= ∅. Then, the following

statements are equivalent:
(i) The robust characteristic cone

C :=
⋃

∥∆i∥spec≤1

{(−Tr((A1 + ρ1∆1)F ), . . . ,−Tr((An + ρn∆n)F ), Tr((A0 + ρ0∆0)F ) + r)
∣∣∣ F ⪰ 0p, r ≥ 0}

is closed.
(ii) For each v ∈ Rn×m with inf (RPv) > −∞, the uniform exact SDP relaxation holds for

(PRSDLP) in the sense that

inf (RPv) = max
(F,λl)

{
− Tr((A0 − ρ0Ip)F ) |Tr((Ai − ρiIp)F ) ≤

m∑
l=1

v
i
lλl, i ∈ I\{0},

Tr((Ai + ρiIp)F ) ≥
m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, F ⪰ 0p, λl ≥ 0, l = 1, . . . ,m
}
.(3.6)
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Proof. We first note that

C :=
⋃

Ai∈Ṽi, i∈I

{(−Tr(A1F ), . . . ,−Tr(AnF ), Tr(A0F ) + r)| F ⪰ 0p, r ≥ 0}

=
⋃

∥∆i∥spec≤1, i∈I

{(−Tr((A1 + ρ1∆1)F ), . . . ,−Tr((An + ρn∆n)F ), Tr((A0 + ρ0∆0)F ) + r) | F ⪰ 0p, r ≥ 0}.

Invoking Proposition 3.1(i), we conclude that the cone C is convex. Note also that

max
(∆i,F,λl)

{−Tr((A0 + ρ0∆0)F ) | Tr((Ai + ρi∆i)F ) =

m∑
l=1

vilλl, i ∈ I\{0},

m∑
l=1

λl = 1, ∥∆i∥spec ≤ 1, F ⪰ 0p, λl ≥ 0, i ∈ I, l = 1, . . . ,m}

= max
(∆i,F,λl)

{−Tr((A0 − ρ0Ip)F ) | Tr((Ai + ρi∆i)F ) =

m∑
l=1

vilλl, i ∈ I\{0},

m∑
l=1

λl = 1, ∥∆i∥spec ≤ 1, F ⪰ 0p, λl ≥ 0, i ∈ I\{0}, l = 1, . . . ,m},(3.7)

where the last equality holds due to (3.5). Here, for each F ⪰ 0p fulfilling
Tr((Ai + ρi∆i)F ) =

∑m
l=1 v

i
lλl, we get Tr((Ai − ρiIp)F ) ≤

∑m
l=1 v

i
lλl and

Tr((Ai + ρiIp)F ) ≥
∑m

l=1 v
i
lλl, i ∈ I\{0}. Thus,

max
(∆i,F,λl)

{−Tr((A0 − ρ0Ip)F ) | Tr((Ai + ρi∆i)F ) =

m∑
l=1

vilλl, i ∈ I\{0},

m∑
l=1

λl = 1, ∥∆i∥spec ≤ 1, F ⪰ 0p, λl ≥ 0, i ∈ I\{0}, l = 1, . . . ,m}

≤ max
(F,λl)

{
− Tr((A0 − ρ0Ip)F ) | Tr((Ai − ρiIp)F ) ≤

m∑
l=1

vilλl, i ∈ I\{0},

Tr((Ai + ρiIp)F ) ≥
m∑
l=1

vilλl, i ∈ I\{0},
m∑
l=1

λl = 1,

F ⪰ 0p, λl ≥ 0, l = 1, . . . ,m
}
.(3.8)

On the one hand, for any F ⪰ 0p with Tr((Ai−ρiIp)F ) ≤
∑m

l=1 v
i
lλl and Tr((Ai+ρiIp)F ) ≥∑m

l=1 v
i
lλl, i ∈ I\{0}, Proposition 3.1(ii) gives us that there exist ∆i ∈ Sp satisfying
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∥∆i∥spec ≤ 1 such that Tr((Ai + ρi∆i)F ) =
∑m

l=1 v
i
lλl. This entails that

max
(∆i,F,λl)

{−Tr((A0 − ρ0Ip)F ) | Tr((Ai + ρi∆i)F ) =

m∑
l=1

vilλl, i ∈ I\{0}

m∑
l=1

λl = 1, ∥∆i∥spec ≤ 1, F ⪰ 0p, λl ≥ 0, i ∈ I\{0}, l = 1, . . . ,m}

≥ max
(F,λl)

{
− Tr((A0 − ρ0Ip)F ) | Tr((Ai − ρiIp)F ) ≤

m∑
l=1

vilλl, i ∈ I\{0},

Tr((Ai + ρiIp)F ) ≥
m∑
l=1

vilλl, i ∈ I\{0},
m∑
l=1

λl = 1,

F ⪰ 0p, λl ≥ 0, l = 1, . . . ,m
}
.(3.9)

Therefore, in view of (3.7), (3.8) and (3.9), the conclusion will follow by applying Theorem
2.1. □

As a corollary, we now derive a characterization of solution in terms of linear inequali-
ties for the robust semi-definite linear program (RPv) with each fixed v ∈ Rm×n.

Corollary 3.1 (Characterization of solution for (RPv)). Let v ∈ Rn×m be such that the problem
(RPv) has an optimal solution, and let x̄ ∈ {x ∈ Rn | A0 +

∑n
i=1 xiAi ⪰ 0p, ∀Ai ∈ Ṽi, i ∈ I}.

Assume that the characteristic cone
C :=⋃
∥∆i∥spec≤1

{(−Tr((A1 + ρ1∆1)F ), . . . ,−Tr((An + ρn∆n)F ), Tr((A0 + ρ0∆0)F ) + r)
∣∣∣ F ⪰ 0p, r ≥ 0}

is closed. Then, x̄ is an optimal solution of problem (RPv) if and only if there exist F ⪰ 0p, λl ≥ 0,
l = 1, . . . ,m, such that

Tr((Ai − ρiIp)F ) ≤
m∑
l=1

vilλl,

Tr((Ai + ρiIp)F ) ≥
m∑
l=1

vilλl, i ∈ I\{0},

m∑
l=1

λl = 1 and max
l=1,...,m

vTl x̄+ Tr((A0 − ρ0Ip)F ) = 0.

Proof. The proof is completed immediately with the aid of Theorem 3.2. □

4. AFFINE PARAMETERIZATIONS AND EXACT RELAXATIONS

In this section, we provide two classes of parametric robust semi-definite linear pro-
gramming problems where the corresponding dual problems can be reformulated as sim-
ple linear programming problems or second order programming problems, and so, are
computationally tractable.

In the sequel, for a given parameter v ∈ Rm×n, we consider the parametric robust SDP
under affinely paramterized diagonal matrix data uncertainty:

(RPv) inf
x∈Rn

{
max

c∈V (v)
cTx

∣∣∣ A0 +

n∑
i=1

xiAi ⪰ 0p, ∀Ai ∈ Vi, i ∈ I

}
,
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where for each i ∈ I ,

Vi :=
{

diag

a
(0)
i1 +

k∑
j=1

u
(j)
i1 a

(j)
i1 , . . . , a

(0)
ip +

k∑
j=1

u
(j)
ip a

(j)
ip

∣∣∣ uis := (u
1
is, . . . , u

k
is) ∈ Uis, s = 1, . . . , p

}
,

a
(j)
is ∈ R for each s = 1, . . . , p and j = 1, . . . , k and U is, s = 1, . . . , p, are convex com-

pact sets in Rk. Here, diag(d1, . . . , dp) denotes a diagonal matrix with diagonal elements
d1, . . . , dp. In this case, the characteristic cone C collapses to

C =
⋃

uis∈Uis

{(
−

p∑
s=1

θs

(
a
(0)
1s +

k∑
j=1

u
(j)
1s a

(j)
1s

)
, . . . ,−

p∑
s=1

θs

(
a(0)ns +

k∑
j=1

u(j)
ns a

(j)
ns

)
,

r +

p∑
s=1

θs

(
a
(0)
0s +

k∑
j=1

u
(j)
0s a

(j)
0s

))
: θs ≥ 0, r ≥ 0

}
,

which is convex [19, Proposition 4.1], and the dual problem of (RPv) can be simplified as

max
(Ai,F,λl)

{
− Tr(A0F ) | Tr(AiF ) =

m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, Ai ∈ Vi, F ⪰ 0p, λl ≥ 0, i ∈ I, l = 1, . . . ,m
}

= max
(uis,θs,λl)

{
−

p∑
s=1

θs
(
a
(0)
0s +

k∑
j=1

u
(j)
0s a

(j)
0s

) ∣∣∣ p∑
s=1

θs
(
a
(0)
is +

k∑
j=1

u
(j)
is a

(j)
is

)
=

m∑
l=1

v
i
lλl, i ∈ I\{0},

m∑
l=1

λl = 1, uis ∈ Uis, θs ≥ 0, λl ≥ 0, i ∈ I, s = 1, . . . , p, l = 1, . . . ,m
}
.(4.10)

4.1. Scenario Uncertainty. In the case that for each i ∈ I , s = 1, . . . , p,

U is := conv{z(1)is , . . . , z
(q)
is }

which is the convex hull of a given finitely generated scenarios z
(t)
is := (z

(1t)
is , . . . , z

(kt)
is ) ∈

Rk, t = 1, . . . , q, and q ∈ N, it can be verified that the characteristic cone C is closed and so,
strong duality between the robust counterpart and the corresponding dual always holds.

For the robust (RPv) with scenario uncertainty sets U is, named (RPSv), and the corre-
sponding relaxation problem (DPSv) can be equivalently rewritten as the following simple
linear programming problem:

max
(θs,θ

(jt)
is ,λl)

−
p∑

s=1

(
θsa

(0)
0s +

k∑
j=1

q∑
t=1

θ
(jt)
0s z

(jt)
0s a

(j)
0s

)

s.t.
p∑

s=1

(
θsa

(0)
is +

k∑
j=1

q∑
t=1

θ
(jt)
is z

(jt)
is a

(j)
is

)
=

m∑
l=1

vilλl, i ∈ I\{0}

q∑
t=1

θ
(jt)
is = θs,

m∑
l=1

λl = 1, θs ≥ 0, θ
(jt)
is ≥ 0, λl ≥ 0,

i ∈ I, s = 1, . . . , p, j = 1, . . . , k, t = 1, . . . , q,

l = 1, . . . ,m, .(DPSv)

Theorem 4.3. Consider the parametric robust semi-definite linear program (RPSv) under sce-
nario data uncertainty with the parameter v ∈ Rn×m such that inf(RPSv) > −∞ and its relax-
ation problem (DPSv). Suppose that X := {x ∈ Rn | A0 +

∑n
i=1 xiAi ⪰ 0p, ∀Ai ∈ Vi, i ∈

I} ≠ ∅. Then, inf(RPSv) = max (DPSv).
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Proof. Applying the uniform strong duality given in Theorem 2.1, we obtain that

inf(RPSv) = max
(θs,µ

(jt)
is ,λl)

{
−

p∑
s=1

θs

(
a
(0)
0s +

k∑
j=1

q∑
t=1

µ
(jt)
0s z

(jt)
0s a

(j)
0s

) ∣∣∣
p∑

s=1

θs

(
a
(0)
is +

k∑
j=1

q∑
t=1

µ
(jt)
is z

(jt)
is a

(j)
is

)
=

m∑
l=1

vilλl, i ∈ I\{0},

q∑
t=1

µ
(jt)
is = 1,

m∑
l=1

λl = 1, θs ≥ 0, µ
(jt)
is ≥ 0, λl ≥ 0,

i ∈ I, s = 1, . . . , p, j = 1, . . . , k, t = 1, . . . , q, l = 1, . . . ,m
}
.

Then, by letting θ
(jt)
is := θsµ

(jt)
0s , we assert that, for each i ∈ I , s = 1, . . . , p, j = 1, . . . , k,

t = 1, . . . , q,

θs ≥ 0, µ
(jt)
is ≥ 0,

q∑
t=1

µ
(jt)
is = 1

is equivalent to θs ≥ 0, θ(jt)is ≥ 0 and
∑q

t=1 θ
(jt)
is = θs. So, the maximization problem in

(4.10) collapses to (DPSv). □

4.2. Ellipsoidal Uncertainty. If for each i ∈ I , s = 1, . . . , p, U is := B ⊂ Rk and the robust
Slater condition holds, i.e.{

x ∈ Rn | A0 +

n∑
i=1

xiAi ≻ 0p, ∀Ai ∈ Vi, i ∈ I

}
̸= ∅,

then the characteristic cone C is closed [19, Theorem 2.3], and so, strong duality between
the robust counterpart and the corresponding dual always holds by Theorem 2.1.

For the robust (RPv) with ellipsoidal uncertainty sets U is, named (RPEv), the corre-
sponding relaxation problem (DPEv) can be stated as

max
(θs,θ

(j)
is ,λl)

−
p∑

s=1

θsa
(0)
0s −

p∑
s=1

k∑
j=1

θ
(j)
0s a

(j)
0s

s.t.
p∑

s=1

θsa
(0)
is +

p∑
s=1

k∑
j=1

θ
(j)
is a

(j)
is =

m∑
l=1

vilλl, i ∈ I\{0}

∥(θ(1)is , . . . , θ
(k)
is )∥ ≤ θs,

m∑
l=1

λl = 1, θs ∈ R, θ(j)is ∈ R,

λl ≥ 0, i ∈ I, s = 1, . . . , p, j = 1, . . . , k, l = 1, . . . ,m,(DPEv)

which is a second-order cone linear programming problem.

Theorem 4.4. Consider the parametric robust semi-definite linear program (RPEv) under el-
lipsoidal data uncertainty with the parameter v ∈ Rn×m such that inf(RPEv) > −∞ and its
relaxation problem (DPEv). Suppose that the robust Slater condition holds. Then, inf(RPEv) =
max (DPEv).
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Proof. By employing Theorem 2.1, we get that

inf(RPEv) = max
(θs,u

(j)
is ,λl)

{
−

p∑
s=1

θs

(
a
(0)
0s +

k∑
j=1

u
(j)
0s a

(j)
0s

) ∣∣∣
p∑

s=1

θs

(
a
(0)
is +

k∑
j=1

u
(j)
is a

(j)
is

)
=

m∑
l=1

vilλl, i ∈ I\{0},

∥(u(1)
is , . . . , u

(k)
is )∥ ≤ 1,

m∑
l=1

λl = 1, θs ≥ 0, µ
(j)
is ∈ R, λl ≥ 0,

i ∈ I, s = 1, . . . , p, j = 1, . . . , k, l = 1, . . . ,m
}
.

To see the conclusion, defining θ
(j)
is := θsu

(j)
is . So, it can be verified that, for each i ∈ I ,

s = 1, . . . , p, j = 1, . . . , k,

θs ≥ 0, µ
(j)
is ≥ 0, ∥(u(1)

is , . . . , u
(k)
is )∥ ≤ 1

is equivalent to θs ≥ 0, θ(j)is ≥ 0 and ∥(θ(1)is , . . . , θ
(k)
is )∥ ≤ θs. Therefore, the maximization

problem in (4.10) gives way to (DPEv). □
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