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Best proximity results for p-proximal contractions on
topological spaces

A. BERA1,5, L. K. DEY1, A. PETRUŞEL2,3 and A. CHANDA4

ABSTRACT. In this article, we investigate some sufficient conditions for the existence and uniqueness of best
proximity points for the topological p-proximal contractions and p-proximal contractive mappings on arbitrary
topological spaces. Moreover, our results are illustrated by a few numerical examples and they generalize some
known results in the literature.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory in complete metric spaces or in Banach spaces serves as a conse-
quential tool to get to the bottom of a huge number of applications in many scientific
fields, to name a few, mathematics, computer science and economics. One can note that
numerous problems related to preceding domains of research can be expressed as equa-
tions of the form Tx = x, where T is a self-mapping defined in a suitable underlying
structure. For excellent books on these topics see [4, 6, 13, 17, 20] and many others. When-
ever T is not a self-mapping, the equation Tx = x does not necessarily possess a solu-
tion. In these circumstances, it is worthy to search for an optimal approximate solution
which minimizes the error due to approximation. In other words, for a non-self-mapping
T : A → B defined on a metric space, one enquires for an approximate solution x∗ in
A so that the error d(x∗, Tx∗) is minimum. This solution x∗ is said to be a best proxim-
ity point of the mapping. The concerning theory dealing with existence of best proxim-
ity points is rich enough and for some interesting findings keen readers are referred to
[3, 7, 8, 10, 14, 16, 27–29] and references therein.

Very recently, Raj and Piramatchi [21] extended the notion of best proximity points
from usual metric spaces to arbitrary topological spaces and affirmed certain related re-
sults alongside a generalized version of the well-known Edelstein fixed point theorem.
Following this direction of research, Som et al. [24] proposed couple of new concepts
namely topologically weak proximal contractions and topologically proximal weakly con-
tractive mappings with respect to a real-valued continuous function g defined on X ×X
and investigated sufficient conditions for the existence and uniqueness of best proximity
points for the preceding class of mappings.

It can be very fascinating to note that the concept of best proximity points in the setting
of Banach spaces for various non-expansive mappings is investigated by many mathe-
maticians. In the article [5], the author gives some characterizations of nearly strongly
convex and very convex spaces in terms of best approximation theoretic properties of
Banach spaces. Of late, Shukla and Panicker [26] established several weak and strong
convergence theorems for Kirk iterative method in the Banach spaces context. In [15],
the author proposes a self-adaptive projection method to obtain a common element in
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the solution set of variational inequalities and fixed point set for relatively non-expansive
mappings in 2-uniformly convex and uniformly smooth real Banach spaces. More results
in this direction of research can be found in [2, 11, 18, 25].

On the other hand, in 2020, Altun [1] proposed the notions of p-proximal contraction
and p-proximal contractive non-self-mapping on metric spaces and proved best proximity
point theorems for these type of mappings. Very recently, in [12], it is observed that the
main result for p-proximal contractions, given in [1], is a straightforward consequence of
a fixed point theorem for p-contractions, given by Popescu [19].

Firstly, we recollect the definition of a p-proximal contraction.

Definition 1.1. Let T : A → B be a mapping defined on two non-empty subsets A and
B of a metric space (X, d). Then T is said to be a p-proximal contraction if there exists
k ∈ (0, 1) such that

d(u1, Tx1) = dist(A,B), d(u2, Tx2) = dist(A,B)

imply
d(u1, u2) ≤ k (d(x1, x2) + |d(u1, x1)− d(u2, x2)|) ,

for all x1, x2, u1, u2 ∈ A.

As a particular case, whenever A = B = X , then the previous definition reduces
to the collection of self-mappings known as p-contractions introduced by Popescu [19]
beforehand. In the following, we recall some definitions and notations which are playing
crucial roles in this article. For a detailed reading, one is referred to [24].

Definition 1.2. Let Ξ be a topological space and Φ : Ξ×Ξ → R be a continuous mapping.
Let (ξn) be a sequence in Ξ. Then (ξn) is said to be Φ-convergent to ξ ∈ Ξ if |Φ(ξn, ξ)| → 0
as n → ∞.

Definition 1.3. Let Ξ be a topological space and Φ : Ξ×Ξ → R be a continuous mapping.
Let (ξn) be a sequence in Ξ. Then (ξn) is said to be Φ-Cauchy to if |Φ(ξn, ξm)| → 0 as
n,m → ∞.

Definition 1.4. Let Ξ be a topological space and Φ : Ξ×Ξ → R be a continuous mapping.
Then Ξ is said to be Φ-complete if every Φ-Cauchy sequence (ξn) in Ξ is Φ-convergent to
an element in Ξ.

Definition 1.5. [21] Let ℜ,Ω be two non-empty subsets of a topological space Ξ and Φ :
Ξ× Ξ → R be a continuous mapping. Consider

DΦ(ℜ,Ω) = inf {|Φ(α, β)| : α ∈ ℜ, β ∈ Ω} .

It is clear that if Ξ is a metric space and Φ is a distance function, then DΦ(ℜ,Ω) is the
distance between the two aforementioned sets. Here we consider the following two sets
which will be important in establishing our findings:

ℜΦ = {α ∈ ℜ : |Φ(α, β)| = DΦ(ℜ,Ω) for some β ∈ Ω} ,

ΩΦ = {α ∈ Ω : |Φ(α, β)| = DΦ(ℜ,Ω) for some β ∈ ℜ} .

Definition 1.6. [21] Let ℜ,Ω be two non-empty subsets of a topological space Ξ with
ℜΦ ̸= ϕ and Φ : Ξ × Ξ → R be a continuous mapping. Then (ℜ,Ω) is said to satisfy
topologically p-property if

(1.1) |Φ(α1, β1)| = DΦ(ℜ,Ω),
|Φ(α2, β2)| = DΦ(ℜ,Ω)

}
⇒ |Φ(α1, α2)| = |Φ(β1, β2)|

for α1, α2 ∈ ℜ and β1, β2 ∈ Ω.
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One can note that if Ξ is a metric space and Φ is a distance function on Ξ, then it is the
usual p-property, which is the fundamental property to obtain the best proximity points
for non-self mappings, introduced in [22]. In our next example, we show that a pair of
subsets (ℜ,Ω) of a topological space Ξ may satisfy p-property with respect to one mapping
but may not so for another mapping.

Example 1.1. Consider R2 with usual topology. Let ℜ = {2}× [−2, 0] and Ω = {2}× [0, 2].
Let F1 : R2 × R2 → R and F2 : R2 × R2 → R be defined as

F1 ((α1, α2), (β1, β2)) = α2
2 − β2

2 for all (α1, α2), (β1, β2) ∈ R2

and

F2 ((α1, α2), (β1, β2)) = α2β2 for all (α1, α2), (β1, β2) ∈ R2

respectively. Then F1 is a continuous function and also DF1(ℜ,Ω) = 0. Now it can be eas-
ily verified that the pair (ℜ,Ω) of subsets of a topological space Ξ satisfies p-property with
respect to the mapping F1 but does not so for the mapping F2 though F2 is continuous
function and DF2

(ℜ,Ω) = 0. As F2

(
(1,− 1

2 ), (1, 0)
)
= 0 = DF2

(ℜ,Ω) and F2

(
(1,− 1

3 ), (1, 0)
)
=

0 = DF2
(ℜ,Ω) but F2

(
(1,− 1

2 ), (1,−
1
3 )
)
̸= F2 ((1, 0), (1, 0)) .

In the following, we extend the notions of proximal contractions and modified proxi-
mal contractions [1] in the context of a topological space.

Definition 1.7. Let ℜ,Ω be two non-empty subsets of a topological space Ξ and Φ : Ξ ×
Ξ → R be a continuous mapping. A mapping F : ℜ → Ω is said to be a topologically
proximal contraction with respect to Φ if there exists a real number c ∈ (0, 1) such that

(1.2) |Φ(α1,F(β1))| = DΦ(ℜ,Ω),
|Φ(α2,F(β2))| = DΦ(ℜ,Ω)

}
⇒ |Φ(α1, α2)| ≤ c|Φ(β1, β2)|

for all α1, α2, β1, β2 ∈ ℜ.
Now for distinct β1 and β2, we give a modified definition of topological proximal con-

traction, which as follows.

Definition 1.8. Let ℜ,Ω be two non-empty subsets of a topological space Ξ and Φ : Ξ ×
Ξ → R be a continuous mapping. A mapping F is said to be a modified topologically
proximal contraction with respect to Φ if there exists a real number c ∈ (0, 1) such that

(1.3) |Φ(α1,F(β1))| = DΦ(ℜ,Ω),
|Φ(α2,F(β2))| = DΦ(ℜ,Ω)

}
⇒ |Φ(α1, α2)| ≤ c|Φ(β1, β2)|

for all α1, α2, β1, β2 ∈ ℜ with β1 ̸= β2.

In our next example, we show that every topological proximal contraction is a modified
topological proximal contraction but the converse may not hold.

Example 1.2. Consider R2 with usual topology. We consider the sets ℜ = {(0,− 1
2 ), (0,

1
2 )}

and Ω = {(0, 0), (1, 3
4 ), (1, 5)}. Let Φ : R2 × R2 → R be a continuous mapping defined as

Φ ((α1, α2), (β1, β2)) = (α1 − β1) + (α2 − β2) for all (α1, α2), (β1, β2) ∈ R2.

Then DΦ(ℜ,Ω) = 1
2 and define the mapping F : ℜ → Ω as follows:

F(x, y) =

{ (
1, 1 + y

2

)
, at (0,− 1

2 );
(0, 1− 2y) , at (0, 12 ).

Then for β1 = β2 = (0, 1
2 ) and α1 = (0, 1

2 ), α2 = (0,− 1
2 ), we get

|Φ(α1,F(β1))| = DΦ(ℜ,Ω) = 1
2 ,

|Φ(α2,F(β2))| = DΦ(ℜ,Ω) = 1
2
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but |Φ(α1, α2)| = 1 > c|Φ(β1, β2)| for any c ∈ (0, 1). Therefore F is not a topologi-
cal proximal contraction. However, we can not find two distinct β1 and β2 such that
|Φ(α1,F(β1))| = DΦ(ℜ,Ω) and |Φ(α2,F(β2))| = DΦ(ℜ,Ω) hold but the implication (1.3)
holds for all α1, α2 ∈ ℜ. Therefore F is a modified topological proximal contraction.

2. Best proximity point theorem on topological spaces

To begin with, we introduce the notion of topological p-proximal contractions.

Definition 2.9. Let ℜ,Ω be two non-empty subsets of a topological space Ξ and Φ : Ξ ×
Ξ → R be a continuous mapping. A mapping F : ℜ → Ω is said to be a topological
p-proximal contraction if there exists a real number c ∈ (0, 1) such that

|Φ(α1,F(β1))| = DΦ(ℜ,Ω),
|Φ(α2,F(β2))| = DΦ(ℜ,Ω)

}
⇒ |Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

(2.4)

for all α1, α2, β1, β2 ∈ ℜ with β1 ̸= β2.

Note that if Ξ is a metric space and Φ is a distance function on Ξ, then F becomes the
usual p-proximal contraction, introduced in [1]. Additionally, if we consider ℜ = Ω = Ξ,
then the above definition of a topological p-proximal contraction can be written as

|Φ(F(β1),F(β2))| ≤ c (|Φ(β1, β2)|+ ||Φ(β1,F(β2))| − |Φ(β2,F(β2))||)

for all β1, β2 ∈ Ξ. In such cases, the mapping satisfying the previous contraction is called
a p-contraction. The following example shows that a mapping F : ℜ → Ω, where ℜ,Ω are
non-empty subsets of a topological space Ξ, may be a topological p-proximal contraction
with respect to a mapping Φ : Ξ × Ξ → R and may not be such with respect to another
mapping g : Ξ× Ξ → R.

Example 2.3. Let us consider the topological space R with usual topology and the sets
ℜ = {(x, y) : 3 ≤ x ≤ 4, 4 ≤ y ≤ 6} and Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Also consider
that Φ : R2 × R2 → R be a continuous mapping defined as Φ ((x1, y1), (x2, y2)) = y1 − y2
for all (x1, y1), (x2, y2) ∈ R2. Then DΦ(ℜ,Ω) = 3. Let us define F : ℜ → Ω by

F(x, y) =
(x
3
− 1,

y

8

)
for all (x, y) ∈ ℜ.

Let α1 = (x1, y1), α2 = (x′
1, y

′
1), β1 = (x2, y2), β2 = (x′

2, y
′
2) ∈ R2 be such that

|Φ(α1,F(β1))| = DΦ(ℜ,Ω)
|Φ(α2,F(β2))| = DΦ(ℜ,Ω).

Then

|Φ(α1,F(β1))| = 3

⇒
∣∣∣∣((x1, y1),

(
x′
1

3
− 1,

y′1
8

))∣∣∣∣ = 3

⇒
∣∣∣∣y1 − y′1

8

∣∣∣∣ = 3.

Similarly,

|Φ(α2,F(β2))| = DΦ(ℜ,Ω) = 3

⇒
∣∣∣∣y2 − y′2

8

∣∣∣∣ = 3.
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Now,

|Φ(α1, α2)| = |Φ ((x1, y1), (x2, y2))| = |y2 − y1|.(2.5)

Again,

|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)|| = |y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2|| .(2.6)

Then the following cases occur:
Case 1: Let

y1 −
y′1
8

= 3 ⇒ y1 =
y′1
8

+ 3

and

y2 −
y′2
8

= 3 ⇒ y2 =
y′2
8

+ 3.

Then by using (2.5) and (2.6), we get

|y2 − y1| =
∣∣∣∣y′18 − y′2

8

∣∣∣∣ = 1

8
|y′2 − y′1|

and subsequently,

|Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

= c (|y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2||) , where c =
1

2
.

Case 2: Let

y1 −
y′1
8

= −3 ⇒ y1 =
y′1
8

− 3

and

y2 −
y′2
8

= −3 ⇒ y2 =
y′2
8

− 3.

Then by using (2.5) and (2.6), we get

|y2 − y1| =
∣∣∣∣y′18 − y′2

8

∣∣∣∣ = 1

8
|y′2 − y′1|

and subsequently,

|Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

= c (|y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2||) , where c =
1

2
.

Then it can be verified that |Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||) for
some c ∈ [0, 1). Therefore F is a topological p-proximal contraction with respect to Φ.

On the other hand, if we define Φ1 : R2 × R2 → R by |Φ1(x1, y1), (x2, y2)| = 1, then it
can be easily verified that F is not a topological p-proximal contraction with respect to Φ1.

In the subsequent example, we show that there exists a topological space Ξ and a map-
ping F : ℜ → Ω, where ℜ,Ω are non-empty subsets of Ξ, such that F is a topological
p-proximal contraction with respect to a continuous real-valued function Φ. Notice that if
the topological space is metrizable with respect to a metric d, then the mapping F is not a
p-proximal contraction with respect to the metric d.

Example 2.4. Let us consider R with the usual topology. Let Φ : R×R → R be defined by

Φ(u, v) = u2 − v2, for all u, v ∈ R.
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Then Φ is a continuous function. Let ℜ = {0, 1, 2, 3, 5} and Ω = {−1,−2, 4}, and F : ℜ →
Ω be defined as F(0) = F(5) = 4,F(2) = F(3) = −2,F(1) = −1. Then it can be easily
verified that DΦ(ℜ,Ω) = 0. Let α1 = α2 = β1 = 2 and β2 = 3, then

|Φ(α1,F(β1))| = DΦ(ℜ,Ω) = 0,
|Φ(α2,F(β2))| = DΦ(ℜ,Ω) = 0.

Therefore it can be verified that for c = 1
10 ,

0 = |Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

for all α1, α2, β1, β2 with β1 ̸= β2. Thus F is a topological p-proximal contraction with
respect to Φ. On the other hand, let d be the usual metric on R and Dd(ℜ,Ω) = inf{d(u, v) :
u ∈ ℜ, v ∈ Ω}. Therefore Dd(ℜ,Ω) = 1. Now

|d(5,F(0))| = Dd(ℜ,Ω) = 1,
|d(0,F(1))| = Dd(ℜ,Ω) = 1.

But 5 = d(5, 0) > c (|d(0, 1)|+ ||d(5, 0)| − |d(1, 0)||) for c = 1
10 . Hence F is not a p-proximal

contraction with respect to d for c = 1
10 .

Now we are in a position to present a best proximity point theorem concerning the
newly introduced topological p-proximal contractions on an arbitrary topological space.

Theorem 2.1. Let Ξ be a Φ-complete topological space, where Φ : Ξ × Ξ → R is a continuous
function such that Φ(x, y) = 0 if and only if x = y, |Φ(x, y)| = |Φ(y, x)| and |Φ(x, z)| ≤
|Φ(x, y)|+|Φ(y, z)| for all x, y, z ∈ Ξ. Let ℜ,Ω be non-empty subsets where ℜ is a Φ-closed subset
of Ξ such that Ω is approximately Φ-compact with respect to ℜ. Let F : ℜ → Ω be a topological
p-proximal contraction with respect to Φ such that F(ℜΦ) ⊆ ΩΦ and ℜΦ is non-empty. Then F
has a unique best proximity point.

Proof. Let ξ0 ∈ ℜΦ be an arbitrary element. Since F(ξ0) ∈ F(ℜΦ) ⊆ ΩΦ, there exists
ξ1 ∈ ℜΦ such that |Φ(ξ1,F(ξ0))| = DΦ(ℜ,Ω). Similarly as F(F(ξ1)) ∈ F(ℜΦ) ⊆ ΩΦ,
there exists ξ2 ∈ ℜΦ such that |Φ(ξ2,F(ξ1))| = DΦ(ℜ,Ω). Proceeding in this way, we can
construct a sequence (ξn) in ℜΦ such that

(2.7) |Φ(ξn+1,F(ξn))| = DΦ(ℜ,Ω) for all n ∈ N.

Now, if there exists an n ∈ N such that ξn = ξn+1, then it is clear that ξn is the best
proximity point of the mapping F . Let we assume that ξn ̸= ξn+1 for all n ∈ N. From the
construction of the sequence, we have

|Φ(ξn,F(ξn−1))| = DΦ(ℜ,Ω),
|Φ(ξn+1,F(ξn))| = DΦ(ℜ,Ω),

for all n ∈ N. As F is a topological p-proximal contraction with respect to Φ, we have

|Φ(ξn, ξn+1)| ≤ c (|Φ(ξn−1, ξn)|+ ||Φ(ξn−1, ξn)| − |Φ(ξn+1, ξn)||)

for all n ∈ N and c ∈ (0, 1). Let us suppose that |Φ(ξn−1, ξn)| ≤ |Φ(ξn+1, ξn)| for some
n ∈ N. Then

|Φ(ξn, ξn+1)| ≤ c (|Φ(ξn−1, ξn)|+ |Φ(ξn+1, ξn)| − Φ(ξn−1, ξn)|)
≤ c|Φ(ξn+1, ξn)|,
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which is a contradiction. Thus the only possibility is |Φ(ξn, ξn+1)| ≤ |Φ(ξn−1, ξn)| for some
n ∈ N. Then

|Φ(ξn, ξn+1)| ≤ c (|Φ(ξn−1, ξn)|+ |Φ(ξn−1, ξn)| − |Φ(ξn+1, ξn)|)
≤ c (2|Φ(ξn−1, ξn)| − |Φ(ξn+1, ξn)|)

(1 + c)|Φ(ξn, ξn+1)| ≤ c (2|Φ(ξn−1, ξn)|)

|Φ(ξn, ξn+1)| ≤
2c

1 + c
|Φ(ξn−1, ξn)|

≤
(

2c

1 + c

)2

|Φ(ξn−2, ξn−1)| ≤ · · · ≤
(

2c

1 + c

)n

|Φ(ξ0, ξ1)| .

Suppose that m > n and n ∈ N. Let m = n+ p where p ≥ 1. Then by the given condition
and the above inequality, we have

|Φ(ξn, ξm)| = |Φ(ξn, ξn+p)|
≤ |Φ(ξn, ξn+1)|+ |Φ(ξn+1, ξn+2)|+ |Φ(ξn+1, ξn+2)|+ · · ·+ |Φ(ξn+p−1, ξn+p)|

≤
(

2c

1 + c

)n

|Φ(ξ0, ξ1)|+
(

2c

1 + c

)n+1

|Φ(ξ0, ξ1)|

+

(
2c

1 + c

)n+2

|Φ(ξ0, ξ1)|+ · · ·+
(

2c

1 + c

)n+p−1

|Φ(ξ0, ξ1)|

=

{
1 +

2c

1 + c
+

(
2c

1 + c

)2

+ · · ·+
(

2c

1 + c

)p−1
}(

2c

1 + c

)n

|Φ(ξ0, ξ1)|

=

(
2c

1 + c

)n 1−
(

2c
1+c

)p

1− 2c
1+c

|Φ(ξ0, ξ1)|

≤
(

2c

1 + c

)n
1

1− 2c
1+c

|Φ(ξ0, ξ1)|.

Taking limit on both sides of the above equation, we get |Φ(ξn, ξm)| → 0 as n,m → ∞.
Therefore, the sequence (ξn) is a Φ-Cauchy sequence. Since Ξ is Φ-complete and ℜ is Φ-
closed subset of Ξ, there exists a point ξ∗ ∈ ℜ such that |Φ(ξn, ξ∗)| → 0 for all n ∈ N. Again
from (2.7) and given condition, we get

|Φ(ξ∗,F(ξn))| ≤ |Φ(ξ∗, ξn+1)|+ |Φ(ξn+1,F(ξn))|
≤ |Φ(ξ∗, ξn+1)|+DΦ(ℜ,Ω)
≤ |Φ(ξ∗, ξn+1)|+DΦ(ξ

∗,Ω).

Taking limit on both sides, we have |Φ(ξ∗,F(ξn))| → |Φ(ξ∗,Ω)| as n → ∞. Since Ω is ap-
proximately Φ-compact with respect to ℜ, there exists a subsequence (F(ξnk

)) of (F(ξn))
such that |Φ (F(ξnk

), γ)| → 0 as k → ∞ for some γ ∈ Ω. Then

|Φ(ξ∗, γ)| ≤ lim
k→∞

[
|Φ(ξ∗, ξnk+1

)|+ |Φ(ξnk+1
,F(ξnk

))|+ |Φ(F(ξnk
), γ)|

]
= lim

k→∞
|Φ(ξnk+1

,F(ξnk
))| = DΦ(ℜ,Ω).

Therefore, |Φ(ξ∗, γ)| = DΦ(ℜ,Ω) implies γ ∈ ℜΦ. Also since F(ℜΦ) ⊆ ΩΦ, there exists an
element λ ∈ ℜΦ such that

|Φ(λ,F(ξ∗))| = DΦ(ℜ,Ω).(2.8)
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Now we can assume without loss of generality that ξ∗ ̸= ξn for all n ∈ N. Then from (2.7),
(2.8) and the definition of topological p-proximal contraction, we get

|Φ(ξn+1, λ)| ≤ c (|Φ(ξn, ξ∗)|+ ||Φ(ξn+1, ξn)| − |Φ(λ, ξ∗)||)

for all n ∈ N. Taking limit both sides, we obtain

|Φ(ξ∗, λ)| ≤ c|Φ(λ, ξ∗)|,

which gives that ξ∗ = λ. Therefore from (2.8) we conclude that ξ∗ is the best proximity
point of the mapping F . For uniqueness, let us assume that there are two different best
proximity points ξ∗ and λ∗ of the mapping F on ℜ. Then we get

|Φ(ξ∗,F(ξ∗))| = DΦ(ℜ,Ω),
|Φ(λ∗,F(λ∗))| = DΦ(ℜ,Ω).

Since F is a topological p-proximal contraction, then we have

|Φ(ξ∗, λ∗)| ≤ c (|Φ(ξ∗, λ∗)|+ ||Φ(ξ∗, ξ∗)| − |Φ(λ∗, λ∗)||)
= c|Φ(ξ∗, λ∗)|,

which is a contradiction. Therefore λ∗ = ξ∗. This completes the proof. □

Next we illustrate the previously proved Theorem 2.1 by an example.

Example 2.5. Let us consider the topological space R with usual topology and Ξ = [−1, 1]×
[−1, 1]. Let ℜ = {(x, y) : 2

3 ≤ x ≤ 1, 2
3 ≤ y ≤ 1} and Ω = {(x, y) : 0 ≤ x ≤ 1

2 , 0 ≤ y ≤ 1
2}.

Let us define F : ℜ → Ω by

F(x, y) =
(x
2
,
y

3

)
for all (x, y) ∈ ℜ.

Let Φ : R2×R2 → R be a mapping defined as Φ ((x1, y1), (x2, y2)) = y1−y2 for all (x1, y1),
(x2, y2) ∈ R. Then Φ is a continuous mapping on Ξ×Ξ and DΦ(ℜ,Ω) = 1

6 . Now, it can be
easily seen that Ξ is Φ-complete. Also

ℜΦ =

{(
x1,

2

3

)
:
2

3
≤ x1 ≤ 1

}
and

ΩΦ =

{(
x2,

1

2

)
: 0 ≤ x2 ≤ 1

2

}
.

Then

F(ℜΦ) = F
(
x1,

2

3

)
, where

2

3
≤ x1 ≤ 1

=

(
x1

2
,
2

9

)
⊆ ΩΦ.

Thus ℜΦ is non-empty, Φ-closed and also F(ℜΦ) ⊆ ΩΦ. Let α1 = (x1, y1), α2 = (x′
1, y

′
1), β1 =

(x2, y2), β2 = (x′
2, y

′
2) ∈ ℜ be such that

|Φ(α1,F(β1))| = DΦ(ℜ,Ω),
|Φ(α2,F(β2))| = DΦ(ℜ,Ω).
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Then

|Φ(α1,F(β1))| =
1

6

⇒
∣∣∣∣((x1, y1),

(
x′
1

2
,
y′1
3

))∣∣∣∣ = 1

6

⇒
∣∣∣∣y1 − y′1

3

∣∣∣∣ = 1

6
.

Similarly,

|Φ(α2,F(β2))| = DΦ(ℜ,Ω) =
1

6

⇒
∣∣∣∣y2 − y′2

3

∣∣∣∣ = 1

6
.

Now,

|Φ(α1, α2)| = |Φ ((x1, y1), (x2, y2))| = |y2 − y1|.(2.9)

Again,

|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)|| = |y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2|| .(2.10)

Then the following cases occur:
Case 1: Let

y1 −
y′1
3

=
1

6
⇒ y1 =

y′1
3

+
1

6
and

y2 −
y′2
3

=
1

6
⇒ y2 =

y′2
3

+
1

6
.

Then by using (2.9) and (2.10), we get

|y2 − y1| =
∣∣∣∣y′13 − y′2

3

∣∣∣∣ = 1

3
|y′2 − y′1|,

and subsequently,

|Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

= c (|y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2||) , where c =
2

3
.

Case 2: Let

y1 −
y′1
3

= −1

6
⇒ y1 =

y′1
3

− 1

6
and

y2 −
y′2
3

= −1

6
⇒ y2 =

y′2
3

− 1

6
.

Then by using (2.9) and (2.10), we get

|y2 − y1| =
∣∣∣∣y′13 − y′2

3

∣∣∣∣ = 1

3
|y′2 − y′1|

and subsequently,

|Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||)

= c (|y′1 − y′2|+ ||y1 − y′1| − |y2 − y′2||) , where c =
2

3
.

Then it can be verified that |Φ(α1, α2)| ≤ c (|Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||) for
some c ∈ [0, 1). This assures that the mapping F is a topological p-proximal contraction
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with respect to Φ. Also all the hypotheses of the Theorem 2.1 are satisfied. Therefore, we
can conclude that the mapping F has a unique best proximity point ( 23 ,

1
2 ).

In the subsequent discussion, we first introduce the concept of topological p-contractive
mappings and further, confirm a result of best proximity point theorem related to topo-
logical p-proximal contractive mappings on topological spaces.

Definition 2.10. Let ℜ,Ω be two non-empty subsets of a topological space Ξ. A mapping
F : ℜ → Ω is said to be a topological p-proximal contractive mapping if

|Φ(α1,F(β1))| = DΦ(ℜ,Ω),
|Φ(α2,F(β2))| = DΦ(ℜ,Ω)

}
⇒ |Φ(α1, α2)| < |Φ(β1, β2)|+ ||Φ(α1, β1)| − |Φ(α2, β2)||

for all α1, α2, β1, β2 ∈ ℜ with β1 ̸= β2.

Note that if Ξ be a metric space and Φ be a metric on Ξ, then this reduces to the notion
of usual p-proximal contractive mappings. Also if ℜ = Ω = Ξ, then the above inequality
can be written as

|Φ(F(β1),F(β2))| < |Φ(β1, β2)|+ ||Φ(β1,F(β2))| − |Φ(β2,F(β2))||
for all β1, β2 ∈ Ξ.

Now, we are in a position to prove a best proximity point theorem for topological p-
proximal contractive mappings. Further, we give an example to validate our finding.

Theorem 2.2. Let Ξ be a topological space, where Φ : Ξ × Ξ → R is a continuous function
satisfying the following |Φ(x, y)| = |Φ(y, x)| and |Φ(x, z)| ≤ |Φ(x, y)|+ |Φ(y, z)| for all x, y, z ∈
Ξ. Let ℜ,Ω be non-empty subsets of Ξ and F : ℜ → Ω be a topological p-proximal contractive
mapping with respect to Φ. Assume that (ℜ,Ω) has the topological p-property with respect to Φ
and F(ℜΦ) ⊆ ΩΦ. If there exists ξ, γ ∈ ℜΦ such that

|Φ(ξ,F(λ))| = DΦ(ℜ,Ω)(2.11)

and

|Φ(ξ, λ)| ≤ |Φ(F(ξ),F(λ))|,(2.12)

then F has a unique best proximity point.

Proof. Let ξ, λ ∈ ℜΦ. Since F(ℜΦ) ⊆ ΩΦ, then there exists a point γ ∈ ℜΦ such that

|Φ(γ,F(ξ))| = DΦ(ℜ,Ω).(2.13)

Employing the fact that (ℜ,Ω) has the topological p-property and using (2.11)-(2.13), we
have

|Φ(ξ, γ)| = |Φ (F(λ),F(ξ)) |.(2.14)

Let us assume ξ ̸= λ. As F is a topological p-proximal contractive mapping and applying
(2.11)-(2.13), we have

|Φ(ξ, γ)| < |Φ(ξ, λ)|+ ||Φ(ξ, λ)| − |Φ(γ, ξ)|| .(2.15)

Then from (2.15), by using (2.12) and (2.14), we get

|Φ(ξ, γ)| < |Φ(ξ, λ)|+ |Φ(γ, ξ)| − |Φ(ξ, λ)| = |Φ(γ, ξ)|,
which is a contradiction. Therefore ξ = λ. That is F has a best proximity point. For
uniqueness, let us assume that there are two different best proximity points ξ∗ and λ∗ of
the mapping F on ℜ. Then we get

|Φ(ξ∗,F(ξ∗))| = DΦ(ℜ,Ω),
|Φ(λ∗,F(λ∗))| = DΦ(ℜ,Ω).
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Since F is a topological p-proximal contractive mapping, we have

|Φ(ξ∗, λ∗)| < |Φ(ξ∗, λ∗)|+ ||Φ(ξ∗, ξ∗| − |Φ(λ∗, λ∗|| = |Φ(ξ∗, λ∗)|,

which is a contradiction. Therefore λ∗ = ξ∗ and F has a unique best proximity point. □

Here we present one corollary of our obtained theorem which is the generalization of
Edelstein fixed point theorem [9] on metric spaces.

Corollary 2.1. If we consider, |Φ(β1,F(β2))| = |Φ(β2,F(β2))| in Theorem 2.2, then we get the
Edelstein fixed point theorem in the topological space Ξ.

Next we furnish a supporting example of the above Theorem.

Example 2.6. Consider R2 with usual topology and Ξ = [−1, 1] × [−1, 1] with subspace
topology. Let ℜ = {0} × [−1, 0] and Ω = {1} × [0, 1]. Let Φ : Ξ × Ξ → R defined by
Φ ((ξ1, ξ2), (λ1, λ2)) = ξ22−λ2

2. Then Φ is a continuous mapping on Ξ×Ξ and DΦ(ℜ,Ω) = 0.
We define the mapping F : ℜ → Ω as F(0, t) =

(
1,− t

5

)
, for all t ∈ [−1, 0]. Now it can

be easily verified that Ξ is Φ-complete. Now, let (0, ξ) ∈ ℜΦ. Then there exists (0, λ) ∈ Ω
such that |Φ ((0, ξ), (0, λ))| = 0 implies |ξ2−λ2| = 0. This is satisfied only when ξ = λ = 0.
Therefore ℜΦ = {(0, 0)} and also ΩΦ = {(0, 0)}. Thus ℜΦ is non-empty, Φ-closed and also
F(ℜΦ) ⊆ ΩΦ. Then the mapping F is topological p-proximal contractive with respect to
Φ and (ℜ,Ω) satisfies the p-property. Additionally for ξ = λ = (0, 0), the conditions (2.11)
and (2.12) hold and further, all the hypotheses of Theorem 2.2 are satisfied. Therefore, we
can conclude that the mapping F has a unique best proximity point.
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