
CARPATHIAN J. MATH.
Volume 39 (2023), No. 2,
Pages 529 - 539

Online version at https://www.carpathian.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401

DOI: https://doi.org/10.37193/CJM.2023.02.13

A note on the generators of the polynomial algebra of six
variables and application

NGUYEN KHAC TIN

ABSTRACT. Let Pn := H∗((RP∞)n) ∼= Z2[x1, x2, . . . , xn] be the graded polynomial algebra over K, where
K denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra
Pn, viewed as a graded left module over the mod-2 Steenrod algebra, A. For n > 4, this problem is still
unsolved, even in the case of n = 5 with the help of computers.

In this paper, we study the hit problem for the case n = 6 in degree dk = 6(2k − 1) + 9.2k, with k an
arbitrary non-negative integer. By considering K as a trivial A-module, then the hit problem is equivalent to the
problem of finding a basis of K-graded vector space K⊗APn. The main goal of the current paper is to explicitly
determine an admissible monomial basis of the K-graded vector space K⊗AP6 in some degrees. At the same
time, the behavior of the sixth Singer algebraic transfer in degree dk = 6(2k − 1) + 9.2k is also discussed at
the end of this article. Here, the Singer algebraic transfer is a homomorphism from the homology of the mod-2
Steenrod algebra, TorAn,n+d(K,K), to the subspace of K ⊗A Pn consisting of all the GLn-invariant classes of
degree d.

1. INTRODUCTION

Throughout the paper, the coefficient ring for homology and cohomology is always K
the field of two elements. Let RP∞ be the infinite dimensional real projective space. Then,
H∗(RP∞) ∼= K[x1], and therefore, the mod-2 cohomology algebra of the direct product of
n copies of RP∞ is isomorphic to the graded polynomial algebra K[x1, x2, . . . , xn], re-
viewed as an unstable A-module on n generators x1, x2, . . . , xn, each of degree one.

The A-module structure of Pn is determined by the properties of the Steenrod opera-
tion and the Cartan formula (see Steenrod and Epstein [12]).

A homogeneous polynomial g of degree d in Pn is called hit if there is an equation in
the form of a finite sum g =

∑
i⩾0 Sq

2i(gi), where the degree of the polynomials gi is
less than d. This means, g belongs to A+Pn. Here, A+ is an ideal of A generated by all
Steenrod squares Sqk, with k > 0.

The Peterson hit problem in Algebraic Topology is to find a minimal generating set for
Pn, reviewed as a module over the mod-2 Steenrod algebra A. If we consider K as a
trivial A-module, then the hit problem is equivalent to the problem of finding a basis of
K-graded vector space:

K⊗APn =
⊕
d⩾0

(K⊗APn)d ∼= Pn/A+Pn

in each degree d ∈ N. Here, (Pn)d is the subspace of Pn consisting of all the homogeneous
polynomials of degree d in Pn and (K⊗APn)d is the subspace of K⊗APn consisting of all
the classes represented by the elements in (Pn)d.

In [6], Peterson conjectured that as a module over the Steenrod algebra A, the polyno-
mial algebra Pn is generated by monomials in degree d that satisfy α(d + n) ⩽ n, where
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α(d) denotes the number of ones in dyadic expansion of d, and proved it for n ⩽ 2. The
conjecture was established in general by Wood [22]. This is a useful tool for determining
A-generators for Pn. And then, the hit problem was investigated by many authors (see
Repka-Selick [9], Silverman [11], Mothebe-Kaelo-Ramatebele [5], Sum [14], Sum-Tin [16],
Tin [19] and others).

Let r, s, t be non-negative intergers. Based on the results of Wood [22], Kameko [3], and
Sum [14], the hit problem is reduced to the case of degree d of the form d = r(2t − 1)+ 2ts
such that 0 ⩽ µ(s) < r ⩽ n, where

µ(d) = min{a ∈ Z : α(d+ a) ⩽ a}.
Now, the hit problem was completely determined for n ⩽ 4, (see F.P.Peterson [6] for

n = 1, 2, see M.Kameko for n = 3 in his thesis [3], see N.Sum [14] for n = 4). For n > 4, it
is still unsolved, even in the case of n = 5 with the help of computers.

In the presnt paper, we study the hit problem for the case n = 6 in degree dk = 6(2k −
1) + 9.2k, with k an arbitrary non-negative integer. The main goal of the current paper
is to explicitly determine an admissible monomial basis of the K-graded vector space
K⊗AP6 in some degrees. The behavior of the sixth Singer algebraic transfer in degree dk =
6(2k−1)+9.2k is also discussed at the end of this article. Here, the Singer algebraic transfer
is a homomorphism from the homology of the mod-2 Steenrod algebra, TorAn,n+d(K,K),
to the subspace of K ⊗A Pn consisting of all the GLn-invariant classes of degree d.

Next, in Section 2, we recall some needed information on admissible monomials in Pn.
The proofs of the main results will be presented in Section 3.

2. PRELIMINARIES

First, we recall some necessary results in Singer [10], Kameko [3], and Sum [14], which
will be used in the next section.

Let αi(d) be the i-th coefficient in dyadic expansion of d. Then, d =
∑

i⩾0 αi(d).2
i where

αi(d) ∈ {0, 1}.
Let u = xd1

1 xd2
2 . . . xdn

n ∈ Pn. The weight vector of u is defined by

ω(u) = (ω1(x), ω2(x), . . . , ωk(x), . . .),

where ωi(x) =
∑

1⩽j⩽n αi−1(dj), i ⩾ 1.

A sequence of non-negative intergers (ω1, ω2, . . . , ωi, . . .) is called the weight vector ω
if ωi = 0 for i ≫ 0. Then, we define degω =

∑
i⩾0 ωi.2

i−1.

Remarkably, the order on the set of sequences of nonnegative integers is given the left
lexicographical order. Let Pn(ω) denotes the subspace of Pn spanned by all monomials
u such that deg u = degω, ω(u) ⩽ ω, and we will denote by P−

n (ω) the subspace of Pn

spanned by all monomials u ∈ Pn(ω) such that ω(u) < ω.

Definition 2.1. Let u, v be two polynomials of the same degree in Pn, and ω a weight
vector.

(i) u ≡ v if and only if u− v ∈ A+Pn. If u ≡ 0 then u is called hit.
(ii) u ≡ω v if and only if u− v ∈ ((A+Pn ∩ Pn(ω)) + P−

n (ω)).

It is very easy to check that the relations ≡ and ≡ω are equivalence ones. Denote by
QPn(ω) the quotient of Pn(ω) by the equivalence relation ≡ω . Then, one has

QPn(ω) = Pn(ω)/((A+Pn ∩ Pn(ω)) + P−
n (ω)).

Definition 2.2. Let u = xd1
1 xd2

2 . . . xdn
n , v = xe1

1 xe2
2 . . . xen

n be monomials of the same degree
in Pk. We say that u < v if and only if one of the following holds:

(i) ω(u) < ω(v);
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(ii) ω(u) = ω(v), and (d1, d2, . . . , dn) < (e1, e2, . . . , en).

Definition 2.3. A monomial u is said to be inadmissible if there exist monomials v1, v2, . . . ,
vm such that vi < u for i = 1, 2, . . . ,m and u−

∑m
t=1 vi ∈ A+Pn. We say u is admissible if

it is not inadmissible.

Obviously, the set of all the admissible monomials of degree d in Pn is a minimal set of
A-generators for Pn in degree d.

Definition 2.4. Let u ∈ Pn. We say u is strictly inadmissible if and only if there exist mono-
mials v1, v2, . . . , vm such that vj < u, for j = 1, 2, . . . ,m and u =

∑m
j=1 vj +

∑2s−1
i=1 Sqi(fi)

with s = max{k : ωk(u) > 0} and suitable polynomials fi ∈ Pn.

It is easy to check that if u is strictly inadmissible monomial, then it is inadmissible
monomial.

Theorem 2.1 (Kameko [3], Sum [14]). Let u, v, w be monomials in Pn such that ωi(u) = 0 for
i > r > 0, ωs(w) ̸= 0 and ωi(w) = 0 for i > s > 0.

(i) If w is inadmissible, then uw2r is also inadmissible.
(ii) If w is strictly inadmissible, then wv2

s

is also strictly inadmissible.

Let z = xd1
1 xd2

2 . . . xdn
n ∈ Pn. The monomial z is called a spike if dj = 2tj − 1 for tj a

non-negative integer and j = 1, 2, . . . , n. Moreover, z is called a minimal spike, if it is a
spike such that t1 > t2 > . . . > tr−1 ⩾ tr > 0 and tj = 0 for j > r.

The following is a Singer’s criterion on the hit monomials in Pn.

Theorem 2.2 (Singer [10]). Assume that u ∈ Pn is a monomial of degree d, where µ(d) ⩽ n. Let
z be the minimal spike of degree d. Then, u is hit if ω(u) < ω(z).

In what follows, let us denote by Dn(d) the set of all admissible monomials of degree d
in Pn. The cardinality of a set M is denoted by |M |.

3. THE MAIN RESULTS

In this section, we study the hit problem for the polynomial algebra of six variables in
some degrees.

For k = 0, then d0 = 6(20 − 1) + 9.20. We explicitly determine an admissible monomial
basis of the K-vector space

(
K⊗AP6

)
6(20−1)+9.20

. Let us denote by P0
n and P+

n the A-
submodules of Pn spanned by all the monomials xa1

1 xa2
2 . . . xan

n such that
∏n

i=1 ai = 0,
and

∏n
i=1 ai > 0, respectively. It is easy to see that P0

n and P+
n are the A-submodules of

Pn.
Since Pn = ⊕d⩾0(Pn)d is the graded polynomial algebra, we have a direct summand

decomposition of the K-vector spaces(
K⊗AP6

)
6(20−1)+9.20

= (K⊗AP0
n)6(20−1)+9.20 ⊕ (K⊗AP+

n )6(20−1)+9.20

Consider the homomorphism Lt : P5 → P6, for 1 ⩽ t ⩽ 6 by substituting:

Lt(xk) =

{
xk, if 1 ⩽ k ⩽ t− 1,

xk+1, if t ⩽ k ⩽ 5.

It is easy to check that Lt is a homomorphism of A-modules.
Recall that (K⊗AP5)6(20−1)+9.20 is a K-vector space of dimension 191 with a basis con-

sisting of all the classes represented by the monomials aj , 1 ⩽ j ⩽ 191 . Consequently,
|D5

(
6(20 − 1) + 9.20

)
| = 191 (see Tin [20]).
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By a simple computation, we see that |
⋃6

k=1 Lk(D5(9))| = 596. Moreover, we get the
set

B0 = {bi : bi ∈
6⋃

k=1

Lk(aj), 1 ⩽ j ⩽ 191, 1 ⩽ i ⩽ 596}

is a minimal set of generators for A-module P0
6 in degree 6(20−1)+9.20. More specifically,

we obain the following proposition.

Proposition 3.1. The set [B0] =
{
[v] : v ∈ B0

}
is a basis of K-vector space (K⊗AP0

6 )6(20−1)+9.20 .

This implies (K⊗AP0
6 )6(20−1)+9.20 has dimension 596.

Remark 3.1. Put Z(n,m) = {I = (i1, i2, . . . , im) : 1 ⩽ i1 < . . . < im ⩽ n}, 1 ⩽ m < n.
For I ∈ Z(n,m), consider the homomorphism fI : Pm → Pn of algebras by substituting
fI(xℓ) = xiℓ with 1 ⩽ ℓ ⩽ m. Then, fI is a monomorphism of A-modules. The following
is a quote from Mothebe-Kaelo-Ramatebele [5]:

K ⊗A P0
n =

⊕
1⩽m⩽n−1

⊕
I∈Z(n,m)

(K ⊗A fI(P+
m)),

where dim(K ⊗A fI(P+
m))d = dim(K ⊗A P+

m)d, and |Z(n,m)| =
(
n
m

)
. Combining with the

results in Wood [22], we obtain

dim(K ⊗A P0
n)d =

∑
µ(d)⩽m⩽n−1

(
n

m

)
dim(K ⊗A P+

m)d.

Since µ(6(20 − 1) + 9.20) = 3, it follows that if m < 3 then (K ⊗A P+
m)6(20−1)+9.20 are

trivial.
As is well-known, |D5

(
6(20 − 1) + 9.20

)
| = 191, where (K⊗AP+

5 )6(20−1)+9.20 has di-
mension 31. According to Sum [14], we also see that the space (K⊗AP4)6(20−1)+9.20 is
a K-vector space of dimension 46, where dim(K⊗AP+

4 )6(20−1)+9.20 = 18, and the space
(K⊗AP+

3 )6(20−1)+9.20 has dimension 7.

Combining the aforementioned results with µ(6(20−1)+9.20) = 3 yields the following
result.

dim(K⊗AP0
6 )6(20−1)+9.20 =

(
6

3

)
.7 +

(
6

4

)
.18 +

(
6

5

)
.31 = 596.

Next, we explicitly determine an admissible monomial basis of the K-vector space
(K⊗AP+

6 )6(20−1)+9.20 . Set QP+
n (ω) := QPn(ω) ∩ (K⊗AP+

n ), ω(1) := (5, 2), and ω(2) :=
(3, 3). Then, we have the following theorem.

Theorem 3.3. Suppose that u ∈ D6(6(2
0 − 1) + 9.20) ∩ P+

6 , then ω(u) = ω(j) with j = 1, 2.
Moreover, we have an isomorphism of the K-vector spaces:

(K⊗AP+
6 )6(20−1)+9.20

∼= QP+
6 (ω(1))⊕QP+

6 (ω(2)).

Proof. Let ω be the weight vector of degree nine. We put D⊗
6 (ω) := D6(9) ∩ P6(ω). It is

easy to see that D6(9) =
⋃

degω=9

D⊗
6 (ω).

Denote by APω
6 the subspace of K⊗AP6 spanned by all the classes represented by

the admissible monomials of weight vector ω in P6. It is simple to check that the map
QP6(ω) −→ APω

6 , [v]ω −→ [v] is an isomorphism of K-vector spaces. Hence, we can
identify the vector space QP6(ω) with APω

6 ⊂ K⊗AP6. From this, we can deduce
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(3.1) (K⊗AP6)9 =
⊕

degω=9

APω
6
∼=

⊕
degω=9

QP6(ω)

Hence (K⊗AP+
6 )6(20−1)+9.20 =

⊕
degω=9 QP+

6 (ω).

On the other hand, it is easy to check that z = x7
1x2x3 is the minimal spike of degree

nine in P6 and ω(z) = (3, 1, 1). Suppose that x is an admissible monomial of degree nine
in P+

6 . By Theorem 2.2, it shows that ω1(x) ⩾ ω1(z) = 3. Since deg(u) is odd number, it
implies either ω1(x) = 3 or ω1(x) = 5.

If ω1(x) = 5 then, x = xixjxkxℓxtv
2 with 1 ⩽ i < j < k < ℓ < t ⩽ 6, where v ∈ (P6)2.

By Theorem 2.1, v is also admissible. It is easy to see that ω(v) = (2, 0). And therefore,
ω(x) = ω(1).

If ω1(x) = 3, then u = xixjxku
2 with u a monomial of degree three in P6. By Theorem

2.1, u is an admissible monomial. An easy computation shows that

D6(3) = {x3
i : 1 ⩽ i ⩽ 6} ∪ {xix

2
j : 1 ⩽ i < j ⩽ 6} ∪ {xixjxk : 1 ⩽ i < j < k ⩽ 6},

where 1 ⩽ i, j, k, ℓ ⩽ 6.
Since u ∈ D6(3), and x ∈ P+

6 , it shows that ω(u) = (3, 0). So, ω(x) = ω(2).

From these above, we have (K⊗AP+
6 )6(20−1)+9.20

∼= QP+
6 (ω(1))⊕QP+

6 (ω(2)). Therefore,
the theorem is proved. □

Theorem 3.4. Let D+
6 (ω) be the set of all admissible monomials in P+

6 (ω). Then,

|D+
6 (ω(j))| =

{
24, if j = 1,

10, if j = 2.

This implies that (K ⊗A P+
6 )6(20−1)+9.20 has dimension 34.

Proof. We prove the above theorem by explicitly determining all admissible monomials
in P+

6 (ω(j)) with j ∈ {1, 2}. The proof is divided into the following cases.

Case 1. Consider the weight vector ω = ω(1) = (5, 2). Suppose that X is an admissible
monomial in P+

6 such that ω(X) = (5, 2). Thus, X = xixjxkY
2 with 1 ⩽ i < j < k ⩽ 6,

Y ∈ D6(2).
Consider the set C1

6 := {xixjxk.Y
2 : 1 ⩽ i < j < k ⩽ 6, Y ∈ C6(2)}. Then, we have

P+
6 (ω(1)) = Span{C1

6}, and |C1
6 | = 30.

Using Theorem 2.1, it follows that if X ∈ D6(9) such that ω(X) = (5, 2), then X ∈ C1
6 .

It is easy to check that the monomials x2
1xixjxℓxkx

3
t , x

3
1x

2
2x3x4x5x6 in C1

6 are inadmis-
sible (more precisely by Sq1), where (i, j, ℓ, k, t) is an arbitrary permutation of (2, 3, 4, 5, 6).

From the above results, it shows that P+
6 (ω(1)) is generated by 24 elements ci, for all

1 ⩽ i ⩽ 24 as follows:

1. x3
1x

1
2x

1
3x

1
4x

1
5x

2
6 2. x1

1x
3
2x

1
3x

1
4x

1
5x

2
6 3. x1

1x
1
2x

3
3x

1
4x

1
5x

2
6 4. x1

1x
1
2x

1
3x

3
4x

1
5x

2
6

5. x1
1x

1
2x

1
3x

1
4x

3
5x

2
6 6. x3

1x
1
2x

1
3x

1
4x

2
5x

1
6 7. x1

1x
3
2x

1
3x

1
4x

2
5x

1
6 8. x1

1x
1
2x

3
3x

1
4x

2
5x

1
6

9. x1
1x

1
2x

1
3x

3
4x

2
5x

1
6 10. x1

1x
1
2x

1
3x

1
4x

2
5x

3
6 11. x3

1x
1
2x

1
3x

2
4x

1
5x

1
6 12. x1

1x
3
2x

1
3x

2
4x

1
5x

1
6

13. x1
1x

1
2x

3
3x

2
4x

1
5x

1
6 14. x1

1x
1
2x

1
3x

2
4x

3
5x

1
6 15. x1

1x
1
2x

1
3x

2
4x

1
5x

3
6 16. x3

1x
1
2x

2
3x

1
4x

1
5x

1
6

17. x1
1x

3
2x

2
3x

1
4x

1
5x

1
6 18. x1

1x
1
2x

2
3x

3
4x

1
5x

1
6 19. x1

1x
1
2x

2
3x

1
4x

3
5x

1
6 20. x1

1x
1
2x

2
3x

1
4x

1
5x

3
6

21. x1
1x

2
2x

3
3x

1
4x

1
5x

1
6 22. x1

1x
2
2x

1
3x

3
4x

1
5x

1
6 23. x1

1x
2
2x

1
3x

1
4x

3
5x

1
6 24. x1

1x
2
2x

1
3x

1
4x

1
5x

3
6

We next prove that the vectors [ci], 1 ⩽ i ⩽ 24, are linearly independent in K⊗AP6.
Denote

Nn = {(j; J) : J = (j1, j2, . . . , jt), 1 ⩽ j < j1 < . . . < jt ⩽ n, 0 ⩽ t < n}.
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For n = 6, and for any (j; J) ∈ N6, we define φ(j;J) : P6 → P5 by substituting:

φ(j;J)(xi) =


xi, if 1 ⩽ i ⩽ j − 1,∑

s∈J xs−1, if i = j,

xi−1, if j < i ⩽ 6.

It is easy to check that these homomorphisms are A-modules homomorphisms. We use
them to prove that a certain set of monomials is actually the set of admissible monomials
in P6 by showing these monomials are linearly independent in K⊗AP6.

Suppose that there is a linear relation:

U =
∑

1⩽i⩽24

γici ≡ 0,

with γi ∈ K, 1 ⩽ i ⩽ 24.
Using the results in [20], we compute φ(j;J)(U) in terms of the admissible monomials in

P5(mod(A+P5)). By direct computation, from the relations φ(j;J)(U) ≡ 0, one gets γi = 0
for all 1 ⩽ i ⩽ 24.

In summary, the set {[ci] : 1 ⩽ i ⩽ 24} is a basis of the K-vector space QP+
6 (ω(1)).

Consequently, dimQP+
6 (ω(1)) = 24.

Case 2. Consider the weight vector ω = ω(2) = (3, 3). Assume that Y is an admissible
monomial in P+

6 such that ω(Y ) = (3, 3). Thus, one has Y = xixjxk.w
2 with 1 ⩽ i < j <

k ⩽ 6, w ∈ D6(3).
Putting C2

6 := {xixjxk.w
2 : 1 ⩽ i < j < k ⩽ 6, w ∈ D6(3)}. Then, one gets P+

6 (ω(2)) =

Span{C2
6}, and if X ∈ D6(11) such that ω(X) = (3, 3), then X ∈ C2

6 .
By direct calculations, we see that P+

6 (ω(2)) is generated by 10 elements di, 1 ⩽ i ⩽ 10
as follows:

1. x1x2x3x
2
4x

2
5x

2
6 2. x1x2x

2
3x4x

2
5x

2
6 3. x1x2x

2
3x

2
4x5x

2
6 4. x1x2x

2
3x

2
4x

2
5x6

5. x1x
2
2x3x4x

2
5x

2
6 6. x1x

2
2x3x

2
4x5x

2
6 7. x1x

2
2x3x

2
4x

2
5x6 8. x1x

2
2x

2
3x4x5x

2
6

9. x1x
2
2x

2
3x4x

2
5x6 10. x1x

2
2x

2
3x

2
4x5x6

We now prove that the vectors [di], 1 ⩽ i ⩽ 10 are linearly independent in K⊗AP6.
Suppose that there is a linear relation:

S =
∑

1⩽i⩽10

γidi ≡ 0,

with γi ∈ K, 1 ⩽ i ⩽ 10. Using the results in [20], we compute φ(j;J)(S) in terms of
the admissible monomials in P5(mod(A+P5)). From the relations φ(j;J)(S) ≡ 0, one gets
γi = 0 for all 1 ⩽ i ⩽ 10.

Hence, QP+
6 (ω(2)) is an K-vector space of dimension 10 with a basis consisting of all the

classes represented by the monomials di, 1 ⩽ i ⩽ 10 . Consequently, dimQP+
6 (ω(2)) = 10.

And therefore, the theorem is proved. □

From the results of Proposition 3.1, Theorems 3.3 and 3.4, we obtain the following corol-
lary.

Corollary 3.1. The set {bi : 1 ⩽ i ⩽ 596} ∪ {cj : 1 ⩽ j ⩽ 24} ∪ {dℓ : 1 ⩽ ℓ ⩽ 10} is a minimal
set of A-generators for P6 in degree 6(20−1)+9.20. Consequently, dim(K⊗AP6)6(20−1)+9.20 =
630.

It is worth noting that Mothebe-Kaelo-Ramatebele [5] utilized a different method to
verify the dimension result of the vector space (K⊗AP6)6(20−1)+9.20 .
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For k = 1, then d1 = 6(21 − 1) + 9.21. Recall the Kameko’s squaring operation

S̃q
0

∗ := (S̃q
0

∗)(n;n+2d) : (K⊗APn)n+2d → (K⊗APn)d,

which is induced by an K-linear map Sn : Pn → Pn, given by

Sn(x) =

{
y, if x =

∏n
i=1 xiy

2

0, otherwise

for any monomial x ∈ Pn (see Kameko [3]).

Since Kameko’s homomorphism (S̃q
0

∗)(6;24) is a K-epimorphism, and Pn is the graded
polynomial algebra, it shows that

(K ⊗A P6)24 ∼= (K ⊗A P0
6 )24

⊕(
Ker(S̃q

0

∗)(6;24) ∩ (K ⊗A P+
6 )24

)⊕
Im(S̃q

0

∗)(6;24)

First, we have the following theorem.

Theorem 3.5. The following statements are true:

(i) Set D⊗6
Im(24) :=

{
[x] : x = Γ6(u), for all u ∈ D6(6(2

0−1)+9.20)
}
, where Γ6 : P6 → P6

is the homomorphism determined by Γ6(u) =
∏6

i=1 xiu
2, u ∈ P6. Then |D⊗6

Im(24)| = 630, and

the space Im(S̃q
0

∗)(6;24) is isomorphic to a subspace of (K⊗A P6)6(21−1)+9.21 generated by all the
classes [x] of D⊗6

Im(24).

(ii) Let us denote by D⊗6
0 (24) :=

{
v : v ∈

⋃6
k=1 Lk(D5(6(2

1 − 1) + 9.21))
}
. Then, we

have |D⊗6
0 (24)| = 4716, and the set {[v] : v ∈ D⊗6

0 (24)} is a basis of the K-vector space
(K⊗AP0

6 )6(21−1)+9.21 . This implies that (K⊗AP0
6 )6(21−1)+9.21 has dimension 4716.

Proof. We have µ(6(21 − 1) + 9.21) = 4. Using the same arguments as in Remark 3.1, we
also get

dim(K⊗AP0
6 )6(21−1)+9.21 =

∑
4⩽m⩽5

(
6

m

)
dim(K⊗AP+

m)6(21−1)+9.21 .

Using the results in Sum [14], and Tin [18], we obtain

dim(K⊗AP+
m)6(21−1)+9.21 =

{
70, if m = 4,

611, if m = 5.

And therefore, we get

dim(K⊗AP0
6 )6(21−1)+9.21 =

(
6

4

)
.70 +

(
6

5

)
.611 = 4716.

On the other hand, Tin showed in [18] that (K⊗AP5)6(21−1)+9.21 is a K-vector space
of dimension 961 with a basis consisting of all the classes represented by the monomi-
als uj , 1 ⩽ j ⩽ 961. We set F0 := {

⋃6
k=1 Lk(uj) : 1 ⩽ j ⩽ 961}. An easy computa-

tion shows that |F0| = 4716, and the set {[v] : v ∈ F0} is a basis of the K-vector space
(K⊗AP0

6 )6(21−1)+9.21 . The theorem is proved. □

Next, we explicitly determine the K-vector space Ker(S̃q
0

∗)(6;24)∩(K⊗AP+
6 )24. We have

the following theorem.
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Theorem 3.6. Let us denote by ω̃1 := (4, 2, 4), ω̃2 := (4, 2, 2, 1), ω̃3 := (4, 4, 3), and ω̃4 :=
(4, 4, 1, 1). Then, we have

(i) Assume that x belongs to (D6(24) ∩ P+
6 ) such that (S̃q

0

∗)(6;24)([x]) is not an element of

Im(S̃q
0

∗)(6;24). Then ω(x) = ω̃i, with i = 1, 2, 3, 4. Moreover, we have an isomorphism of the
K-vector spaces: (

Ker(S̃q
0

∗)(6;24) ∩ (K ⊗A P+
6 )24

) ∼= 4⊕
i=1

QP+
6 (ω̃i).

(ii) We have dim
(
Ker(S̃q

0

∗)(6;24) ∩ (K ⊗A P+
6 )24

)
=

4∑
i=1

dimQP+
6 (ω̃i) = 2781.

Proof. We set QPω
6 := Span{[x] ∈ K ⊗A P6 : x is admissible and ω(x) = ω}. Using the

results in Walker-Wood [21], we obtain

(3.2) (K ⊗A P6)24 =
⊕

degω=24

QPω
6
∼=

⊕
degω=24

QP6(ω)

Suppose that x is an admissible monomial of degree twenty-four in P+
6 such that [x]

belongs to Ker(S̃q
0

∗)(6;24). Observe that z = x15
1 x7

2x3x4 is the minimal spike of degree
twenty-four in P6 and ω(z) = (4, 2, 2, 1). Using Theorem 2.2, we get ω1(x) ⩾ 4. Since the
degree of (x) is even, one gets either ω1(x) = 4, or ω1(x) = 6.

If ω1(x) = 4 then x = xixjxkxℓu
2 with u an admissible monomial of degree ten in

P6 and 1 ⩽ i < j < k < ℓ ⩽ 6. Since x is admissible, by Theorem 2.1, u is also
admissible. By an easy computation show that ω(u) = (2, 4), or ω(u) = (2, 2, 1), or
ω(u) = (4, 1, 1), or ω(u) = (4, 3), or ω(u) = (6, 2). We see that if v is a monomial in P6 such
that ω(v) = (4, 6, 2), then v is strictly inadmissible (see Sum [13], Prop. 4.3). And therefore,
v is inadmissible. From this, ω(x) = (4, 2, 4), or ω(x) = (4, 2, 2, 1), or ω(x) = (4, 4, 3), or
ω(x) = (4, 4, 1, 1).

If ω1(x) = 6 then x =
∏6

i=1 xiw
2, with w a monomial of degree nine in P6. Using The-

orem 2.1, y is an admissible monomial. Hence, (S̃q
0

∗)(6;24)([x]) = [y] ̸= 0. This contradicts

the fact that [x] ∈ Ker(S̃q
0

∗)(6;24).
From the above results, we obtain

Ker(S̃q
0

∗)(6;24) ∩ (QP+
6 )24 =

4⊕
m=1

QP+
6 (ω̃m).

Remarkably, to list all the elements of the admissible monomial basis of the vector

space Ker(S̃q
0

∗)(6;24) ∩ (QP+
6 )24 is far too long and computationally very technical. The

following is a sketch of its proof with the aid of computers.
Let us denote by M⊗6

ω the set of classes represented by the admissible monomials of

the vector space Ker(S̃q
0

∗)(6;24) ∩ (QP+
6 )24. Consider the set

B⊗>
6 (ω) := {xixjxkxℓv

2 : 1 ⩽ i < j < k < ℓ ⩽ 6, v ∈ D6(10)} ∩ P+
6 .

Using Theorem 2.1, we see that if u is an admissible monomial of degree 24 in P+
6 such

that (S̃q
0

∗)(6;24)
(
[u]

)
does not belong to Im(S̃q

0

∗)(6;24), then u ∈ B⊗>
6 (ω).

We set up an algorithm implemented in Microsoft Excel software to eliminate the in-
admissible monomials in B⊗>

6 (ω) by observing that each monomial xa1
1 xa2

2 xa3
3 xa4

4 xa5
5 xa6

6

corresponds to a series of numbers of the type (a1; a2; a3; a4; a5; a6).
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By direct calculations, using Theorem 2.1, we filter out and remove the inadmissible
monomials in B⊗>

6 (ω), so we get |M⊗6
ω | = 2781.

Therefore, dim
(
Ker(S̃q

0

∗)(6;24) ∩ (K ⊗A P+
6 )24

)
= 2781. The theorem is proved. □

From the results of Theorem 3.5 and Theorem 3.6, we obtain the following corollary.

Corollary 3.2. There exist exactly 8127 admissible monomials of degree twenty-four in P6. Con-
sequently, |D6(6(2

1 − 1) + 9.21)| = 8127.

Consider the degrees dk = 6(2k − 1) + 9.2k, for any k ⩾ 2. Let GLn(K) be the general
linear group over the field K. Note that GLn(K) acts naturally on Pn by matrix substitu-
tion. Since the two actions of GLn(K) and A upon Pn commute with each other, hence
there is an inherited action of GLn(K) on K ⊗A Pn. We set

ζ(n; d) = max{0, n− α(d+ n)− ζ(d+ n)},

where ζ(n) is the greatest integer m such that n is divisible by 2m. We recall the following
result in Tin-Sum [17].

Theorem 3.7. Let d be an arbitrary non-negative integer. Then

(S̃q
0

∗)
r−s : (K ⊗A Pn)n(2r−1)+2rd −→ (K ⊗A Pn)n(2s−1)+2sd

is an isomorphism of GLn(K)-modules for every r ⩾ s if and only if s ⩾ ζ(n; d).

It is easy to see that for n = 6 and d = 54 then α(d + n) = α(60) = 4, and ζ(d + n) =
ζ(22.15) = 2, and therefore ζ(6; 54) = 0. Using the above theorem, we get an isomorphism
of K-vector spaces:

(K ⊗A P6)6(2r−1)+54.2r
∼= (K ⊗A P6)6(20−1)+54.20 for all r ⩾ 0.

And therefore, we obtain

dim(K ⊗A P6)6(2r−1)+54.2r = dim(K ⊗A P6)6(20−1)+54.20 for r ⩾ 0.

So, we get the set
{
[x] : x ∈ Γk−2

6

(
D6(6(2

2 − 1)+9.22)
)}

is a basis of the K-vector space
(K⊗AP6)6(2k−1)+9.2k , for all k > 2. Here, Γn : Pn → Pn is the homomorphism determined
by Γn(x) =

∏n
i=1 xix

2, for all x ∈ Pn.

Remark 3.2. Let (K ⊗A Pn)
GLn(K)
d be the subspace of (K ⊗A Pn)d consisting of all the

GLn(K)-invariant classes of degree d, and let us denote by K⊗GLn(K)PHd((RP∞)n) the
dual to (K ⊗A Pn)

GLn(K)
d . One of the major applications of hit problem is in surveying a

homomorphism introduced by W. M. Singer. It is a useful tool in describing the cohomol-
ogy groups of the Steenrod algebra, Extn,n+∗

A (K,K).
In [10], Singer defined the algebraic transfer, which is a homomorphism

Trn : K⊗GLn(K)PH∗((RP∞)n) −→ Extn,n+∗
A (K,K).

Singer has indicated the importance of the algebraic transfer by showing that Trn is a
isomorphism with n = 1, 2 and at some other degrees with n = 3, 4, but he also disproved
this for Tr5 at degree 9, and then gave the following conjecture.

Conjecture 3.1. The algebraic transfer Trn is a monomorphism for any n ⩾ 0.

It could be seen from the work of Singer the meaning and necessity of the hit problem.
In [1], Boardman confirmed this again by using the modular representation theory of
linear groups to show that Tr3 is also an isomorphism.
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For n ⩾ 4, the Singer algebraic transfer was studies by many authors (See Board-
man [1], Bruner-Ha-Hung [2], Minami [4], Sum-Tin [15], Phuc [7] and others). However,
Singer’s conjecture is still open for n ⩾ 4.

In the future, we will use the results of the hit problem to study and verify the Singer
conjecture for the algebraic transfer in the above degrees. More specifically, by using
the admissible monomial basis of degree 6(2k − 1) + 9.2k in P6 to explicitly compute
the vector space (K ⊗A P6)

GL6(K)

6(2k−1)+9.2k
and combining the computation of the groups

Ext
6,6(2k−1)+9.2k+6
A (K,K), to obatin information about the behavior of the sixth Singer

algebraic transfer in these degrees.
By Theorem 3.7, we also obtain the following theorem.

Theorem 3.8. We have an isomorphism of K-vector spaces:

(K ⊗A P6)
GL6(K)

6(2k−1)+9.2k
∼= (K ⊗A P6)

GL6(K)
6(22−1)+9.22 , for all k > 2.

By passing to the dual, we obtain the following result.

K⊗GL6(K)PH6(2k−1)+9.2k((RP∞)6) ∼= (K⊗GL6(K)PH6(22−1)+9.22((RP∞)6)),

for k > 2. And therefore, we need only to compute the dimension of the vector spaces
K⊗GL6(K)PH6(2k−1)+9.2k((RP∞)6) for k ⩽ 2. In the not-too-distant future, we will in-
vestigate and validate Singer’s conjecture for the sixth algebraic transfer in these circum-
stances.
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