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The Non-Existence of Convex Configuration for a Given Set
of Vertex-Norm in Two-Dimensional Space

KIRATI SRIAMORN, SIRA SRISWASDI and SUPANUT CHAIDEE

ABSTRACT. Given a set of vertex-norm, or distances from the origin, in two-dimensional space, there does
not always exist a convex configuration, or convex polygon, whose vertices satisfy the vertex-norm. In this re-
search, we provide the necessary and sufficient conditions, based on the angles spanned by the polygon around
the origin, for the existence of such convex configuration. General strategies for constructing a convex config-
uration satisfying a given vertex-norm set as well as examples of vertex-norm sets for which no such convex
configuration exists are also illustrated.

1. INTRODUCTION

Convex polygon is one of the fundamental objects in discrete and computational geom-
etry. Many results in computational geometry are based on convex objects, such as convex
hull and Voronoi diagrams [8, 11]. Some applications in computer-aided design (CAD) are
also related to convex representation, for instance, the drawing of a given graph in such a
way that all faces are convex [9, 2], and the drawing of a graph in convex position [6].

Suppose that a set of points P = {A1, ..., An} is given. One typically wants to find the
convex hull, or the smallest convex set containing all points in P , which can be uniquely
determined. However, some points may lie on the interior of the convex hull. Another
common problem setup is whether one can place n points on a plane to satisfy certain
constraints while keeping such placement convex. In other words, the question is whether
a convex configuration exists for a given set of constraints.

Many previous studies focused on the construction of convex polygon whose side
lengths, also called linkages, are specified. The polygon reconfiguration problem asks whether
a polygon can be reconfigured into another polygon [7]. The polygon convexification prob-
lem asks how a non-convex polygon, such as a star-shaped figure [5], can be transformed
into a convex polygon. The carpenter’s rule problem asks whether a polygon can be moved
continuously in such a way that its vertices are in the convex position. These problems
were solved by Aichholzer et al. [1], Connelly et al. [4], as compiled in [10].

Different from previous works, Chaidee and Sugihara [3] studied the existence of a
convex polygon (in the case of two-dimensional space) or a convex polytope (in the case
of three-dimensional space) whose vertices are at specified distances, also called vertex-
norms, from the origin. An illustration of the problem is shown in figure 1. The problem
can be defined as follow [3].

Given a set of scalars R = {r1, ..., rn} and the origin O, find a configuration of n points
V = {v1, ..., vn} under the vertex-norm constraints ri := |vi| such that none of the points lies
strictly inside their convex hull.
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FIGURE 1. (Left) A placement of points on the plane satisfying a given
vertex-norm ; (right) a convex configuration of those points

Chaidee and Sugihara [3] proved that the answer is positive for the case of three-
dimensional space (i.e., there always exists a convex polytope satisfying a given vertex-
norm). For the case of two-dimensional space, the problem seems to be trivial when
the number of points is small and the desired convex configuration always exists. How-
ever, the result was inconclusive when the number of points is larger. Chaidee and Sugi-
hara conjectured that the convex configuration does not always exist for the case of two-
dimensional space.

In this study, we proved the conjecture that the convex polygon satisfying a given
vertex-norm does not always exist for the case of two-dimensional space. Some neces-
sary and sufficient conditions on the vertex-norm, R, for such a convex configuration to
exist were provided. Based on these conditions, general strategies for constructing a con-
vex configuration satisfying a given vertex-norm set as well as examples of vertex-norm
sets for which no such convex configuration exists can be completely illustrated.

This paper is organized as follows. Section 2 provides the basic definitions and lem-
mas. Section 3 contains preliminary results for proving the main theorems. Important
terminology, including initial sequences and core indexes, together with the conditions on
the angle spanned by the vertices of the configuration around the origin, which are key
ideas behind our proofs, are also described. Section 4 then shows the necessary and suf-
ficient conditions on the vertex-norm set for which a convex configuration exists. Finally,
Section 5 shows examples of vertex-norm sets that do not have a convex configuration
with proofs. The summary of this study and possible future directions are provided.

2. PRELIMINARIES

Throughout this paper, we assume that all points lie on the same plane Π and let O be
the origin of the plane Π. Denote by L⊥ the line perpendicular to a line L and passing
through O. Denote by ∡ABC the radian measure of rotation of the ray BA to the ray
BC in the counterclockwise direction. Denote by Int(S) the interior of a set S. Let R be
a finite multiset of positive real numbers. Without loss of generality, we assume that R
contains at least two distinct elements and has at least three elements.

For convenience, when we mention the convex polygon P = A1A2 · · ·An, we always
assume that Int(P) ̸= ∅ and its vertices A1, A2, . . . , An are arranged in counterclockwise
order with respect to its interior point. Furthermore, we define An+i=Ai for all integer i.

Definition 2.1. Let n be the number of elements in the multiset R. If there exists a (strictly)
convex n-gon P = A1A2 · · ·An such that {|OAi| : i = 1, . . . , n} = R, then we say R has
a (strictly) convex configuration P . We call R the vertex-norm set of P with the origin O
and call r ∈ R a vertex-norm.
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Throughout this paper, we mainly focus on the Euclidean norm in two-dimensional
space. For some families of given vertex-norm set R, there are simple strategies to con-
struct the convex configurations. Chaidee and Sugihara [3] have illustrated strategies
when all of the vertex-norm are distinct (Figure 2a) and when none of the values of vertex-
norm is repeated more than four times (Figure 2b).

Here, we additionally observe that when there are no more than four distinct values of
vertex-norm, i.e., R = {r1, ..., r1, r2, ..., r2, ..., rk, ..., rk} for k ≤ 4 and r1 > r2 > ... > rk,
one can place points along the arc of circle with radius ri followed by drawing a tangent
line to the circle with radius ri+1 < ri, as shown in Figure 2c, to obtain a convex configu-
ration. This is always possible because the total angle around the origin covered by k ≤ 4

tangent lines is less than kπ
2 ≤ 2π and the angle covered by each arc can be arbitrarily

small.

a b c

θ

FIGURE 2. Strategies for constructing convex configurations for some R

The following lemma is basic fact in geometry.

Lemma 2.1. Let L be a line on the plane Π. Let O′ be the projection of O onto L. Let A and B
be two distinct points on L. Suppose that |OA| = |OB|. We have that the point O′ is the middle
point of A and B, and for any point C that lies on the line L, if |OC| ≤ |OA|, then C lies on the
line segment AB. Furthermore, we have that |OC| = |OA| if and only if C = A or C = B.

Similar to the hyperplane separation theorem, one can prove the following lemma.

Lemma 2.2. Let P = A1A2 · · ·An be a convex polygon with O ̸= Ai (i = 1, 2, . . . , n). If O ̸∈
Int(P), then there is a line L passing through O such that L∩Int(P) ̸= ∅ and L⊥∩Int(P) = ∅.

3. SOME RESULTS FOR PROVING THE MAIN RESULTS

In this section, we compile the basic results which relate to the proof of the main theo-
rem.

3.1. The existence of convex configuration including the origin as an interior point.
When we consider a convex configuration of a multiset R as mentioned in Definition 2.1,
it may not include the origin O as shown in Figure 3. We will show that we can always
find an alternative convex configuration that contains the point O as an interior point. To
prove this, we need the following lemma, which considers the number of points that led
to the rearrangement of the convex polygon.

Lemma 3.3. Let L be a line passing through O. Given two points A,B ̸∈ L ∪ L⊥. Suppose that
A and B lie on the same side of L⊥, but on the opposite sides of L. Let LA and LB be the lines
parallel to L and passing through A and B, respectively. Let LA and LB intersect L⊥ at A′ and
B′, respectively. Let P1, P2, . . . , Pm be any pairwise distinct points in the trapezoid AA′B′B such



494 Kirati Sriamorn, Sira Sriswasdi and Supanut Chaidee

FIGURE 3. (Left) a (strictly) convex configuration which does not contain
O ; (right) a (strictly) convex configuration of the same set of points in-
cluding the origin O

that the polygon P = AP1 · · ·PmB forms a convex polygon. Let rA = |OA| and rB = |OB|.
Suppose that rA ≥ rB . Then we have that |OPi| < rA for all i = 1, 2, . . . ,m and

(1) for any positive real number r ≤ rB , there are at most two vertices Q of the polygon P
such that |OQ| = r ;

(2) for any positive real number rB < r ≤ rA, there is at most one vertex Q of the polygon P
such that |OQ| = r.

Proof. If there is a point Pi ∈ {P1, P2, . . . , Pn} such that Pi lies on the line AB, then by the
convexity of P , we have that P1, P2, . . . , Pn all lie on the line AB. Using Lemma 2.1, one
can obtain the desired results. Now we assume that P1, P2, . . . , Pn do not lie on the line
AB.

Denote by E the intersection of the line L and the line segment AB. For any point P
in the trapezoid AA′B′B with P ̸∈ AB. If P lies in the trapezoid AA′OE, then |OP | <
|OA| = rA. If P lies in the trapezoid EOB′B, then |OP | < max{|OE|, |OB|} ≤ rA.
Therefore, |OPi| < rA for all i = 1, 2, . . . ,m.

For any positive real number r ≤ rA. Suppose that there exist three pairwise distinct
vertices Q1, Q2, Q3 of P such that |OQ1| = |OQ2| = |OQ3| = r. For i = 1, 2, 3, let Li be
the line parallel to L and passing through Qi, and let Q′

i be the intersection of the line
Li and the line segment AB (see Figure 4). Since L1, L2, L3 are perpendicular to L⊥ and
Q1, Q2, Q3 all lie on the same semicircle C with diameter parallel to L⊥, we have that
Q′

1, Q
′
2, Q

′
3 are pairwise distinct. Without loss of generality, we may assume that Q′

2 lies
between Q′

1 and Q′
3. By the convexity of the polygon P , we know that Q′

1 and Q′
3 lie in

the polygon P , and hence the trapezoid Q1Q
′
1Q

′
3Q3 is contained in P . Observe that Q2

lies on the arc Q1Q3 of the semicircle C. It can be deduced that Q2 is an interior point of
the trapezoid Q1Q

′
1Q

′
3Q3 which is contained in P . This is impossible since Q2 is a vertex

of P . Therefore, we have that for any positive real number r ≤ rA; there are at most two
vertices Q of the polygon P such that |OQ| = r

Now consider the case rB < r ≤ rA. Suppose that there are two distinct vertices
Q1, Q2 of P such that |OQ1| = |OQ2| = r. We have already proved that |OPi| < rA for
all i = 1, 2, . . . ,m. Hence we may assume that r ̸= rA. For i = 1, 2, let Li be the line
parallel to L and passing through Qi, and let Q′

i be the intersection of the line Li and the
line segment AB. Since rB < r < rA, there must be a point Q′

3 on the line segment AB
such that |OQ′

3| = r. One can see that Q′
1, Q

′
2 and Q′

3 are pairwise distinct, and the points
Q′

1 and Q′
2 must lie between A and Q′

3. We may assume that Q′
2 lie between Q′

1 and Q′
3.

Then Q2 lie inside the triangle Q1Q
′
1Q

′
3 which is contained in P . This is a contradiction,

since Q2 is a vertex of P . Therefore, for rB < r ≤ rA, there is at most one vertex Q of the
polygon P such that |OQ| = r.

□
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FIGURE 4. Q2 lies inside the trapezoid Q1Q
′
1Q

′
3Q3

This lemma shows the existence of an alternative convex configuration containing O as
an interior point.

Lemma 3.4. If R has a (strictly) convex configuration, then R has a (strictly) convex configura-
tion that contains O as an interior point.

Proof. First, we will prove the result for the non-strictly case. For a positive real number
r, we denote by C(r) the circle with center O and radius r.

Suppose that R has a convex configuration P = A1A2 · · ·An, where A1, A2, . . . , An

are arranged in counterclockwise order with respect to an interior point of P . For i =
1, 2, . . . , n, we let ri = |OAi|.

If A1A2 · · ·An does not contain O as an interior point, then it follows from Lemma 2.2
that there is a line L passing through O such that L ∩ Int(P) ̸= ∅ and L⊥ ∩ Int(P) = ∅.

FIGURE 5. the points A1, A2, . . . , Ak lie in the trapezoid A1A
′
1A

′
kAk

For i = 1, 2, . . . , n, let Li be the line parallel to L and passing through Ai, and let A′
i be

the projection of Ai onto L⊥. Without loss of generality, we may assume that L1 and Lk

are two distinct supporting lines of the convex polygon P , and the points A1, A2, . . . , Ak

all lie in the trapezoid A1A
′
1A

′
kAk (see Figure 5). Furthermore, we also assume that for

i = 2, . . . , k − 1, the line Li is not a supporting line of P , and assume that rk ≤ r1. We
consider the following two cases:



496 Kirati Sriamorn, Sira Sriswasdi and Supanut Chaidee

FIGURE 6. the points A1, A2, . . . , Ak lie in the trapezoid A1A
′
1A

′
kAk

Case 1: k = 2. If n = 3, then let B∗ be the intersection of the line OA3 and the circle
C(r3), where B∗ is different than A3. Then one can see that A1A2B

∗ is a convex configu-
ration of R, and A1A2B

∗ contains O as an interior point (see Figure 6). If n ≥ 4, then we
can divide into two cases:

FIGURE 7. the case: A1An and A2A3 are not parallel

Case 1.1: the lines A1An and A2A3 are not parallel (see Figure 7). Let B be the
intersection of the line A1An and the line A2A3. If B ̸= An, then let B∗ be the
intersection of the line OB and the circle C(r1), where O lies between B∗ and
B. One can see that B∗A2 . . . An is a convex configuration of R and contains
O as an interior point. If B = An, then B ̸= A3. Let B∗ be the intersection
of the line OB and the circle C(r2). We have that A1B

∗A3 . . . An is a convex
configuration of R and contains O as an interior point.

Case 1.2: the lines A1An and A2A3 are parallel to L (see Figure 8). Then Let B∗ be
the intersection of the line L and the circle C(r1), where B∗ and A1 lie on the
opposite sides of L⊥. Then B∗A2 . . . An is a convex configuration of R and
contains O as an interior point.

Case 2: k ≥ 3. We convert the multiset {r2, r3, . . . , rk−1} to the set (not multiset) R′, i.e.,
R′ and {r2, r3, . . . , rk−1} have the same elements, but each element in R′ has multiplicity
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FIGURE 8. the case: A1An and A2A3 are parallel to L

FIGURE 9. B′
p

FIGURE 10. A1B
′
1 · · ·B′

pB
′′
q · · ·B′′

1AkAk+1 · · ·An is a convex configura-
tion of R, and contains O as an interior point

1. We define the set

R′′ = {r ∈ R′ | there are i, j ∈ {2, . . . , k − 1} such that i ̸= j and ri = rj = r}.
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It is clear that R′ ̸= ∅. Noting that A2, . . . , Ak−1 lie in the trapezoid A1A
′
1A

′
kAk. By Lemma

3.3, we have that the multiset {r2, . . . , rk−1} is the sum of sets R′ and R′′. Assume that

R′ = {r′1, . . . , r′p} and R′′ = {r′′1 , . . . , r′′q }

where p + q = k − 2, r′1 > · · · > r′p and r′′1 > · · · > r′′q . From Lemma 3.3, we know that
r′1 < r1. Furthermore, if R′′ ̸= ∅, then we have that r′p ≤ r′′q < · · · < r′′1 < rk. Let B′

p

be the intersection of the line L and the circle C(r′p) (see Figure 9). One can see that the
open line segment A1B′

p intersects the circle C(r) for all r′p ≤ r ≤ r′1, and the open line
segment B′

pAk intersects the circle C(r) for all r′′q ≤ r ≤ r′′1 . For i = 1, . . . , p − 1, let B′
i be

the intersection of the open line segment A1B′
p and the circle C(r′i). For i = 1, . . . , q, let B′′

i

be the intersection of the open line segment B′
pAk and the circle C(r′′i ). It is not hard to see

that the polygon A1B
′
1 · · ·B′

pB
′′
q · · ·B′′

1AkAk+1 · · ·An is a convex configuration of R, and
contains O as an interior point (see Figure 10).

FIGURE 11. replacing A1B′
p and B′

pAk with strictly convex curves

FIGURE 12. A1B
′
1 · · ·B′

pB
′′
q · · ·B′′

1AkAk+1 · · ·An is a strictly convex con-
figuration of R, and contains O as an interior point

For the strictly convex case, if k = 2, then we can use the same argument to obtain
a strictly convex configuration of R that contains O as an interior point. If k ≥ 3, then
we let L∗ be the line perpendicular to L and passing through B′

p. We replace the line
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segment A1B′
p in the above argument with a strictly convex curve with endpoints A1 and

B′
p, where the curve (exclude both endpoints) intersects the circle C(r) for all r′p ≤ r ≤ r′1,

and lies inside the triangle formed by the lines A1B
′
p, L1 and L∗; and replace the line

segment B′
pAk with a strictly convex curve with endpoints B′

p and Ak, where the curve
(exclude both endpoints) intersects the circle C(r) for all r′′q ≤ r ≤ r′′1 , and lies inside the
triangle formed by the lines B′

pAk, Lk and L∗ (see Figure 11). One can define the points
B′

i and B′′
i as above, and obtain that the polygon A1B

′
1 · · ·B′

pB
′′
q · · ·B′′

1AkAk+1 · · ·An is a
strictly convex configuration of R, and contains O as an interior point (see Figure 12). □

3.2. Initial Sequences and Core Indexes. It follows from Lemma 3.4 that, when we dis-
cuss the existence of convex configurations of a given multiset R, one may consider only
those convex configurations which contain O as an interior point. Let A1A2 · · ·An be a
convex configuration of R that contains O as an interior point. We may assume, without
loss of generality, that |OA1| = maxR, |OAn| ≠ maxR and A1, A2, ..., An are arranged in
counterclockwise order with respect to O. Let ri = |OAi| where i = 1, 2, . . . , n. It is clear
that (r1, r2, ..., rn) is a permutation of R where r1 = maxR and rn ̸= maxR.

Definition 3.2. A permutation (ri)
n
i=1 of R is called an initial sequence of R, if r1 = maxR

and rn ̸= maxR.

To show that a given multiset R cannot have a convex configuration, we only need to
prove that the convex polygon containing O cannot be constructed for any initial sequence
(ri)

n
i=1 of R. For convenience, we define rn+i = ri for all integer i.

Definition 3.3. Let S = (ri)
n
i=1 be an initial sequence of R. For i = 1, 2, . . . , n,

(1) if ri−1 ≤ ri and ri > ri+1, or ri−1 < ri and ri ≥ ri+1, then we call ri a peak of S;
(2) if ri−1 ≥ ri and ri < ri+1, or ri−1 > ri and ri ≤ ri+1 then we call ri a bottom of S.

We call i a peak index if ri is a peak of S; and call i a bottom index, if ri is a bottom.

Note that r1 is always a peak of any initial sequence S. Furthermore, one can prove
that if there are two peaks ri and rj with i < j such that there is no any bottom between
them, then ri = ri+1 = · · · rj . Similarly, if there are two bottoms ri and rj with i < j such
that there is no any peak between them, then ri = ri+1 = · · · rj .

Definition 3.4. Let S = (ri)
n
i=1 be an initial sequence of R. For i = 1, 2, . . . , n. We call i a

main peak index of S, if for any peak index j with 1 ≤ j < i, there is a bottom index k such
that j < k < i. We call i a main bottom index of S, if for any bottom index j with 1 ≤ j < i,
there is a peak index k such that j < k < i. We denote the core index set of S by C(S) the
set of all main peak indexes and all main bottom indexes.

To illustrate the terms related to peak and bottom, let us consider the following example
which shows the intuition of Definition 3.3 and 3.4.

For the initial sequence S1 = (r1, r2, . . . , r11), where
i 1 2 3 4 5 6 7 8 9 10 11
ri 5 5 5 4 2 1 2 3 2 3 4

All peak indexes of S are 1, 3, 8, and all bottom indexes of S are 6, 9. All main peak
indexes of S are 1, 8, and all main bottom indexes of S are 6, 9. Hence, the core index
set C(S) = {1, 6, 8, 9}. The initial sequence in this example has a convex configuration as
shown in Figure 13. From the figure, it is roughly to say that when i increases, the peak
index is considered as the largest value of ri before ri decreases. Similarly, the bottom
index can be seen as the smallest value of ri before ri increases when i increases. The
main peak and main bottom are defined to be aware of the repeated values.
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FIGURE 13. A convex configuration of the initial sequence S1 defined above

Similar to the example of S1with a longer initial sequence,let consider S2=(r1, r2,. . . ,r15),
where

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ri 5 5 3 3 3 2 2 3 4 2 1 2 2 3 3

All peak indexes of S are 1, 2, 5, 9, 12, 14, and all bottom indexes of S are 3, 6, 7, 11, 13, 15.
All main peak indexes of S are 1, 5, 9, 12, 14, and all main bottom indexes of S are 3, 6, 11,
13, 15. Hence, the core index set C(S) = {1, 3, 5, 6, 9, 11, 12, 13, 14, 15}.

From the definition of initial sequences S of R, one can see that the index i = 1 is always
a main peak index of S, and the largest index in C(S) must be a main bottom index.
Furthermore, we have that main peak indexes and main bottom indexes are arranged
alternately. Therefore, if we let C(S) = {i1, i2, . . . , im} where i1 < i2 < · · · < im, then m
must be even, and for k = 1, 2, . . . ,m, the index ik is a main peak index if and only if k is
an odd number.

For convenience, when S = (ri)
n
i=1 and C(S) = {i1, i2, . . . , im}, we always assume that

1 = i1 < i2 < · · · < im, and define iqm+k = qn+ ik where q and k are integers.

Lemma 3.5. Let S = (ri)
n
i=1 be an initial sequence of R. Let C(S) = {i1, i2, . . . , i2l} be the core

index set of S. Given k ∈ {1, 2, . . . , l},
(1) for i2k−1 ≤ i < j ≤ i2k, if ri ̸= rj , then ri > rj ; if ri = rj , then ri2k−1

= ri2k−1+1 =
· · · = ri = ri+1 = · · · = rj ;

(2) for i2k ≤ i < j ≤ i2k+1, if ri ̸= rj , then ri < rj ; if ri = rj , then ri2k = ri2k+1 = · · · =
ri = ri+1 = · · · = rj .

Proof. Let k ∈ {1, 2, . . . , l}. We will prove the first part by using an induction on j.
For j = i2k−1 + 1. Because i2k−1 is a peak index, so ri2k−1

≥ rj . Hence it is clear that
the statement is true for j = i2k−1 + 1.

For any positive integer t with i2k−1 < t < i2k, we suppose that the statement is true
for all j with i2k−1 < j ≤ t. We will show that the statement is also true for j = t+ 1.

For any positive integer i with i2k−1 ≤ i < t+ 1. Suppose that ri < rt+1. Then there is
a positive integer p with i ≤ p ≤ t such that rp < rp+1. By the induction hypothesis, we
have that rj ≥ rj+1 for all j = i2k−1, . . . , t− 1. Hence p = t, i.e., rt < rt+1. Since rt−1 ≥ rt
we know that t is a bottom index of S. On the other hand, from the induction hypothesis,
one can deduce that there is no any bottom index between i2k−1 and t. This implies that
t must be a main bottom index which is impossible, since i2k−1 < t < i2k. Therefore, we
have ri ≥ · · · ≥ rt ≥ rt+1. If rt > rt+1, then the statement is true for j = t+ 1. If rt = rt+1,
then we consider the following two cases:

Case 1: rt−1 = rt. By the induction hypothesis, we have that ri2k−1
= · · · = rt = rt+1,

and hence the statement is true for j = t+ 1.
Case 2: rt−1 > rt. Then t is a bottom index. But we have already shown that t cannot

be a bottom index.
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Since the concepts of peaks and bottoms are dual, we can use an analogous argument
to prove the second part of the lemma. □

From Lemma 3.5, we know that for any k ∈ {1, 2, . . . , l},

max

{
ri2k
ri2k−1

,
ri2k
ri2k+1

}
≤ 1

and

min

{
ri2k
ri2k−1

,
ri2k
ri2k+1

}
< 1.

To consider whether the given initial sequence can generate a convex configuration,
the sum of circular angles between points of two adjacent peaks should not exceed 2π.
We remark that the orientation of the bottom affects those circular angles. To clarify it
rigorously, we define the angle and the conditions for S to be convex as follows.

Definition 3.5. Let S = (ri)
n
i=1 be an initial sequence of R. Let C(S) = {i1, i2, . . . , i2l} be

the core index of S. We define

Angle(S) =

l∑
k=1

(
arccos

ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

)
.

FIGURE 14. the geometric meaning of Angle(S)

Noting an alternative definition that

Angle(S) =

2l∑
m=1

arccos

(
min

{
rim
rim+1

,
rim+1

rim

})
.

Definition 3.6. Let S = (ri)
n
i=1 be an initial sequence of R. We call S a convex sequence of

R, if S satisfies one of the following conditions:
(1) Angle(S) < 2π;
(2) Angle(S) = 2π and ri ̸= ri+1 for all i ≥ 1.

We call S a strictly convex sequence of R, if Angle(S) < 2π.

3.3. Lemmas about the angle of an initial sequence. In this part, we provide the prop-
erties of the angle computed from an initial sequence S, Angle(S). These properties will
be applied in the main theorems of the next section.

Lemma 3.6. Let A1A2 · · ·An be a convex configuration of R that contains O as an interior point.
For any integers i, j where 1 ≤ i < j ≤ n, if ∡AiOAj ≤ π, then AiAkAjO is convex, for all
i < k < j.
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Proof. Since the polygon A1A2 . . . An is convex and Ai, Ak, Aj are the vertices of A1A2 . . . An,
we have that

∡AkAiO ≤ π, ∡AjAkAi ≤ π, ∡OAjAk ≤ π.

Therefore, AiAkAjO is convex. □

Lemma 3.7. Let r1, r2, r3 be positive real numbers where r1 ≥ r2 and r2 ≤ r3. If the quadrilateral
A1A2A3O is convex and |OAi| = ri (i = 1, 2, 3), then

∡A1OA3 ≥ arccos
r2
r1

+ arccos
r2
r3

,

where the equality holds if and only if A1, A2, A3 are collinear and the line OA2 is perpendicular
to the line A1A3.

Proof. Since A1A2A3O is convex, A3 and O must lie on the same side of the line A1A2 (the
point A3 could lie on the line A1A2). Note that r2 ≤ r3, hence when the positions of A1

and A2 are fixed, the measure of ∡A1OA3 reaches its minimum when and only when A3

lies on the line A1A2.
Now we assume that A1, A2, A3 are collinear. Let θ be the radian measure of the angle

between the vectors
−−→
OA2 and

−−−→
A1A3. Then θ ∈ [0, π] and

∡A1OA3 = arccos

(
r2
r1

sin θ

)
+ arccos

(
r2
r3

sin θ

)
.

Hence,
∡A1OA3 ≥ arccos

r2
r1

+ arccos
r2
r3

,

where the equality holds if and only if θ = π
2 .

□

Lemma 3.8. Let S = (ri)
n
i=1 be an initial sequence of R. Let C(S) = {i1, i2, . . . , i2l} be the core

index set of S. For any given positive integer k ∈ {1, 2, . . . , l}, if ri ̸= ri+1 for all i2k−1 ≤ i <
i2k+1, then there exist i2k+1 − i2k−1 + 1 points Ai2k−1

, Ai2k−1+1, . . . , Ai2k+1
which are arranged

in counterclockwise order with respect to O, and satisfy
(1) |OAi| = ri, for i = i2k−1, i2k−1 + 1, . . . , i2k+1;
(2) Ai2k−1

, Ai2k−1+1, . . . , Ai2k+1
are collinear;

(3) the line OAi2k is perpendicular to the line Ai2k−1
Ai2k+1

, and hence

∡Ai2k−1
OAi2k+1

= arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

.

Proof. Since ri ̸= ri+1 for all i2k−1 ≤ i < i2k+1, by Lemma 3.5, we have that

ri2k−1
> ri2k−1+1 > · · · > ri2k and ri2k < · · · < ri2k+1−1 < ri2k+1

.

Choose three points Ai2k−1
, Ai2k , Ai2k+1

in counterclockwise order with respect to O, such
that

(1) |OAi| = ri for i = i2k−1, i2k, i2k+1,
(2) Ai2k−1

, Ai2k , Ai2k+1
are collinear,

(3) the line OAi2k is perpendicular to Ai2k−1
Ai2k+1

.

It follows that ∡Ai2k−1
OAi2k+1

= arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

. Furthermore, there must

be i2k − i2k−1 − 1 points Ai2k−1+1, . . . , Ai2k−1 (arranged in order) on the line segment
Ai2k−1

Ai2k and i2k+1 − i2k − 1 points Ai2k+1, . . . , Ai2k+1−1 (arranged in order) on the line
segment Ai2kAi2k+1

such that |OAi| = ri where i = i2k−1+1, . . . , i2k−1, i2k+1, . . . , i2k+1−
1.
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FIGURE 15. Ai2k−1
, Ai2k−1+1, . . . , Ai2k+1

that satisfy the conditions in
Lemma 3.8

□

Lemma 3.9. Let A1A2...An be a convex configuration of R that contains O as an interior point,
and suppose that |OA1| = maxR, |OAn| ≠ maxR. Let S = (ri)

n
i=1 = (|OAi|)ni=1. Let

C(S) = {i1, i2, . . . , i2l} be the core index set of S. Then for a given k ∈ {1, 2, . . . , l}, we have

∡Ai2k−1
OAi2k+1

≥ arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

,

where the equality holds if and only if Ai2k−1
, . . . , Ai2k , . . . , Ai2k+1

are collinear and the line
OAi2k is perpendicular to the line Ai2k−1

Ai2k+1
. In particular, if there is a positive integer i

such that i2k−1 ≤ i < i2k+1 and ri = ri+1, then

∡Ai2k−1
OAi2k+1

> arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

.

Proof. Since arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

< π, if ∡Ai2k−1
OAi2k+1

≥ π, then

∡Ai2k−1
OAi2k+1

> arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

.

Now we assume that ∡Ai2k−1
OAi2k+1

< π. By Lemma 3.6, we know that Ai2k−1
Ai2kAi2k+1

O
is convex. Note that ri2k ≤ ri2k−1

and ri2k ≤ ri2k+1
. By Lemma 3.7, one obtains

∡Ai2k−1
OAi2k+1

≥ arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

,

where the equality holds if and only if Ai2k−1
, Ai2k , Ai2k+1

are collinear and the line OAi2k

is perpendicular to the line Ai2k−1
Ai2k+1

. Since A1A2 . . . An is convex and the vertices are
arranged in order, we have that Ai2k−1

, Ai2k , Ai2k+1
are collinear if and only if Ai2k−1

, Ai2k−1+1,
. . . , Ai2k+1

are collinear.
Furthermore, if Ai2k−1

, . . . , Ai2k , . . . , Ai2k+1
are collinear and the line OAi2k is perpen-

dicular to the line Ai2k−1
Ai2k+1

, then it is clear that ri ̸= ri+1 for all i2k−1 ≤ i < i2k+1. □

Lemma 3.10. Let r1, r2 be positive real numbers where r2 ≤ r1. Let A1 and A2 be two points.
For any positive real number ε < π − arccos

r2
r1

, if |OA1| = r1, |OA2| = r2 and ∡A1OA2 =
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arccos
r2
r1

+ ε, then

∡A2A1O <
π

2
, ∡OA2A1 <

π

2

Proof. If arccos
r2
r1

+ε ≥ π

2
then the result is obvious. Now we suppose that arccos

r2
r1

+ε <

π

2
Let ∡A2A1O = θ1 and ∡OA2A1 = θ2, and let |A1A2| = r. It suffices to show that

cos θ1 > 0 and cos θ2 > 0. By the law of cosines, we have

r2 = r21 + r22 − 2r1r2 cos

(
arccos

r2
r1

+ ε

)
> r21 + r22 − 2r1r2 cos

(
arccos

r2
r1

)
= r21 − r22.

Therefore,

cos θ1 =
r2 + r21 − r22

2rr1
>

r21 − r22
rr1

≥ 0

and

cos θ2 =
r2 + r22 − r21

2rr2
> 0.

□

Lemma 3.11. Let S = (ri)
n
i=1 be an initial sequence of R. Let C(S) = {i1, i2, . . . , i2l} be the

core index set of S. For any given k ∈ {1, 2, . . . , l} and any arbitrary positive real number ε <

π−arccos
ri2k
ri2k−1

−arccos
ri2k
ri2k+1

, there are i2k+1−i2k−1+1 points Ai2k−1
, Ai2k−1+1, . . . , Ai2k+1

arranged in counterclockwise order such that the polygon Ai2k−1
Ai2k−1+1 · · ·Ai2k+1

O is a strictly
convex and satisfy the following conditions:

(1) |OAi| = ri for i = i2k−1, i2k−1 + 1, . . . , i2k+1;
(2) ∡Ai2k−1+1Ai2k−1

O <
π

2
and ∡OAi2k+1

Ai2k+1−1 <
π

2
;

(3) ∡Ai2k−1
OAi2k+1

= arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

+ ε.

Proof. From Lemma 3.5, we know that there are indexes pk and qk with i2k−1 ≤ pk ≤ i2k
and i2k ≤ qk ≤ i2k+1, such that

ri2k−1
= · · · = rpk

> · · · > ri2k

and
ri2k = · · · = rqk < · · · < ri2k+1

.

Let ε′1 = ε
2(i2k−i2k−1)

and ε1 = (i2k − pk)ε
′
1.

FIGURE 16. the curve C1
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FIGURE 17. the points Ai2k−1
, . . . , Apk−1

We firstly choose the points Apk
, Apk+1, . . . , Ai2k . If pk = i2k, then one can pick a point

Apk
such that |OApk

| = rpk
. If pk ̸= i2k, then one can choose two points Apk

and Ai2k

such that ∡Apk
OAi2k = arccos

ri2k
ri2k−1

+ ε1, and |OApk
| = rpk

, |OAi2k | = ri2k . Noting that

arccos
ri2k
ri2k−1

+ ε1 < π. By Lemma 3.10, we have that

∡Ai2kApk
O <

π

2
, ∡OAi2kApk

<
π

2
.

Denote by Lpk
the line perpendicular to the line OApk

and passing through Apk
. Denote

by Li2k the line perpendicular to the line OAi2k and passing through Ai2k . Let B1 be
the intersection of the lines Lpk

and Li2k . There must be a strictly convex curve C1 with
endpoints Apk

and Ai2k such that the curve (exclude two endpoints) lies inside the triangle
Apk

B1Ai2k (see Figure 16). Since rpk
> rpk+1 > · · · > ri2k , by the continuity of the

curve C1, there exist points Apk+1, . . . , Ai2k−1 (arranged in order) on the curve C1 such
that |OAi| = ri for all i = pk + 1, . . . , i2k − 1. Since the curve C1 is strictly convex and
lies inside the triangle Apk

B1Ai2k , we have that the polygon Apk
Apk+1 · · ·Ai2kO is strictly

convex and
∡Apk+1Apk

O <
π

2
, ∡OAi2kAi2k−1 <

π

2
.

After choosing the points Apk
, Apk+1, . . . , Ai2k , then one can choose pk− i2k−1 points

Ai2k−1
, . . . , Apk−1 such that |OAi|= ri = ri2k−1

and ∡AiOAi+1 = ε′1 for all i= i2k−1, . . . , pk−
1. It is clear that for all i = i2k−1, . . . , pk − 1, the triangle AiOAi+1 is isosceles trian-
gle, and their two base angles are less than π

2 . Therefore, we obtain that the polygon
Ai2k−1

Ai2k−1+1 · · ·Ai2kO is a strictly convex polygon with ∡Ai2k−1
OAi2k = ∡Ai2k−1

OApk
+

∡Apk
OAi2k = (pk − i2k−1)ε

′
1 + arccos

ri2k
ri2k−1

+ ε1 = arccos
ri2k
ri2k−1

+ ε
2 and

∡Ai2k−1+1Ai2k−1
O <

π

2
, ∡OAi2kAi2k−1 <

π

2
.

By symmetry, one can use an analogous argument to choose i2k+1−i2k points Ai2k+1, . . . ,
Ai2k+1

such that the polygon Ai2kAi2k+1 · · ·Ai2k+1
O is a strictly convex polygon with

∡Ai2kOAi2k+1
= arccos

ri2k
ri2k+1

+ ε
2 and

∡Ai2k+1Ai2kO <
π

2
, ∡OAi2k+1

Ai2k+1−1 <
π

2
.

Therefore, we obtain the strictly convex polygon Ai2k−1
Ai2k−1+1 · · ·Ai2k+1

O that satisfies
the desired conditions. □
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4. NECESSARY AND SUFFICIENT CONDITIONS OF R WHICH HAS A CONVEX
CONFIGURATION

Now, we are ready to prove the necessary and sufficient conditions of R which has
a convex configuration. We mainly use the angle properties mentioned in Section 3.2 to
verify the following statements.

Theorem 4.1. R has a strictly convex configuration if and only if there is a strictly convex se-
quence (ri)ni=1 of R.

Proof. Assume that R has a strictly convex configuration A1A2 · · ·An, where |OA1| =
maxR and |OAn| ̸= maxR. By Lemma 3.4, we may assume that A1A2 . . . An contains O
as an interior point. Since the polygon A1A2 · · ·An is strictly convex, any three vertices
cannot be collinear. By Lemma 3.9, we have

(4.1) ∡Ai2k−1
OAi2k+1

> arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

,

and hence

2π =

l∑
k=1

∡Ai2k−1
OAi2k+1

>

l∑
k=1

(
arccos

ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

)
= Angle(S).

Therefore, S is a strictly convex sequence of R.
Conversely, assume that S = (ri)

n
i=1 is a strictly convex sequence of R. Let C(S) =

{i1, i2, . . . , i2l} be the core index set of S. One can choose a positive real number ε such
that ε < π − arccos

ri2k
ri2k−1

− arccos
ri2k
ri2k+1

for all k = 1, 2, . . . , l and Angle(S) + lε < 2π. By

Lemma 3.11, there are i3 points A1, A2, . . . , Ai3 such that
(1) |OAi| = ri for i = 1, . . . , i3;
(2) ∡A2A1O <

π

2
and ∡OAi3Ai3−1 <

π

2
;

(3) ∡Ai+1AiAi−1 < π, for i = 2, . . . , i3 − 1;
(4) ∡A1OAi3 = arccos

ri2
ri1

+ arccos
ri2
ri3

+ ε.

Using the same argument, there are i5 − i3 points Ai3+1, . . . , Ai5 such that
(1) |OAi| = ri for i = i3 + 1, . . . , i5;
(2) ∡Ai3+1Ai3O <

π

2
and ∡OAi5Ai5−1 <

π

2
;

(3) ∡Ai+1AiAi−1 < π, for i = i3 + 1, . . . , i5 − 1;
(4) ∡Ai3OAi5 = arccos

ri4
ri3

+ arccos
ri4
ri5

+ ε.

Noting that i2l+1 = n + 1. By repeating this construction, we obtain the points A1, A2,
. . . , An, An+1 such that satisfy the following conditions:

(1) |OAi| = ri for i = 1, . . . , n and |OAn+1| = r1;
(2) ∡A2A1O <

π

2
and ∡OAn+1An <

π

2
;

(3) ∡Ai+1AiAi−1 < π for all i = 2, . . . , n;

(4) ∡A1OAn+1 =

l∑
k=1

(
arccos

ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

+ ε

)
= Angle(S) + lε < 2π.

Since |OA1| = |OAn+1|, we have that the polygon A1A2 · · ·AnAn+1 is a strictly convex
polygon (which may or may not contain O as an interior point), and hence the polygon
A1A2 · · ·An is strictly convex (see Figure 18). It follows that the polygon A1A2 · · ·An is a
strictly convex configuration of R.

□
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FIGURE 18. A1A2 · · ·An is strictly convex

Theorem 4.2. R has a convex configuration if and only if there is a convex sequence (ri)
n
i=1 of

R.

Proof. Assume that R has a convex configuration A1A2 · · ·An, where |OA1| = maxR and
|OAn| ≠ maxR. By Lemma 3.4, we may assume that A1A2 . . . An contains O as an interior
point. Let S = (ri)

n
i=1 = (|OAi|)ni=1. Let C(S) = {i1, i2, . . . , i2l} be the core index set of S.

By Lemma 3.9, we have

(4.2) ∡Ai2k−1
OAi2k+1

≥ arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

,

and hence

2π =

l∑
k=1

∡Ai2k−1
OAi2k+1

≥
l∑

k=1

(
arccos

ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

)
= Angle(S)

If Angle(S) = 2π, then (4.2) holds as an equality, for all k = 1, 2, . . . , l. By Lemma 3.9, we
know that ri ̸= ri+1 for all i ≥ 1. Therefore S is a convex sequence of R.

Conversely, we assume that S = (ri)
n
i=1 is a convex sequence of R. If Angle(S) < 2π,

then by Theorem 4.1, R has a (strictly) convex configuration. Now we consider the case
Angle(S) = 2π and ri ̸= ri+1 for all i ≥ 1. By applying Lemma 3.8, one can choose n + 1
points A1, A2, . . . , An, An+1 which are arranged in counterclockwise order with respect to
O and satisfy the following conditions:

(1) |OAi| = ri where i = 1, 2, . . . , n;
(2) for all k = 1, 2, . . . , l, the line OAi2k is perpendicular to the line Ai2k−1

Ai2k+1
and

∡Ai2k−1
OAi2k+1

= arccos
ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

;

(3) for k = 1, 2, . . . , l and positive integer i, if i2k−1 ≤ i ≤ i2k+1, then Ai lies on the
line segment Ai2k−1

Ai2k+1
.

We have
l∑

k=1

∡Ai2k−1
OAi2k+1

=

l∑
k=1

(
arccos

ri2k
ri2k−1

+ arccos
ri2k
ri2k+1

)
= Angle(S) = 2π.

Therefore, An+1 coincides with A1, and A1A2 . . . An forms a convex polygon (see Figure
19).

□

From Theorem 4.1, one can easily obtain the following results.
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FIGURE 19. the case Angle(S) = 2π

Corollary 4.1. [3] For a given vertex-norm set

R = {r(1,1), ..., r(1,m1), r(2,1), ..., r(2,m2), ..., r(k,1), ..., r(k,mk)}

such that r(i,1) = ... = r(i,mi) and 1 ≤ mi ≤ 4, for each i = 1, ..., k . Then R has a strictly
convex configuration.

Corollary 4.2. If R consists of at most four different vertex-norms such that each vertex-norm
has a finite multiplicity, then R has a strictly convex configuration.

Corollary 4.3. Let R be a multiset of positive real number and r∗ = maxR and r∗ = minR.
Let S be a multiset containing only the elements r∗ or r∗. If R has a strictly convex configuration
and T is the sum of R and S, then T has a strictly convex configuration.

5. EXAMPLE OF R WHICH DOES NOT HAVE A CONVEX CONFIGURATION

Based on the necessary and sufficient conditions presented in Section 4, we can find
the example of R, which does not have a convex configuration. The observation of the
example is derived from the reversed condition mentioned in Section 2 as a simple case.
Remark that if a multiset R does not have a convex configuration, then a multiset R′

containing R does not have a convex configuration, either.

Corollary 5.4. There exist infinitely many multisets R such that R has no convex configuration.

Proof. Let R = {10, 10, 10, 10, 10, 102, 102, 102, 102, 102, . . . , 105, 105, 105, 105, 105}. Then
for any r, r′ ∈ R with r < r′, we have arccos

(
r
r′

)
≥ arccos

(
1
10

)
> 2π

5 .
Let S = (ri)

25
i=1 be an initial sequence of R. We will show that S cannot be a convex

sequence. Let C(S) = {i1, i2, . . . , i2l} be the core index set of S. For k = 1, 2, 3, 4, 5, we
define the subindex sets

Ik = {i ∈ {1, 2, . . . , 25} | ri = 10k} = {i(k,1), i(k,2), i(k,3), i(k,4), i(k,5)}

where i(k,1) < i(k,2) < i(k,3) < i(k,4) < i(k,5). We will consider the following two cases:
Case 1: there is a k ∈ {1, 2, 3, 4, 5} such that Ik does not contain any two consecutive in-

dexes. Noting that ri(k,p)
= ri(k,q)

for all p, q ∈ {1, 2, 3, 4, 5}. If there are p, q ∈ {1, 2, 3, 4, 5}
and m ∈ {1, 2, . . . , 2l} such that p ̸= q and im ≤ i(k,p) < i(k,q) < im+1, then by Lemma
3.5, we know that rim = · · · = ri(k,q)

which is impossible, since Ik does not contain any
two consecutive indexes. Therefore, there are m1,m2,m3,m4,m5 ∈ {1, 2, . . . , 2l} such
that m1 < m2 < m3 < m4 < m5 and imj ≤ i(k,j) < imj+1 for each j ∈ {1, 2, 3, 4, 5}.
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Furthermore, we have that rimj
̸= rimj+1

, for all j = 1, 2, 3, 4, 5. Then we have

Angle(S) ≥
5∑

j=1

arccos

(
min

{
rimj

rimj+1

,
rimj+1

rimj

})
≥

5∑
j=1

arccos

(
1

10

)
> 5 · 2π

5
= 2π,

and hence S is not a convex sequence.
Case 2: the subindex set Ik contains two consecutive indexes, for all k = 1, 2, 3, 4, 5.

For a given k ∈ {1, 2, 3, 4, 5}, assume that j, j + 1 ∈ Ik. Since rj = rj+1, by Lemma
3.5, we know that there is an m ∈ {1, 2, . . . , 2l} such that im ≤ j < j + 1 ≤ im+1 and
rim = · · · = rj = rj+1. By Lemma 3.5, we consider the following two cases:

Case 2.1: there is a j′ such that im+1 ≤ j′ < im+2 and rim+1
= · · · = rj′ = rj′+1. Note

that rim , . . . , rj , rj+1, · · · , rim+1
is monotone. If rj′ = rj , then by Lemma 3.5, we have

rim = · · · = rj+1 = · · · = rim+1 = · · · = rj′+1 which is impossible, since im+1 is a peak or
a bottom index. Now suppose that rj′ ̸= rj . Then rim ̸= rim+1 . Let

mk = m.

We have

arccos

(
min

{
rimk

rimk+1

,
rimk+1

rimk

})
≥ arccos

(
1

10

)
>

2π

5
.

Case 2.2: rim+1
, . . . , rim+2

is strictly monotone. Then rim+1
̸= rim+2

. Let

mk = m+ 1.

We get

arccos

(
min

{
rimk

rimk+1

,
rimk+1

rimk

})
≥ arccos

(
1

10

)
>

2π

5
.

According to the selection of mk, one can verify that m1,m2,m3,m4,m5 are pairwise dis-
tinct. It follows that

Angle(S) ≥
5∑

k=1

arccos

(
min

{
rimk

rimk+1

,
rimk+1

rimk

})
≥

5∑
k=1

arccos

(
1

10

)
> 5 · 2π

5
= 2π.

Therefore, S is not a convex sequence.
By Theorem 4.2, we obtain that R has no any convex configuration.
It is obvious that if R′ is a multiset such that R ⊆ R′, then R′ do not have any convex

configuration. Hence we obtain the desired result. □

6. CONCLUDING REMARKS

The problem of the existence of convex configuration for a given set of vertex-norm was
initially proposed in [3]. The answer in three-dimensional space was positive, while the
answer in two-dimensional space was positive in limited cases and was left as a conjec-
ture. In this study, we proved the conjecture of the non-existence of convex configuration
of a given set of vertex-norm in two-dimensional space by providing the necessary and
sufficient conditions on the vertex-norm set for such convex configuration to exist. The
results in this study cover all cases in two-dimensional space. With these conditions, the
complete examples of vertex-norm sets for which no convex configuration exists can be
illustrated. The approach proposed in this study is different from the directions of previ-
ous studies, e.g. [1, 4, 5, 7, 10], in the sense that we focus on the sum of angles around the
fixed point, while the previous literature concentrated on the fixed lengths of linkages,
together with angles between adjacent linkages.
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Although the conditions we provided can be used to verify the existence of a convex
configuration, they are not yet practical. Therefore, it would be beneficial to derive ex-
plicit conditions that can be programmed for used on computer. Since the conditions are
based on the initial sequence, a procedure for enumeration the combinatorial patterns of
the vertex-norm set is worth studying to simplify the process. In addition, substituting
the Euclidean norm with other norms may lead to new applications and mathematical
insights.

Acknowledgements. This research was done during the geometry research boot camp
2019 organized at Chiang Mai University, Thailand on June 17-21, 2019. We would like to
thank Wacharin Wichiramala and Chatchawan Panraksa for the discussions. We greatly
appreciate the financial support from Chiang Mai University, Thailand, and the Thailand
Research Fund (TRF), Grant No. MRG6280164.

REFERENCES

[1] Aichholzer, O.; Demaine, E. D.; Erickson, J.; Hurtado, F.; Overmars, M.; Soss, M.; Toussaint, G. T. Reconfig-
uring convex polygons. Comput. Geom. 20 (2001), no. (1-2), 85–95.

[2] Bonichon, N.; Felsner, S.; Mosbah, M. Convex drawings of 3-connected plane graphs. Algorithmica 47 (2007),
no. 4, 399–420.

[3] Chaidee, S.; Sugihara, K. The Existence of a Convex Polyhedron with Respect to the Constrained Vertex
Norms. Mathematics. 8 (2020), no. 4, 645.

[4] Connelly, R.; Demaine, E. D.; Rote, G. Blowing up polygonal linkages. Discrete Comput. Geom. 30 (2003), no.
2, 205–239.
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