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Levitin—Polyak Well-Posedness for Parametric Set
Optimization Problem

BiSWAJIT TAHU!, MANSI DHINGRA!, SATISH KUMAR! and PANKA] KUMAR GARG?

ABSTRACT. The aim of this paper is to introduce two notions of Levitin—Polyak (LP in short) well-posedness
for a parametric set optimization problem, a pointwise and a global notion. Necessary and sufficient conditions
for a parametric set optimization problem to be LP well-posed are given. Characterizations of LP well-posedness
for a parametric set optimization problem in terms of upper Hausdorff convergence and Painlevé —Kuratowski
convergence of sequences of approximate solution sets are also established.

1. INTRODUCTION

In recent years, many authors have worked on set optimization problems. The rea-
son for this popularity is their applications in areas like game theory, mathematical eco-
nomics, fuzzy optimization and many more; see [15] and references therein.

Kuroiwa [20, 21] proposed various set order relations for comparison of sets to define
notions of minimal solution of a set optimization problem. For details, we refer the reader
to the survey paper [2]. The study of the solution sets of a perturbed set optimization
problem, perturbed with respect to the feasible set or the objective set-valued map is a
fast growing topic and is studied under stability theory. Various authors have studied
stability theory of a perturbed set optimization problem in different directions.

Xu and Li [29] derived the upper, lower semicontinuity and closedness of the minimal
solution and weak minimal solution set mappings to a parametric set optimization prob-
lem under some strong assumptions. Later, Xu and Li in [30] weakened and modified the
assumptions of [29] to study the continuity of the minimal solution set map to parametric
set optimization problem. Karuna and Lalitha [14] studied stability in terms of Hausdorff
and Painlevé—Kuratowski convergence of minimal and weak minimal solution sets in set
optimization problems by perturbing the feasible set. Han and Huang [12] derived the
Hausdorff upper semicontinuity of the minimal solution mapping to a parametric set op-
timization problem with perturbed feasible set map. Khoshkhabar-amiranloo [17] stud-
ied stability of the minimal solution mappings of parametric set optimization problems
in terms of semi-continuity and compactness. Preechasilp and Wangkeeree [27] studied
stability in terms of upper semicontinuity, lower semicontinuity, and closedness of the
solution mapping to a parametric set optimization problem. Zhang and Huang [31] ob-
tained the upper semi-continuity, lower semi-continuity and compactness of relaxed min-
imal and minimal solution mappings for parametric set optimization problems.

Well-posedness of optimization problems plays an important role in the study of the
stability theory. Many authors have studied the well-posedness for set optimization prob-
lems under different conditions. In [32], the authors studied three types of well-posedness
for set optimization problems with cone-bounded objective function values. Gutiérrez et
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al. [11] improved some results in [32] to obtain the well-posedness of set optimization
problems, by relaxing the condition of cone-boundedness of the objective function val-
ues. Crespi et al. [5] obtained a notion of global well-posedness for set-optimization
problems by generalizing one of the notions of global well-posedness in [32]. Dhingra
and Lalitha [6] studied a notion of well-setness for set optimization problem using the
excess function. Crespi et al. [4] obtained some characterizations for pointwise and global
well-posedness in set optimization in terms of compactness and upper semicontinuity of
solution set map.

Khoshkhabar-amiranloo and Khorram [18] studied LP well-posedness [24] for set op-
timization problems. They introduced global notions of metrically well-setness and met-
rically LP well-setness for set optimization problems and the pointwise notions of LP
well-posedness for set optimization problems. They also obtained scalar characterizations
of LP well-posedness and metrically well-setness of a set optimization problem using a
scalarization function in terms of well-posedness and metrically well-setness of a corre-
sponding scalar optimization problem, respectively. Khoshkhabar-amiranloo [16] derived
characterizations of generalized LP well-posedness of set optimization problem in terms
of the upper Hausdorff convergence and Painlevé—Kuratowski convergence of sequences
of sets of approximate solutions. Vui et al. [28] introduced different types of notions of
LP well-posedness for set optimization problems using three types of set order relations.
They also established characterizations of these notions using the Kuratowski measure of
noncompactness. Recently, Ansari et al. [1] studied different notions of LP well-posedness
for set optimization problem. They obtained characterizations LP well-posedness for set
optimization problems using the Kuratowski measure of noncompactness. They also es-
tablished the relationship between stability and LP well-posedness for set optimization
problem. In [10], Gupta and Srivastava introduced a notion of LP well-posedness for set
optimization problem and established its characterizations in terms of Hausdorff upper
semicontinuity and compactness of an approximate solution map. Duy [8] studied vari-
ous notions of LP well-posedness for set optimization problem with respect to the upper
set less order relation, established relationships between them and gave sufficient condi-
tions for them.

Well-posedness for perturbed optimization problems has been studied by various au-
thors. Zolezzi [33, 34] introduced the notion of parametric well-posedness by embedding
the original optimization problem in a family of perturbed optimization problems. Lig-
nola and Morgan [25] studied parametric well-posedness for a family of variational in-
equalities. Lalitha and Bhatia [23] introduced the notion of well-posedness for parametric
quasivariational inequality problems with set-valued maps. In [22], the authors studied
LP well-posedness for parametric quasivariational inequality problem.

Motivated by these papers, we study LP well-posedness for parametric set optimiza-
tion problem. In this paper, we introduce a pointwise and a global notion of LP well-
posedness for parametric set optimization problem and obtain necessary and sufficient
conditions for a parametric set optimization problem to be LP well-posed. We also estab-
lish upper Hausdorff convergence and Painlevé—Kuratowski convergence of sequences
of approximate solution sets of a LP well-posed parametric set optimization problem.

The rest of the paper is organized as follows. In Section 2, we recall some prelimi-
naries required in the sequel. In Section 3, we introduce a pointwise notion of LP well-
posedness for parametric set optimization problem. We give Dontchev—Zolezzi measure
and Furi—Vignoli measure for pointwise LP well-posed parametric set optimization prob-
lem. We then establish upper Hausdorff convergence and Painlevé—Kuratowski conver-
gence of sequences of approximate solution sets for a pointwise LP well-posed parametric
set optimization problem. In Section 4, we define a global notion of LP well-posedness
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for parametric set optimization problem. We give necessary and sufficient conditions for
global LP well-posed parametric set optimization problem. We also establish relation-
ship between pointwise LP well-posedness and global LP well-posedness notions. We
then establish upper Hausdorff convergence and Painlevé—Kuratowski convergence of
sequences of approximate solution set maps for a global LP well-posed parametric set
optimization problem.

2. PRELIMINARIES

Let Y be a real normed linear space and let K be a closed convex pointed cone with
nonempty interior. Let K induce the following order relations in Y, for y;, yo € Y, we
have

Y1 Sk Y2 <= Y2 — Y € K,
Y1 <k Y2 <= Y2 — Y1 €intK,
where intK denotes the interior of K.

Let P[Y] denote the collection of all nonempty subsets of Y and A¢ denote the comple-
ment of a set A in Y. We recall the following set order relations from [19], if A, B € P[Y]

A<l Be= BCA+K
and
A<l B« BC A+intK.

Let X be a real normed linear space. We denote the open and closed ball in X centered
at origin and radius r with r > 0 by Bx(r) and Bx r] respectively and diameter of a set
A C X by diam A := sup{||lz — y| : =,y € A}.

For two nonempty sets U and W of X, the excess function of U over W, denoted by
ex(U, W) is defined as

ex(U, W) := sup d(u, W), where d(u, W) := inf ||u— w|.
wel weWw

For a sequence of sets {U,,} C X, the sequence {U, } converges to a set U in X, in the
sense of upper Hausdorff set convergence if

ex(Uy,,U) = 0asn — oo.

We now recall the notion of Painlevé—Kuratowski convergence (Definition 2.1, [9]). For
a sequence of sets {U,, } in X, we have

LiU, :={z € X : z, = z,z, € U,, for sufficiently large n},
LsU, :={z € X :z,, — z,2pn, €U,,, {nn}is an increasing sequence of integers}.
The sequence {U,, } converges to a set U in the sense of Painlevé—Kuratowski, if
LsU, CU CLiU,.

The relation Ls U,, C U is known as the upper part of the convergence and the relation
U C Li U, is known as the lower part of the convergence.

We now recall the notions of upper continuous, lower continuous, continuous and com-
pact set-valued map from [15]. For the sake of convenience, we refer the notions of upper
continuous and lower continuous as upper semicontinuous and lower semicontinuous.

Definition 2.1. (Definition 3.1.1 and Definition 3.1.7, [15]) Let G : X = Y be a set-valued
map. Then G is

(i) upper semicontinuous at Z € X if for every open set W in Y containing G(Z),
there exists a neighbourhood V of z such that G(z) C W forallz € V.
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(ii) lower semicontinuous at z € X if for every open set W in Y with G(z) N W # 0,
there exists a neighbourhood V' of z such that G(z) "W # @ forall z € V.

(iii) continuous atZ € X if it is both upper semicontinuous and lower semicontinuous
at z.

(iv) compact at z € X if for every sequence {z,} and y,, € G(z,,), with z,, — Z, there
exists a subsequence {y,, } of {y,} such that y,,, — § € G(Z).

The map G is said to be upper semicontinuous (lower semicontinuous, continuous,
compact) on a subset U of X if G is upper semicontinuous (lower semicontinuous, con-
tinuous, compact) at every point z € U.

In this paper, we require the following characterization of upper and lower semiconti-
nuity.

Lemma 2.1. Let G : X =3'Y be a set valued mapping.

(i) (Proposition 3.1.6, [15]) G is lower semicontinuous at z € X if and only if for every
sequence {x,} in X with x,, — % and for any § € G(&), there exist y,, € G(x,,) such
that y, — 4.

(ii) (Proposition 3.1.5, [15]) If G(Z) is compact, then G is upper semicontinuous at T if and
only if for any sequence {x,,} in X with x,, — Z and for any y, € G(xy,), there exist
§ € G(z) and a subsequence {y,, } of y,, such that y,, — §.

Let Z be a normed space and 7' be a nonempty subset of Z. The parametric set opti-
mization problem corresponding to a parameter ¢t € T is defined as follows:

(P(1)) Min F(z,t)
subjectto = € M(t),

where M : T = X and F' : X xT = Y. We assume M (t) # 0, compact set and F(z,t) # 0,
foreveryt € T and z € M (¢).

A point T € M(t) is said to be an [-weak minimal solution of (P(t)) if, for any x €
M (t) such that F(z,t) <k F(z,t) = F(z,t) <\ F(z,t). We denote the set of all l-weak
minimal solutions of the problem (P(t)) by I-WMin(F, t).

3. POINTWISE LP WELL-POSEDNESS

In this section we introduce a notion of pointwise LP well-posedness for parametric
set optimization problem (P(¢)). Throughout the paper, we assume e to be a fixed element
of intK.

Definition 3.2. Let ¢ € T and {¢,} be a sequence in T such that ¢, — ¢. Letz €
I-WMin(F,t). A sequence {z, } in X is said to be a pointwise LP minimizing sequence at
z for (P(t)) corresponding to {t, } if there exist ¢,, | 0, z,, € M(¢,,) + Bx[e,] such that

F(xp,ty) <k F(Z,t,) +ene, Vn.

Definition 3.3. Lett € T,z € I-WMin(F, t). (P(t)) is said to be pointwise LP well-posed at
z, if for any sequence {t,,} in T’ converging to ¢, every pointwise LP minimizing sequence
at z for (P(¢)) corresponding to {t, } converges to Z.

Remark 3.1. Definition 3.2 and Definition 3.3 extend Definition 2.6 (iii) and Definition
2.7(iii) of [16] respectively to the case of a parametric set optimization problem. In [16],
the author defined these notions for /-minimal solutions of the set optimization problem.

The following example illustrates Definition 3.3.
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Example 3.1. Consider parametric set optimization problem, where X = R, Y = R?,
K=R2,Z=R,T=[0,1],e=(1,1) and M : T = X is defined as
M(t) .= [-t, 1+ ]

and F': X x T 2 Y is defined as

(@,2), (2,2)), #0<z<1,t=0,

F(z,t) =< {(1,1)}, ifr <Ooraz>1,t=0,

{0}, i1 0.
Let ¢ = 0. Then [-WMin(F,¢) = {0}. Clearly, (P()) is pointwise LP well-posed at
Z € I-'WMin(F,t) where z = 0.

Now, let ¢/ = 1. Then I-WMin(F,t') = M(t') = [—1,2]. Clearly, (P(¢')) is not point-

wise LP well-posed at 2/ = 1, since the sequence {z/,} where 2/, = 1, is a pointwise LP
minimizing sequence at «’ = 1 corresponding to any ¢, — ¢’ butz}, — 0 # z’.

Let z € X, then we define the approximate solution set map, S°(Z, -,-) : {Z} xT' xRy =
X as
S¢(z,t,¢) = {x € X :x € M(t) + Bx|e], F(x,t) <k F(z,t) +ee}.
We observe that if ¢, — ¢ and {z,} is a pointwise LP minimizing sequence at
z € -'WMin(F,t), then x,, € S¢(Z,t,,¢€,), for every n where {¢,} is a sequence such that

en 4 0.
We now give some properties of the map S¢(z, -, -).

Proposition 3.1. Let t € T and & € I-WMIin(F, t). Then the following conditions hold:
(i) z € S°(z,t,¢), for every e > 0.
(ii) If€1 < &9, then Se(i‘,t,€1) - Se(j,t,€2).
(i) N S¢(z,t,e) = S°(&,t,0), if F is compact-valued on M (t) x {t}.
e>0
(iv) U Sa,t,0) = -WMin(F, ¢).
ZE€l-WMin(F, t)
Proof. (i) Lete > 0. Then F(z,t) + ce C F(&,t) + K, which implies € S°(z, t,¢).
(ii)) Let ey < g9 and = € S°(Z,t,e1), then © € M(t) + Bxle1] and F(Z,t) + e1e C
F(x,t) + K. Since ¢1 < €9, thus F(z,t) <l F(Z,t) +ese and x € M(t) + Bx|[ea].
(iii) Letz € () S°(,t,¢). Then for every ¢ > 0, we have
e>0
(3.1) x € M(t)+ Bx[e], F(Z,t) +¢ce C F(x,t) + K.
As F is compact-valued on M (t) x {t}, therefore, taking ¢ — 0 in (3.1), we obtain
x € M(t), F(z,t) C F(x,t) + K,
which implies
x € S¢(z,t,0).
Conversely, suppose © € S°(Z,t,0), then by (ii) it follows that = € S°(z,t,¢),

for every € > 0. Therefore, x € [ S¢(Z,t,¢).
e>0
(iv) LetZ € I-WMin(F,t), then Z € S¢(z,t,0). Therefore T € U S¢(z,t,0).
ZEI-WMin(F, t)
Conversely, let z € U S¢(z,t,0). Then x € S°(z,t,0), for some T €
ZEl-WMin(F, t)
[-WMin(F, t), which implies

(3.2) x € M(t)and F(z,t) <\ F(z,1).
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Let z; € M(t) be such that F(z1,t) <4 F(z,t), then using (3.2), we have
F(z,t) C F(x,t) + K C F(x,t) + intK + K,
which implies
F(x1,t) <% F(z,1).
Asz € I-WMin(F, t), therefore F(7,t) <} F(x1,t). Using (3.2), we obtain F(x,t) <k

F(z1,t) and hence z € I-WMin(F, t).
(|

We now give sufficient conditions for the approximate solution set to be closed.

Theorem 3.1. Let t € T, M(t) be a compact set and T € I-WMin(F,t). If F(-,t) is upper
semicontinuous and compact-valued on X, then for every ¢ > 0, S¢(%,t, €) is closed.

Proof. Lete > 0and {xz, } be a sequence such that z,, € S¢(z,t,¢), for every nand z,, — z’.
Since z,, € S¢(Z,t,¢), therefore z,, € M (t) + Bx[e] and
F(wy,t) < F(Z,t) + ee,
that is
F(z,t) +ee C F(xp,t) + K, Vn.
For each § € F(Z,t), there exists y,, € F(z,,t) such that
(3.3) y+ece—y, € K.

Now F'(z',t) is compact and F(-,t) is upper semicontinuous at z’. Since z,, — z’ and
Yn € F(zp,t), therefore there exist y’ € F(z',t) and a subsequence {y,, } of {y, } such that
Yn, — Y. As K is closed, therefore (3.3) gives

J+ee—y €K,
which implies
F(a',t) <% F(Z,t) + e
and hence
z' € S°(z,t,¢€).
(]

We now present Dontchev—Zolezzi measure (Proposition 36, [7]) for pointwise LP
well-posed problem.

Theorem 3.2. Lett € T and & € I-'WMin(F,t).
(i) If (P(t)) is pointwise LP well-posed at T, then S¢(z, -, ) is upper semicontinuous at (¢, 0).
(i) If S¢(z,t,0) = {z} and S°(, -, -) is upper semicontinuous at (¢ ,0) then (P(t)) is point-
wise LP well-posed at .

Proof. (i) Suppose on the contrary S¢(z,-,-) is not upper semicontinuous at (¢,0).
Then there exist an open set W containing S¢(z,¢,0) and sequences t,, — ¢ and
€n 4 0 such that

(3.4) STty en) L W.
Thus there exists a sequence {z,, } such that z,, € S°(z,t,,¢,) butz,, ¢ W. Clearly,
{x,} is a pointwise LP minimizing sequence at z for (P(¢)) corresponding to {, }.
Since (P(¢)) is pointwise LP well-posed at z, therefore z,, — = € S¢(Z,t,0) C W,
which contradicts (3.4).
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(ii) Let {t¢,} be asequence in T such that ¢, — ¢t and {z, } be a pointwise LP minimiz-
ing sequence at z for (P(t)) corresponding to {t, }. Then there exists ¢,, | 0 such
that z,, € S°(Z,t,,en). As S¢(Z,-,-) is upper semicontinuous at (¢,0), therefore
for every neighbourhood V' of 0, there exists ny € N such that

S(Z, tn,en) C ST, t,0) +V, for every n > ng.

Since S¢(z,t,0) = {Z}, we have z,, — Z. Hence, (P(¢)) is pointwise LP well-posed
atz.
([l

Remark 3.2. (i) The above result extends Proposition 2.1 of [34].
(i) The condition S¢(Z,t,0) = {Z} cannot be dropped in Theorem 3.2(ii). In Example 3.1,
it can be seen that for ¢ = 1, [-WMin(F,¢) = [-1,2] and for z = 1 and e = (1, 1),
S¢(z,t,0) = M(t) = [—1,2] # {z} and S¢(z, -, ) is upper semicontinuous at (¢, 0)
but (P(¢)) is not pointwise LP well-posed at Z.

We now give Furi—Vignoli measure (Page 21, [7]) for pointwise LP well-posed prob-
lem.

Theorem 3.3. Lett € T and T € I-WMIin(F,t). Then (P(t)) is pointwise LP well-posed at T if
and only if diam S¢(z,t,e) — 0as (t,e) — (¢,0).

Proof. Suppose (P(t)) is pointwise LP well-posed at z and diam S¢(z,t,¢) - 0 as (t,&) —
(t,0). Then there exist t,, — ¢, &, } 0 and § > 0 such that

diam S°(Z, t,,en) > 0, Vn.
Thus, there exist u,,, x, € S¢(Z, t,,ey) such that
(3.5) d(tp, ) > 9, Vn.

Clearly, {u,} and {z,} are pointwise LP minimizing sequences at z for (P(¢)) corre-
sponding to {t,}. Since (P(t)) is pointwise LP well-posed at z, therefore u,, — = and
2, — . Therefore d(u,,x,) — 0, which contradicts (3.5). Hence, diam S¢(Z,t,e) — 0 as
(t,e) — (¢,0).

Conversely, let {t,,} be a sequence in T such that ¢,, — ¢ and {z,,} be a pointwise LP
minimizing sequence at z for (P(¢)) corresponding to {t,,}. Then there exist ,, | 0 such
that z,, € S°(Z,tn,en), for every n. Also T € S°(Z,ty,ey), for every n. If x,, - Z, then
36 > 0 and a subsequence {x,, } of {z,,} such that

d(zy,,z) > 9, foreveryk,
hence
diam S(Z, ty,,,€n,) > 0 > 0, for every k,

which is a contradiction to the fact that diam S¢(z,t,,¢,) — 0 ast, — ¢t and &, — 0.
Therefore x,, — & and hence (P(¢)) is pointwise LP well-posed at z. O

We again consider Example 3.1. It may be verified that S°(z,t,e) = [0,¢] for £ = 0,
e > 0and t # 1. Therefore, diam S°(Z,t,¢) - 0 ast — 0 and ¢ — 0. Hence, by above
theorem, (P(0)) is pointwise LP well-posed at z = 0.

The next two theorems give necessary conditions for pointwise LP well-posedness.
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Theorem 3.4. Ift € T,z € I-WMin(F,t), (P(¢)) is pointwise LP well-posed at T and F is
compact at (z,t). Then for any t, — t and any pointwise LP minimizing sequence {x.,,} at T for
(P(t)) corresponding to {t,, }, we have

ex(F (zn,tn), F(I-WMin(F,t),t)) — 0.

Proof. Lett, € T be such thatt,, — ¢ and {z, } be a pointwise LP minimizing sequence at
z € I-WMin(F, t) for (P(t)) corresponding to {¢, }. Since (P(t)) is pointwise LP well-posed
at z, therefore z,, — Z. On the contrary, suppose

ex(F (zn,ty), F(I-WMin(F,t),t)) - 0.
Then there exists § > 0 and a subsequence {z,, } of {z,} such that
F(xnwtnk) fq F(Z—WM'HI(F,E),{) + BY((S)a VE,

where By (0) is open ball in Y with center at origin and radius 6. Thus for every &, there
exists vy, € F(zn,,tn,) such that

U, & F(I-WMIN(F,t),t) + By (9)
which implies
(3.6) U, € [F(I-WMIn(F,1),t) + By (6)]°.

Now, vy, € F(xp,,ts,) with (z,,,t,,) — (Z,t) and F is compact at (Z, ¢ ), therefore there
exists a subsequence {v,, } of {vy, } such thatv,, — v € F(z,t). Using (3.6), we have

€ [F(I-WMin(F,t),t) + By (9)]¢,
which is a contradiction as v € F(z,t) C F(I-WMin(F,t),1). O

Next results give characterizations of pointwise LP well-posedness in terms of upper
Hausdorff convergence of sequences of approximate solution sets.

Theorem 3.5. If ¢t € T,z € I-WMin(F,t) and (P(t)) is pointwise LP well-posed at z,{t,}
is a sequence in T with t,, — ¢ and {e,} is a sequence of real numbers such that €, | 0, then
ex(S¢(Z, tn, en), S€(7, ¥, 0)) — 0.

Proof. Lett € T and Z € I-WMin(F,t). Let {t¢,,} be a sequence in T such that ¢,, — ¢ and
{e} be a sequence of real numbers such that ¢,, | 0. If possible, suppose

ex(S(Z, tn, en), S(Z,1,0)) - 0.
Then there exists a § > 0 and subsequences {t,,, } of {t,} and {e,, } of {¢,,} such that
STty eny) € ST, 1,0) + Bx (6), VE.

Then, for each k, there exists z,,, € S(Z,t,,,en,) such that

(37) Ly, ¢ Se(i‘vfao)—i_BX(é)
Clearly, {z,,} is a pointwise LP minimizing sequence at Z for (P(¢)) corresponding to
{tn, }- Thus x,, — Z, which contradicts (3.7) as z € S¢(z,,0). O

Theorem 3.6. If t € T, z € I-WMin(F,t), S¢(z,t,0) is compact and for every sequence {t,}
in T such that t,, — t and every sequence of real numbers {e,} such that e, | 0,

ex(S(Z, tn, €n), S(%, £,0)) — 0,

then S¢(Z, -, -) is upper semicontinuous at (t ,0).
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Proof. Lett € T and z € I-WMin(F, t)). If S¢(z, -, -) is not upper semicontinuous at (¢, 0),
then there exist a § > 0, a sequence {t,,} in T with ¢,, — ¢ and a sequence {¢,}, €, | 0
such that

ST, tn.en) € S°(7,1,0) + Bx (d), Vn,

which implies for each n, there exists z,, € S° (9? €n) such that
zn & 5°(7,1,0) + Bx (9).

This is a contradiction to the fact that ex(S¢(z, t,, e, ), 9¢(Z,t,0)) — 0. O

Using Theorem 3.2(ii) we have the following corollary.

Corollary3.1. If t € T, T €l-WMin(F,t), S¢(z,t,0)={z} and ex(S°(Z, tn,en), S¢(Z, ¢, 0))
— 0, for every sequence {t,,} in T with t,, — t and every sequence of real numbers {e,,} such
that e,, | 0, then (P(t)) is pointwise LP well-posed at T.

Next two theorems give characterizations of pointwise LP well-posedness in terms of
the Painlevé—Kuratowski convergence of sequences of approximate solution sets.

Theorem 3.7. Lett € T, & € [-WMin(F, ) and (P(t)) be pointwise LP well-posed at z. If {t,,}
is a sequence in T such that t, — t and {e,} is a sequence of real numbers such that €,, | 0. Then

Ls S°(Z, tp,en) C S9(7,£,0).

Proof. Let {t,} be a sequence in T such that ¢t,, — t, {e,,} be a sequence of real numbers
such that e, | 0 and let z € Ls S¢(Z,t,,€,). Then there exists a subsequence {z,, } such
that x,,, € S°(%,tn,,¢en,) and z,, — x, where {t,,, } is a subsequence of {¢,} and {e,, }
is a subsequence of {¢,}. Therefore, {x,, } is a pointwise LP minimizing sequence at Z
for (P(t)) corresponding to {t,}. Also, (P(¢)) is pointwise LP well-posed at z, therefore
Zn, — T, which together with the fact that x,,, — = implies that x € S¢(z,t,0). Hence

Ls S¢(z,tn,en) C S°(z,1,0).
(I
Theorem 3.8. Lett € T, T € I-WMin(F, t) and (P(t)) be pointwise LP well-posed at z. If {t,, }

is a sequence in T such that t,, — t and {e,} is a sequence of real numbers such that ¢,, | 0 and
S¢(z,t,0) is singleton set. Then

S¢(z,t,0) C Li ST, tn,en)-

Proof. Since S¢(z,t,0) is singleton, therefore S¢(z,¢,0) = {z}. Let {¢,} be a sequence
in T such that t,, — ¢ and {e,} be a sequence of real numbers such that ¢,, | 0 and
let z, € S¢(Z,t,,en), then {z,,} is a pointwise LP minimizing sequence at z for (P(t))
corresponding to {t, }. Therefore z,, — Z and hence S¢(z,t,0) C Li S°(Z, tn,&n)- O

4. GLOBAL LP WELL-POSEDNESS

In this section we introduce a notion of global LP well-posedness for parametric set
optimization problem (P(?)).

Definition 4.4. Lett € T and {¢,} be a sequence in T such that ¢,, — . A sequence {z,}
in X is said to be a global LP minimizing sequence for (P(¢)) corresponding to {¢,}, if
there existe,, | 0, z,, € M (t,) + Bx|en], un € I-WMin(F, t,,) such that

F(x,, t, <t F Un, tn) + Ene, V.
K
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Definition 4.5. Lett € T'. (P(¢)) is said to be globally LP well-posed, if for any sequence

{tn} in T converging to ¢ and every global LP minimizing sequence {z,} corresponding

to {t,}, there exists a subsequence {z,, } of {z,,} and Z € I-WMin(F, ) such that z,,, — Z.

Remark 4.3. (i) Lett € T.1If (P(¢)) is pointwise LP well-posed at z € I-WMin(F,t)
and I-WMin(F, t) is singleton, then (P(¢)) is globally LP well-posed.

(ii) Definition 4.4 and Definition 4.5 extend Definition 2.6(iv) and Definition 2.7(iv) of
[16] respectively to the case of a parametric set optimization problem. In [16], the
author introduced the notion of generalized Levitin—Polyak well-posedness for
[-minimal solutions of the set optimization problem.

(iii) Definition 4.4 and Definition 4.5 also extend Definition 3.1 and Definition 3.2 of [3]
respectively. In [3], authors defined the notion of LP well-posed vector optimiza-
tion problem using weak efficient solutions of a vector optimization problem.

The following example illustrates Definition 4.5.

Example 4.2. Consider parametric set optimization problem, where X = R, Y = R?,
K=R2,Z=R,T=[0,1,e=(1,1)and M : T = X is defined as

M) :=[-1—1t,1+1]
and F': X x T = Y is defined as
[0,t] x [0,¢], if0<t<l,
F(z,t):==<]0,1]x]0,1], ifz<0,t=1,
(0,1] x [0,1], if2>0,t=1.
Let0 <t < 1. Then -WMin(F,t) = [-1—%,1+¢]. Then (P(¢)) is globally LP well-posed.
Let ¢ = 1. Then I-WMin(F,t') = [0,2]. Clearly, z,, = —1 — % is a global LP minimizing

sequence for (P(t')) and =, — —1 ¢ I-WMin(F,t'). Hence, (P(t')) is not globally LP well-
posed.

Example 4.3. Consider parametric set optimization problem, where X = R, Y = R?,
K=R2,Z=R,T=[0,1],e=(1,1)and M : T =% X is defined as

M) :=[-1—1t,1+1]
and F : X x T = Y is defined as
F(z,t) :=0,1] x [0,1], V z, .

Clearly, -WMin(F, t) = [-1 —t¢,1+¢] and (P(¢)) is globally LP well-posed for any ¢ € [0, 1]
but (P(t)) is not pointwise LP well-posed at any z € [-WMin(F, ¢). For instance, x,, = 1+ %
is a pointwise LP minimizing sequence at # = 0 but z,, /4 0.

We define the approximate solution set map S°(-,-) : T'x Ry = X as
S(t,e) = {x € X : & € M(t)+Bx|¢]and 3 & € I-WMin(F, t) such that F(z,t) <! F(z,t)+ee}.

We observe thatif ¢t € T, {t,} C T such thatt, — ¢t and {z,} is a global LP minimizing
sequence for (P(t)) corresponding to {t,,} then z,, € S¢(ty,¢en).

We now give some properties of the map S°(, -).

Proposition 4.2. Let t € T. The following statements are true:
() U S¢(Z,t,e) = S°(t,e), Ve > 0.
FEI-WMin(F, t)
(i) I-WMin(F,t) C S¢(t,¢), Ve > 0.
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(iti) S¢(t,0) = I-WMin(F, t).

Proof. (i) Let z € I-WMin(F,t) and let x € S¢(Z,t,¢), then x € M(¢) + Bx[e] and
F(z,t) <t F(Z,t) + ce. Thus, x € S°(t,¢). Conversely, suppose = € S¢(t,¢), then
3z € I-WMin(F, t) such that x € M (t) + Bx|[e] and F(z,t) <} F(z,t) + ce. Thus
x € S¢(Z,t,e) and hence z € U S (Z,t,¢).

Zel-WMin(F,t)
(i) Letz € I-WMIn(F,t) then z € S¢(t,¢),Ve > 0.
(iii) Using (ii), we have I-WMin(F,t) C S°(t,0). Let x € S°(¢,0), then z € M (t) and
there exists z € I-WMin(F), t) such that

(4.8) F(x,t) <% F(z,1).

Let x1 € M(t) be such that F(x1,t) <4 F(z,t). As F(z,t) C F(z1,t) + intK, then
by using (4.8), we have

F(z,t) C F(z,t) + K C F(x1,t) + intK + K = F(z1,t) + intkK,
which implies
F(x1,t) <% F(z,1).
Now z € [-WMin(F,t), so F(z,t) <4 F(z1,t). Using (4.8), we have F(z,t) <l

F(z1,t). Hence, z € [-WMin(F, t).
O

We now give Dontchev—Zolezzi measure [7] for globally LP well-posed problem.

Theorem 4.9. Let ¢ € T. (P(t)) is globally LP well-posed if and only if S¢(-, ) is upper semicon-
tinuous at (t,0) and I-WMin(F, t) is compact.

Proof. Suppose S¢(-,-) is not upper semicontinuous at (¢, 0) then there exists an open set

W containing S¢(¢, 0) and sequences t,, — ¢ and ¢, | 0 such that
(4.9) S (tnren) L .

Thus, there exists a sequence {xz,,} such that z,, € S°(t,,¢,) and z,, ¢ W. Clearly, {z,,} is
a global LP minimizing sequence for (P(t)) corresponding to {t, }. Since (P(t)) is globally
LP well-posed, therefore there exists a subsequence {z,, } of {z,} such that z,, — Z €
[-WMin(F,t). Thus z € I-WMin(F,t) = S¢(t,0) C W, which is a contradiction. Hence
S¢(-,-) is upper semicontinuous at (¢, 0).

We now claim that I-WMin(F, ¢) is compact. Let {u,} be a sequence in S¢(¢,0) =
[-WMin(F,t), then u,, € M (t) and there exist w,, € [-WMin(F, ) such that

F(up,t) <§¢ F(w,,t),
for every n. Thus, for every sequence {¢,,} such thate,, | 0 we have
F(tun,t) <% F(wn,t)+ ene,

which implies that u,, € S¢(t,¢e,). Since (P(¢)) is globally LP well-posed, therefore there
exists a subsequence {u,, } of {u,} such that u,, — @ € I-WMin(F,t). Hence, [-WMin(F, t)
is compact.

Conversely, let {¢,} be a sequence in T such that ¢,, — ¢ and let {z,,} be a global LP
minimizing sequence for (P(¢)) corresponding to {t,}, then there exist ¢,, | 0 such that
Xy, € S¢(tn,en), for every n. Since S¢(-,-) is upper semicontinuous at (¢, 0), therefore for
every neighbourhood V' of 0, there exists ng € N such that

Ty € S°(,0)+V, Vn > ng,
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which implies d(z,,, S¢(¢,0)) — 0. Since [-WMin(F,t) = S¢(¢,0) is compact, there exists
a subsequence {z,, } of {z,} such that z,, — = € I-WMIin(F,¢). Hence, (P(t)) is globally
LP well-posed.

We now give an example to show that the condition I-WMin(F,t) is compact cannot
be relaxed.

Example 4.4. Consider parametric set optimization problem where X = R, Y = R?,
K=R2,Z=R,T=[0,1and M : T = X is defined as M(t) :=Rand F: X x T = Y is
defined as
F(z,t) :=[0,t] x [0,¢].

Then [-WMin(F,t) = R, for every t € T. Lett € T and {t,} be a sequence in T such
that t,, — t. Clearly, S°(-,-) is upper semicontinuous at (¢,) = (¢,0) but [-WMin(F,t)
is not compact. Let z,, = n, then {z,} is a global LP minimizing sequence for (P(t))
corresponding to {¢, }, but it has no convergent subsequence. Hence, (P(t)) is not globally
LP well-posed.

The following theorem establishes relationship between pointwise LP well-posedness
and global LP well-posedness.
Theorem 4.10. If ¢ € T and I-WMIin(F,t) is compact. If T € I-WMin(F,t) and Uz is a
neighbourhood of (t,0) then the graph of the family {Uz }zci-wmin, that is
(4.10) U (Usx2)={(w,2):ueUs, z€l-WMin}

ZE€l-WMin
is open and (P(t)) is pointwise LP well-posed at T, for every € [-WMin(F, 1) then (P(t)) is
globally LP well-posed.
Proof. Lett € T. By Theorem 4.9, it is sufficient to show that S¢(-, -) is upper semicontinu-
ous at (t,e) = (¢,0). Let V be a neighbourhood of S¢(¢,0). For any Z € [-WMin(F,t), w
have S¢(z,t,0) C S¢(¢,0) C V. Since (P(t)) is pointwise LP well-posed at z, then S°(Z, )
is upper semicontinuous at (t,¢) = (¢,0). Therefore there exists a neighbourhood Uf, of
(¢,0) such that S¢(z,t,e) C V,V(t,e) € Uz. Let U = ({Uz : & € I-WMin(F,t)}. Using
Proposition 3 of [26], we have U is an open set hence, U is a neighbourhood of (¢, 0) and
U  s@tecV.Vite) el
z€l-WMin(F, t)
Thus, there exists a neighbourhood U of (¢,0) such that
S¢(t,e) CV, ¥ (t,e) eU.

Hence, S¢(-, ) is upper semicontinuous at (¢,e) = (¢,0). O

The set I-WMin(F, t) can be considered as a set-valued map I-WMin(F,-) : T' = X as
I-WMin(F,t) = {z € M(t) : F(z,t) <% F(Z,t),x € M(t) = F(&,t) <% F(x,t)}.
We now recall a result from [12], which gives upper semicontinuity of the set-valued
map [-WMin(F, ).
Theorem 4.11. (Theorem 4.1, [12]) Let t € T. Suppose

(i) M(¢) is compact and M(-) is continuous at t,
(il) F is continuous on M(t) x {t } with compact values.
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Then I-WMIn(F, -) is upper semicontinuous at t.

We now give sufficient conditions for globally LP well-posed parametric set optimiza-
tion problem.

Theorem 4.12. Let ¢t € T. If F is continuous on M(t) x {t} with compact values, M (t) is
compact and M(-) is continuous at t. Then (P(t)) is globally LP well-posed.

Proof. Let {t,,} be a sequence in T" such that ¢,, — ¢ and {z,} be a global LP minimizing
sequence for (P(¢)) corresponding to {t,}, then there exist ¢,, | 0, x,, € M (t,) + Bxlen),
Uy, € I-WMIn(F, t,,) such that

F(xp,ty) §lK F(up,ty) +ene, V.

Using Theorem 4.11, we have I-WMin(F, -) is upper semicontinuous at ¢. As ¢,, — ¢ and
u, € I-WMin(F, t,,), therefore there exists & € [-WMin(F,t) and a subsequence {u,,,, } of
{un} such that

Un. — T € 'WMin(F, 7).
Also, z,, € M (t,,) + Bx|en], hence there exists x], € M(t,) such that
(4.11) |z — 2,|| < en.

Now t, — t, x], € M(t,) and M(-) is upper semicontinuous at ¢, therefore there exists a
subsequence {xz;, } of {z],} and Z € M(t) such that z;, — z € M(t). Using (4.11), we
have x,,,, — & € M(t).

We claim that F(z,t) < F(u,t). Letw € F(u,t). Since F is lower semicontinuous at
(@, 1), therefore there exists wy,,,, € F(uy,, ,tn,, ) such that w,  — w. Now

W, € F(un,,,tn,) C F(vn,,tn,,) = en, e+ K,

]
n

therefore there exists v,,, € F'(zy,, ,tn,, ) such that
(4.12) W, € Un,, — En, ¢+ K.

Since F' is upper semicontinuous at (7, ¢ ), therefore without loss of generality there exists
a subsequence {v,,, } of {v,, } and v € F(Z,t) such that v,,,, — v. Taking limit, (4.12)
gives w — v € K, which implies F(7,t) <% F(iu,t). Let = € M (t) be such that F(z,) <4
F(z,t), then
F(u,t) C F(z,t)+ K C F(z,t) + intK + K,

which implies F(z,t) <4 F(u,t). Also @ € I-WMin(F, ), so F(u,t) <t F(z,t), which
leads to F(Z,t) <% F(z,t). Therefore, € [-WMin(F,?) and hence (P(f)) is globally LP
well-posed. O

We now give examples to show that conditions assumed in Theorem 4.12 cannot be
relaxed.

Example 4.5. (i) (F is compact-valued on M(¢) x {t } cannot be dropped)
Consider parametric set optimization problem where X =R, Y = R? K = R?,
Z =R, T=101],e=(1,1)and M : T = X is defined as M (t) := [-1 —¢,1 + ]

and F': X x T =Y is defined as
10,1]x]0,1], ifx<0,t=0,

F(z,t):=4¢[0,1] x [0,1], ifz>0,t=0,
[0,¢] x [0,¢], ift#0O.
Let¢ = 0. Then M(0) = [-1,1] and I-WMin(F,t) = [0,1]. Clearly, M(0) is

compact, M(+) is continuous at ¢ = 0, F is continuous on M (0) x {0} but F is not
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compact-valued on M(0) x {0}. Lett,, = 2, {e,} = {1}, and 2, = —1 — 1, then
{z,} is a global LP minimizing sequence for (P(¢)) corresponding to {t, }. Now
— —1 ¢ [-WMin(F,t ). Therefore, (P(t)) is not globally LP well-posed.
(il) (M(t)is compact cannot be dropped)
Consider parametric set optimization problem where X =R, Y =R? K = R?,
Z =R, T=[-11,e=(1,1)and M(t) :=N, Vt€e Tand F : X xT =2 Y is

defined as
{t. 1)}, ifo=1,
Fo,t):=q{(t+5.t+3)}, ifreNandaz #1,
{(2,2)}, otherwise.

Lett = 1. Then [-WMin(F,¢) = {1}. Clearly, M(-) is continuous at ¢, F' is con-
tinuous on M (¢) x {t} with compact values but M () is not compact. Clearly,
(P(t)) is not globally LP well-posed as for {&,} = {1}, {z,} = {n} is a global LP
minimizing sequence for (P(¢)) for any {¢, } in T such that t,, — ¢ but {z,,} has no
convergent subsequence.

(iii) (F is continuous on M(¢) x {¢ } cannot be dropped)

Consider parametric set optimization problem where X =R, Y =R? K = R?,
Z=R,T=][0,1,e=(1,1)and M : T = X is defined as M (¢t) := [-1+¢,2 — ]
and F': X x T 3Y is defined as

0,1] x[0,1], if —1<z<1,

F(z,t):=4q[1,2] x [1,2] if1<z<2

0, otherwise.
Clearly, [-WMin(F,t) = [-1+1t,1[. Lett = 0. Then M(-) is continuous at t = 0
and M (t) is compact, F' is compact-valued on M (t) x {t } but F is not continuous
atz = 1€ M(t) x {t}. Let {t,,} be any sequence in T such that ¢,, — ¢, and let
z, =1— 2L Let{e,} = {1}. Then {z,} is a global LP minimizing sequence for
(P(t)) corresponding to {t,,} and z,, — 1 ¢ [-WMin(F,t). Therefore (P(¢)) is not
globally LP well-posed.

We now present necessary conditions for globally LP well-posed parametric set opti-
mization problem.

Theorem 4.13. Ift € T {t,} isasequence in T such thatt,, — ¢, F is compact on [-WMin(F', t)
and (P(t)) is globally LP well-posed, then for any global LP minimizing sequence {x,, } for (P(t))
corresponding to {t,}, there exists a subsequence {x,, } of {xy} such that

ex(F (X, tn, ), F(-WMIn(F, t),t)) — 0.
Proof. Lett € T,{t,} be a sequence in T such that ¢, — ¢ and {z,} be a global LP
minimizing sequence for (P(¢)) corresponding to {t,}. Since (P(t)) is globally LP well-
posed, therefore there exists a subsequence {z,, } of {z,} such that z,,, — Z, where Z €

I-WMin(F,t). Suppose ex(F(zp,,tn, ), F(I-WMin(F,t),t)) - 0. Then there exists § > 0
and without loss of generality a subsequence {z,,, } of {z,, } such that

F(zp, . ty,) € F(I-WMin(F,t),t) + By (9),
for every k. Proceeding as in Theorem 3.4, we obtain there exists v € F(Z,t) such that
€ [F(I-WMin(F,t),t) 4+ By (0)]°,
which is a contradiction as v € F(z,t) C F(I-WMin(F,t),t). O
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Next results present characterizations of globally LP well-posedness in terms of the
upper Hausdorff convergence of sequences of approximate solution sets. Lalitha and
Chatterjee [3] and Khoshkhabar-amiranloo [16] gave similar characterizations of LP well-
posedness for vector and set optimization problems respectively.

Theorem 4.14. Ift € T, {t,} is a sequence in T such that t, — t, {e,} is a sequence of real
numbers such that e,, | 0 and (P(t)) is globally LP well-posed, then

ex(S%(tn,en), S°(t,0)) — 0.

Proof. If possible, suppose ex(S¢(tn,e,),S¢(t,0)) - 0. Then there exista 6 > 0 and a
subsequence {¢,, } such that

Se(tnmgnk) ;(— Se(t_v 0) + BX(6)7
which implies for every k, there exists x,, € S°(t,,€n, ) such that
(4.13) T, & S°(t,0) + Bx(9), VEk.

Therefore, {z,, } is a global LP minimizing sequence for (P(¢)) corresponding to {t,, }.
Thus, there exists a subsequence of {xz,, } converging to some element of I-WMin(F,¢).
Without loss of generality, we assume z,,, — x, where z € I-WMin(F,t) = S¢(¢,0), which
is a contradiction to (4.13). |

Theorem 4.15. Ift € T, S¢(t,0) is compact and {t,,} is a sequence in T such that t,, —t, {e,}
is a sequence of real numbers such that ,, | 0 and ex(S¢(t,,en), S¢(t,0)) — 0, then S¢(-,) is
upper semicontinuous at (t,0).

Proof. Proof is similar to Theorem 3.6. O
Using Theorem 4.9 we have the following corollary.

Corollary 4.2. Ift € T, I-WMin(F,t) is compact, {t,,} is a sequence in T such that t, — t,
{en} is a sequence of real numbers such that ,, | 0 and ex(S¢(t,, en), S¢(t,0)) — 0, then (P(t))
is globally LP well-posed.

Next two theorems give characterizations of globally LP well-posedness in terms of the
Painlevé—Kuratowski convergence of sequences of approximate solution sets.

Theorem 4.16. Ift € T, {t,} is a sequence in T such that t,, — t and {e, } is a sequence of real
numbers such that ,, | 0, (P(t)) is globally LP well-posed. Then

Ls S¢(tn,en) C S°(£,0).
Converse holds, if M (t) is compact and M -) is upper semicontinuous at t.

Proof. LetZ € Ls S¢(t,,, €,,). Then, there exist z,, € S¢(tn,,en, ) such that x,,, — Z, where
{tn, } and {e,, } are subsequences of {t,,} and {e,} respectively. Therefore, {z,, } is a
global LP minimizing sequence for (P(t)) corresponding to {t,, }. Since (P(¢)) is globally
LP well-posed, therefore {x,, } has a subsequence that converges to some element in [-
WMIin(F,t). Also, x,, — &, therefore every subsequence of {z,, } converges to z. Hence,
z e S¢(t,0).

Conversely, let {x,,} be a global LP minimizing sequence for (P(¢)) corresponding to
{tn}. Then z,, € S°(tn,en). Now z,, € M (t,) + Bxle,] implies there exists ], € M(t,,)
such that || z,, — 2}, ||< €,. Since M (-) is upper semicontinuous at ¢, therefore there exists
subsequence {z;, } of {z],} and Z € M(t) such that z;, — z. Hence, z,,, — & € M(t).
Thus, T € Ls S¢(ty, , £n, ), which implies & € S¢(¢,0).

O
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Theorem 4.17. Ift € T, {t,} is a sequence in T such that t,, — t and {e,} is a sequence of real
numbers such that e, | 0, S¢(t,0) is singleton and (P(t)) is globally LP well-posed. Then

S¢(t,0) C LiS®(tn,en)-

Proof. Letz € S°(t,0) and {z,} be a sequence such that z;,, € S(t,,,e,). Clearly, {z,} is
a global LP minimizing sequence for (P(¢)) corresponding to {¢, }. Since (P(¢)) is globally
LP well-posed, therefore there exists a subsequence {z,, } of {z,} such that z,,, — = €
I-WMin(F,t) = S¢(¢,0). Since S¢(¢,0) is singleton, therefore x,, — Z and hence = €
Li S(tn, en). O

Theorem 4.16 and Theorem 4.17 extend Theorem 3.4 of [16] to the case of parametric
set optimization problem.

5. CONCLUSIONS

In this paper we introduce a pointwise and a global notion of Levitin—Polyak well-
posedness for a parametric set optimization problem. These notions are characterized
in terms of upper Hausdorff convergence and Painlevé—Kuratowski convergence of se-
quences of approximate solution sets.

Acknowledgments. The authors thank the referees for their valuable suggestions which
helped to improve the paper.
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