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Inertial projection and contraction methods for solving
variational inequalities with applications to image
restoration problems

LATEEF OLAKUNLE JOLAOSO1 , PONGSAKORN SUNTHRAYUTH2, PRASIT CHOLAMJIAK3

and YEOL JE CHO4,5

ABSTRACT. In this paper, we introduce two inertial self-adaptive projection and contraction methods for
solving the pseudomonotone variational inequality problem with a Lipschitz-continuous mapping in real Hilbert
spaces. The adaptive stepsizes provided by the algorithms are simple to update and their computations are more
efficient and flexible. Also we prove some weak and strong convergence theorems without prior knowledge of
the Lipschitz constant of the mapping. Finally, we present some numerical experiments to demonstrate the
effectiveness of the proposed algorithms by comparisons with related methods and some applications of the
proposed algorithms to the image deblurring problem.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the norm ∥ · ∥. Let C be a
nonempty closed and convex subset of H and A : H → H be a continuous mapping.

The variational inequality problem (shortly, VIP) is defined as follows:

(1.1) Find z ∈ C such that ⟨Az, y − x⟩ ≥ 0, ∀y ∈ C.

We denote the solution set of the VIP (1.1) by V I(C,A). Several important applications
of the VIP (1.1) have been discussed in, for instance, [2, 4, 12, 22, 23, 24, 28]. It is well
known that a point z is a solution of the VIP (1.1) if and only if z solves the fixed point
equation:

z = PC(z − λAz), ∀λ > 0,

where PC is the projection operator from H onto C. One of the earliest projection methods
for solving VIP is the extragradient method (EGM) introduced independently by Antipin [3]
and Korpelevich [25] as follows:{

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),

where A : H → H is monotone and L-Lipschitz continuous and suitable stepsize λ ∈(
0, 1

L

)
. It was proved that the EGM converges weakly to a solution of VIP in finite dimen-

sional spaces. However, the EGM requires two projections onto the feasible set C which
can be computationally costly if A is not simple.

A question of interest in projection-type algorithms is how to reduce the number of
projections in the algorithm. This has led to many modifications and improvements of
the EGM by many authors.
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In particular, Censor et al. [7] introduced the subgradient extragradient method (SEGM)
for solving the VIP with a monotone and L-Lipschitz continuous mapping. The algorithm
is described as follows:

(1.2)

{
yn = PC(xn − λAxn),

xn+1 = PTn
(xn − λAyn),

where
Tn := {x ∈ H : ⟨xn − λAxn − yn, x− yn⟩ ≤ 0}.

The authors proved that SEM converges weakly to a solution of the VIP provided the
stepsize λ ∈

(
0, 1

L

)
. Note that the Tn in (1.2) is a half-space and PTn

can be easily calcu-
lated using the closed form formula.

Also, Tseng [38] introduced the following single projection method for solving the VIP.
This method is known as the Tseng extragradient method (TEGM), which is described as
follows:

(1.3)

{
yn = PC(xn − λAxn),

xn+1 = yn − λ(Ayn −Axn).

It was proved that TEGM converges weakly to a solution of the VIP if the stepsize satis-
fies λ ∈

(
0, 1

L

)
. Note that the TEGM is more efficient than the EGM and its modifications

due to its single projection onto the feasible set C per each iteration.
Another method based on the single projection onto C for solving the monotone VIP is

the projection and contraction method (PCM) introduced by He [14] (see also Sun [33]). The
algorithm is stated as follows:

(1.4)

{
yn = PC(xn − λnAxn),

xn+1 = xn − γηndn,

where γ ∈ (0, 2), λn ∈
(
0, 1

L

)
and

ηn :=
⟨xn − yn, dn⟩

∥dn∥2
, dn := xn − yn − λn(Axn −Ayn).(1.5)

They proved that PCM converges weakly to a solution of the VIP under appropriate
assumptions. Recently, PCM for solving VIP has received great attention from many au-
thors, who improved it in various ways (see, for example, [9, 11, 15, 16]).

However, the stepsizes of the methods SEGM, TEGM and PCM depend on the prior
estimate of the Lipschitz constant L of the cost operator which is very difficult to estimate
in practice.

In order to modified the method which stepsize does not require prior estimate of the
Lipschitz constant and extend to more general class of the monotone VIPs, Thong and
Vuong [36] proposed a modification of the TEGM with a linesearch procedure for solving
the VIP with a pseudomonotone and Lipschitz continuous mapping in Hilbert spaces. To
be more precise, they proposed the following algorithm:

Algorithm A. [The TEGM for the pseudomonotone VIP]
Step 0: Given γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x1 ∈ H be arbitrary.
Step 1: Calculate

yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest nonnegative integer m satisfying

γlm∥Axn −Ayn∥ ≤ µ∥xn − yn∥.
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Step 2: Calculate

xn+1 = yn − λn(Ayn −Axn).

Update n := n+ 1 go to Step 1.

They proved that, if we assume that A : H → H is sequentially weakly continu-
ous, then the sequence {xn} generated by Algorithm A converges weakly to a point of
V I(C,A).

Very recently, Khanh et al. [21] also proposed the following SEGM for solving the VIP
with a pseudomonotone and Lipschitz continuous mapping in Hilbert spaces:

Algorithm B. [The SEGM for the pseudomonotone VIP]
Step 0: Given γ > 0, l ∈ (0, 1) and µ ∈ (0, 1). Let x1 ∈ H be arbitrary.
Step 1: Calculate

yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest nonnegative integer m satisfying

γlm∥Axn −Ayn∥ ≤ µ∥xn − yn∥.

Step 2: Construct the half-space

Tn := {x ∈ H : ⟨xn − λnAxn − yn, x− yn⟩ ≤ 0}

and calculate

xn+1 = PTn
(xn − λnAyn).

Update n := n+ 1 go to Step 1.

The weak convergence of the sequence {xn} generated by Algorithm B was established
under assuming the weak sequential continuity of A, which often assumed in many re-
cent works related to the pseudomonotone VIP (see, for example, [5, 8, 17, 21, 26, 36, 41]).
In most cases, the strong convergence is also preferable to the weak convergence in many
problems that arise in infinite-dimensional spaces because the weak convergence of algo-
rithms does not allow to enable efficient.

On the other hand, the inertial method has been a technique of interest and has received
a lot of attention from many researchers. Recently, the inertial technique is often used to
accelerated the convergence rate of algorithms to solves many kinds of optimization (see,
for example, [1, 8, 9, 16, 18, 27, 30, 35, 39, 41]).

Motivated and inspired by the above work, in this paper, we propose two modified
inertial projection and contraction methods with self adaptive stepsize rules to the solve
pseudomonotone variational inequality problem in real Hilbert spaces. This adaptive
stepsize rules are more efficient and flexible in computations without any linesearch pro-
cedure which can be time-consuming and expensive. Also we prove some weak and
strong convergence theorems for the proposed methods without any prior knowledge of
the Lipschitz constant of the mapping and without assuming the weak sequential conti-
nuity of the mapping.

The rest of the paper is divided as follows: In Sect. 2, we provide some preliminary
results which are need for our work. In Sect. 3, we prove some weak and strong con-
vergence theorems for the proposed methods. Finally, in Sect. 4, we give some numeri-
cal experiments including comparisons with other algorithms and the applications of the
proposed algorithms in the image debluring problem.
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2. PRELIMINARIES

Let H be a real Hilbert space. For a sequence {xn} in H , we write xn ⇀ z to indicate
that the sequence {xn} converges weakly to a point x ∈ H and xn → x to indicate that
the sequence {xn} converges strongly to a point x ∈ H . A point x ∈ H is called a weak
cluster point of a sequence {xn} in H if there exists a subsequence {xnk

} of {xn} converges
weakly to a point x ∈ H .

For each x, y ∈ H and α ∈ R, we know the following inequalities:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩(2.6)

and

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.(2.7)

Definition 2.1. Let A : H → H be a mapping. Then A is said to be:
(1) L-Lipschitz continuous if there exists a constant L > 0 such that

∥Ax−Ay∥ ≤ L∥x− y∥, ∀x, y ∈ H,

and, if L ∈ [0, 1), then A is called contraction;
(2) monotone if

⟨Ax−Ay, x− y⟩ ≥ 0, ∀x, y ∈ H;

(3) pseudomonotone if

⟨Ax, y − x⟩ ≥ 0 =⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ H;

(4) sequentially weakly continuous if, for each sequence {xn} ∈ H , xn ⇀ x implies Axn ⇀
Ax.

Remark 2.1. It is observe that every monotone mapping is a pseudomonotone mapping.
Indeed, let A : H → H be a monotone mapping such that ⟨Ax, y − x⟩ ≥ 0 for all x, y ∈ H .
It follows that

⟨Ay, y − x⟩ = ⟨Ay −Ax, y − x⟩︸ ︷︷ ︸
≥0

+ ⟨Ax, y − x⟩︸ ︷︷ ︸
≥0

≥ 0

for all x, y ∈ H . Hence A is a pseudomonotone mapping, but the converse implication
is not true. Several examples of a pseudomonotone mapping which is not necessarily
monotone can be found in [5, 20, 32].

Let C be a nonempty closed and convex subset of H . For each x ∈ H , there exists a
unique nearest point in C, denoted by PC(x), such that

∥x− PC(x)∥ = inf{∥x− y∥ : y ∈ C}.

Such a mapping PC is called the metric projection of H onto C. The following is well
known:

⟨x− PC(x), y − PC(x)⟩ ≤ 0.(2.8)

Let A be a mapping of C into H . Then we know the following property [34]:

z ∈ V I(C,A) ⇐⇒ z = PC(z − λAz), ∀λ > 0.(2.9)
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The following are explicit formulas of the metric projection on various feasible sets [6]:
(1) A half-space in H has the form H(a,β) := {x ∈ H : ⟨a, x⟩ ≤ β}, where a ∈ H , a ̸= 0

and β ∈ R. Then the projection of x onto H(a,β) is given by

PH(a,β)
(x) =

{
x−max

{
⟨a,x⟩−β
∥a∥2 , 0

}
a if ⟨a, x⟩ > β,

x if ⟨a, x⟩ ≤ β.

(2) A ball B[p, r] := {x ∈ H : ∥x− p∥ ≤ r}, where r > 0. Then the projection of x onto
B[p, r] is given by

PB[p,r](x) =

{
p+ r

max{∥x−p∥,r} (x− p) if ∥x− p∥ > r,

x if ∥x− p∥ ≤ r.

(3) A box constraints in Rn have the form Box[a, b] := {x ∈ Rn : a ≤ x ≤ b}, where
a, b ∈ Rn and a ≤ b. Then the projection of x onto Box[a, b] is given by

PBox[a,b](x)i = min{bi,max{x, ai}}.

We need the following lemmas and facts, which will play an important role in proving
our main results.

Lemma 2.1. [29] Let C be a nonempty set of a real Hilbert space H . Let {xn} be a sequence in
H such that the following two conditions hold:

(i) limn→∞ ∥xn − x∥ exists for each x ∈ C;
(ii) every weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Let {an} be a real sequence. Then we have

lim inf
n→∞

(−an) = − lim sup
n→∞

(an).

In particular, if {an} and {bn} are bounded sequences, then we obtain the following:

(1) lim supn→∞(an + bn) ≤ lim supn→∞(an) + lim supn→∞(bn);

(2) lim infn→∞(an + bn) ≥ lim infn→∞(an) + lim infn→∞(bn).

Lemma 2.2. [1] Let {φn}, {αn} and {βn} be three nonnegative real sequences such that

φn+1 ≤ φn + αn(φn − φn−1) + βn, ∀n ≥ 1,

with
∑∞

n=1 βn < ∞ and there exists a real number α such that 0 ≤ αn ≤ α < 1 for all n ∈ N.
Then the following results hold:

(1)
∑∞

n=1[φn − φn−1]+ < ∞, where [t]+ := max{t, 0}.

(2) There exists φ∗ ∈ [0,∞) such that limn→∞ φn = φ∗.

Lemma 2.3. [27] Let {an} and {cn} be two nonnegative real sequences such that

an+1 ≤ (1− αn)an + bn + cn, ∀n ≥ 1.

where {αn} is a sequence in (0, 1) and {bn} is a real sequence. Assume that
∑∞

n=1 cn < ∞.
Then the following results hold:

(1) If bn ≤ αnM for some M ≥ 0, then {an} is a bounded sequence.
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(2) If
∑∞

n1 αn = ∞ and lim supn→∞
bn
αn

≤ 0, then limn→∞ an = 0.

Lemma 2.4. [31] Let {an} be a nonnegative real sequence, {αn} be a sequence in (0, 1) with∑∞
n=1 αn = ∞ and {bn} be a real sequence. Assume that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying lim infk→∞(ank+1 −
ank

) ≥ 0, then limn→∞ an = 0.

3. MAIN RESULTS

In this section, we introduce two new modified inertial projection and contraction algo-
rithms with adaptive stepsize rule for solving the psuedomonotone VIP. In order to prove
the convergence results of the proposed algorithms, we need the following conditions:

Condition 1: The feasible set C is a closed and convex subset of a real Hilbert space H .
Condition 2: The mapping A : H → H is L-Lipschitz continuous and pseudomono-

tone on H .
Condition 3: The mapping A : H → H satisfies the following condition:

whenever {qn} ⊂ C, qn ⇀ q one has ∥Aq∥ ≤ lim inf
n→∞

∥Aqn∥.

Condition 4: The solution set of VIP is nonempty, that is, V I(C,A) ̸= ∅.

Remark 3.2. (1) If H is a finite-dimensional space, then it suffices to assume that the map-
ping A is continuous pseudomonotone and the Condition 3 is not necessary to assume.

(2) The Condition 3 is weaker than the sequential weak continuity of the mapping
A. Indeed, let A : ℓ2 → ℓ2 be a mapping defined by Ax = x∥x∥ for all x ∈ ℓ2. Let
{qn} ⊂ ℓ2 such that qn ⇀ q. By the weak lower semicontinuity of the norm, we have
∥q∥ ≤ lim infn→∞ ∥qn∥ and so

∥Aq∥ = ∥q∥2 ≤ (lim inf
n→∞

∥qn∥)2 ≤ lim inf
n→∞

∥qn∥2 = lim inf
n→∞

∥Aqn∥.

To show that A is not sequentially weakly continuous, choose qn = en+ e1, where {en}
is a standard basis of ℓ2, that is, en = (0, 0, · · · , 1, · · · ) with 1 at the n-th position. It is clear
that qn ⇀ e1 and Aqn = A(en + e1) = (en + e1)∥en + e1∥ ⇀

√
2e1 but Ae1 = e1∥e1∥ = e1.

However, if A is monotone, then the Condition 3 is not necessary to assume.

3.1. The weak convergence. In this subsection, we propose a modified inertial projection
and contraction algorithm for solving the psuedomonotone VIP.
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Algorithm 1:

Initialization: Given λ1 > 0, µ ∈ (0, 1) and γ ∈
(
1, 2

σ

)
, where σ ∈ (1, 2). Choose

{θn} ⊂ [0, 1).
Iterative Steps: Let x0, x1 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Compute

un = xn + θn(xn − xn−1).

Step 2. Compute
yn = PC(un − λnAun).

If un = yn or Ayn = 0, then stop and yn is a solution of VIP. Otherwise, go to Step
3.

Step 3. Compute
xn+1 = un − γηndn,

where ηn and dn are defined as follows:

(3.10) ηn := (1− µ)
∥un − yn∥2

∥dn∥2
, dn := un − yn − λn(Aun −Ayn),

and update stepsize by

(3.11) λn+1 = min

{
µ∥un − yn∥
∥Aun −Ayn∥

, λn

}
.

Set n := n+ 1 and return to Step 1.

Lemma 3.5. [42] The sequence {λn} generated by (3.11) is nonincreasing and limn→∞ λn =
λ ≥ min{ µ

L , λ1}.

Lemma 3.6. Let {un}, {yn} and {dn} be the sequences generated by Algorithm 1. If there exists
n ≥ n0 ∈ N such that un = yn or dn = 0, then yn ∈ V I(C,A).

Proof. By the definition of dn, we have

∥dn∥ = ∥un − yn − λn(Aun −Ayn), un − yn∥
≥ ∥un − yn∥ − λn∥Aun −Ayn∥

≥ ∥un − yn∥ − µ
λn

λn+1
∥un − yn∥

=
(
1− µ

λn

λn+1

)
∥un − yn∥.

Since

lim
n→∞

(
1− µ

λn

λn+1

)
= 1− µ >

1− µ

σ
> 0,

there exists n0 ∈ N such that

1− µ
λn

λn+1
>

1− µ

σ
> 0, ∀n ≥ n0

and so

∥dn∥ ≥ 1− µ

σ
∥un − yn∥, ∀n ≥ n0.

It is observe that ∥dn∥ > 0 for all n ≥ n0. Indeed, if there exists n ≥ n0 such that ∥dn∥ = 0
or, equivalently, dn = 0, then un = yn. Therefore, yn is a solution of the VIP. This completes
the proof. □
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Lemma 3.7. Suppose that Conditions 1-4 hold. Let {xn} be the sequence generated by Algorithm
1. Then, for each p ∈ V I(C,A) and n ≥ n0, we have

∥xn+1 − p∥2 ≤ ∥un − p∥2 − 1

γ

( 2

σ
− γ

)
∥xn+1 − un∥2.

Proof. For each p ∈ V I(C,A), we have

∥xn+1 − p∥2 = ∥un − γηndn − p∥2

= ∥un − p∥2 − 2γηn⟨un − p, dn⟩+ γ2η2n∥dn∥2.(3.12)

By the definition of dn, it follows that

⟨un − p, dn⟩ = ∥un − yn∥2 − λn⟨un − yn, Aun −Ayn⟩+ ⟨yn − p, dn⟩
≥ ∥un − yn∥2 − λn∥un − yn∥∥Aun −Ayn∥+ ⟨yn − p, dn⟩

≥
(
1− µ

λn

λn+1

)
∥un − yn∥2 + ⟨yn − p, dn⟩.

Since

lim
n→∞

(
1− µ

λn

λn+1

)
= 1− µ >

1− µ

σ
> 0,

there exists n0 ∈ N such that, for all n ≥ n0,

1− µ
λn

λn+1
>

1− µ

σ
> 0.

Thus we have

⟨un − p, dn⟩ ≥
1− µ

σ
∥un − yn∥2 + ⟨dn, yn − p⟩, ∀n ≥ n0.(3.13)

Since yn = PC(un − λnAun), it follows from (2.8) that

⟨un − λnAun − yn, yn − p⟩ ≥ 0.(3.14)

Using the fact that ⟨Ap, yn − p⟩ ≥ 0 and the pseudomonotonicity of A, we have

⟨Ayn, yn − p⟩ ≥ 0.(3.15)

It follows from (3.14) and (3.15) that

⟨dn, yn − p⟩ = ⟨un − yn − λn(Aun −Ayn), yn − p⟩
= ⟨un − λnAun − yn, yn − p⟩+ λn⟨Ayn, yn − p⟩
≥ 0.(3.16)

Combining (3.13) and (3.16), we obtain

⟨un − p, dn⟩ ≥
1− µ

σ
∥un − yn∥2, ∀n ≥ n0.

By the definition of ηn, we have

⟨un − p, dn⟩ ≥
1

σ
ηn∥dn∥2, ∀n ≥ n0.(3.17)

Combining (3.12) and (3.18), we get

∥xn+1 − p∥2 ≤ ∥un − p∥2 − γ
( 2

σ
− γ

)
η2n∥dn∥2, ∀n ≥ n0.

Since xn+1 = un − γηndn, we have

η2n∥dn∥2 =
1

γ2
∥xn+1 − un∥2.
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Therefore, it follows that

∥xn+1 − p∥2 ≤ ∥un − p∥2 − 1

γ

( 2

σ
− γ

)
∥xn+1 − un∥2, ∀n ≥ n0.

This completes the proof. □

Lemma 3.8. Suppose that Conditions 1-4 hold. Let {xn} be the sequence generated by Algorithm
1. Then we have

∥un − yn∥2 ≤
(1 + µ λn

λn+1

γ(1− µ)

)2

∥xn+1 − un∥2.

Proof. By the definition of ηn, we have

(3.18)

∥un − yn∥2 = 1
1−µ · ηn∥dn∥2

= 1
1−µ · 1

γ2ηn
(γ2η2n∥dn∥2)

= 1
1−µ · 1

γ2ηn
∥xn+1 − un∥2.

Since ∥dn∥2 ≤ (1 + µ λn

λn+1
)2∥un − yn∥2, it follows that

1

∥dn∥2
≥ 1

(1 + µ λn

λn+1
)2∥un − yn∥2

.

Hence we have

ηn = (1− µ)
∥un − yn∥2

∥dn∥2
≥ 1− µ

(1 + µ λn

λn+1
)2
.(3.19)

Combining (3.18) and (3.19), we obtain

∥un − yn∥2 ≤
(1 + µ λn

λn+1

γ(1− µ)

)2

∥xn+1 − un∥2.

This completes the proof. □

Lemma 3.9. Suppose that Conditions 1-4 hold. Let {xn} be the sequence generated by Algorithm
1. If {θn} is a nondecreasing sequence, then the following estimate holds: for each p ∈ V I(C,A)
and n ≥ n0,

Γn+1 ≤ Γn −
(( 2

σ
− γ

)(1− θn
γ

)
− ξn+1

)
∥xn+1 − xn∥2,

where
Γn := ∥xn − p∥2 − θn∥xn−1 − p∥2 + ξn∥xn − xn−1∥2

and
ξn := θn

(
1 + θn +

( 2

σ
− γ

)(1− θn
γ

))
.

Proof. Let p ∈ V I(C,A). From (2.7), we have

∥un − p∥2 = ∥xn + θn(xn − xn−1)− p∥2

= ∥(1 + θn)(xn − p)− θn(xn−1 − p)∥2

= (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 + θn(1 + θn)∥xn − xn−1∥2.(3.20)

It follows from Lemma 3.7 and (3.20) that, for all n ≥ n0,

∥xn+1 − p∥2 ≤ (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 + θn(1 + θn)∥xn − xn−1∥2

− 1

γ

( 2

σ
− γ

)
∥xn+1 − un∥2.(3.21)
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On the other hand, from the equality ∥a − b∥2 = ∥a∥2 − 2⟨a, b⟩ + ∥b∥2 ≥ 0, we have
2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2. Hence we have

∥xn+1 − un∥2 = ∥xn+1 − xn − θn(xn − xn−1)∥2

= ∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2 − 2θn⟨xn+1 − xn, xn − xn−1⟩
≥ ∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2 − θn(∥xn+1 − xn∥2 + ∥xn − xn−1∥2)
= (1− θn)∥xn+1 − xn∥2 + (θ2n − θn)∥xn − xn−1∥2.(3.22)

Combining (3.21) and (3.22), we obtain

∥xn+1 − p∥2 ≤ (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 −
( 2

σ
− γ

)(1− θn
γ

)
∥xn+1 − xn∥2

+θn

(
1 + θn +

( 2

σ
− γ

)(1− θn
γ

))
∥xn − xn−1∥2(3.23)

for all n ≥ n0. We put

ξn := θn

(
1 + θn +

( 2

σ
− γ

)(1− θn
γ

))
for all n ≥ n0. Since the sequence {θn} is nondecreasing, it follows from (3.23) that

∥xn+1−p∥2−θn+1∥xn−p∥2+ξn+1∥xn+1−xn∥2 ≤ ∥xn− p∥2−θn∥xn−1−p∥2 +ξn∥xn−xn−1∥2

+
(
ξn+1 −

( 2

σ
− γ

)(1− θn
γ

))
∥xn+1 − xn∥2.(3.24)

By the definition of Γn, we can write (3.1) as

Γn+1 ≤ Γn −
(( 2

σ
− γ

)(1− θn
γ

)
− ξn+1

)
∥xn+1 − xn∥2, ∀n ≥ n0.

This completes the proof. □

Lemma 3.10. [37] Suppose that Conditions 1-4 hold. Let {un}and {yn} be the sequences gen-
erated by Algorithm 1. If there exists a subsequence {unk

} ⊂ {un} such that {unk
} converges

weakly to v ∈ H and limk→∞ ∥unk
− ynk

∥ = 0, then v ∈ V I(C,A).

Now, we prove the weak convergence theorem of Algorithm 1.

Theorem 3.1. Suppose that Conditions 1-4 hold. Let β := 1
γ

(
2
σ − γ

)
. Suppose, in addition,

that {θn} is a nondecreasing sequence such that 0 ≤ θn ≤ θn+1 ≤ θ for all n ≥ n0, where
θ <

√
1+8β−2β−1
2(1−β) . Then the sequence {xn} generated by Algorithm 1 converges weakly to a point

in V I(C,A).

Proof. Since 0 ≤ θn ≤ θn+1 ≤ θ with θ <
√
1+8β−2β−1
2(1−β) , it follows that

(1− θn)β − ξn+1 = (1− θn)β − θn+1(1 + θn+1 + (1− θn+1)β)

≥ (1− θn+1)β − θn+1(1 + θn+1 + (1− θn+1)β)

≥ (1− θ)β − θ(1 + θ + (1− θ)β)

= −(1− β)θ2 − (2β + 1)θ + β.

Let δ := −(1 − β)θ2 − (2β + 1)θ + β. It is easy to see that δ > 0. Then it follows from
Lemma 3.9 that

Γn+1 − Γn ≤ −δ∥xn+1 − xn∥2, ∀n ≥ n0.(3.25)
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This implies that Γn+1 − Γn ≤ 0 for all n ≥ n0 and so {Γn} is nonincreasing. Thus, by the
definition of Γn, it follows that, for all n ≥ n0,

∥xn − p∥2 = Γn + θn∥xn−1 − p∥2 − ξn∥xn − xn−1∥2

≤ Γn + θn∥xn−1 − p∥2

≤ Γn0
+ θ∥xn−1 − p∥2

· · ·
≤ θn−n0∥xn0

− p∥2 + Γn0
(1 + θ + θ2 + . . .+ θn−n0−1)

≤ θn−n0∥xn0
− p∥2 + Γn0

1− θ
.(3.26)

We also observe that

Γn+1 = ∥xn+1 − p∥2 − θn+1∥xn − p∥2 + ξn+1∥xn+1 − xn∥2

≥ −θn+1∥xn − p∥2

≥ −θ∥xn − p∥2.(3.27)

Combining (3.25), (3.26) and (3.27), we have

δ

k∑
n=n0

∥xn+1 − xn∥2 ≤ δ

k∑
n=n0

(Γn − Γn+1)

= Γn0
− Γk+1

≤ Γn0
+ θ∥xk − p∥2

≤ Γn0
+ θk−n0+1∥xn0

− p∥2 + θΓn0

1− θ
.

Thus we have

δ

∞∑
n=n0

∥xn+1 − xn∥2 = lim
k→∞

(
δ

k∑
n=n0

∥xn+1 − xn∥2
)
< ∞.(3.28)

This implies that

lim
n→∞

∥xn+1 − xn∥ = 0.

Consequently, we have

∥xn − un∥ = θn∥xn − xn−1∥ ≤ θ∥xn − xn−1∥ → 0 as n → ∞.(3.29)

Now, we see that

∥xn+1 − un∥ = ∥xn+1 − xn − θn(xn − xn−1)∥
≤ ∥xn+1 − xn∥+ θn∥xn − xn−1∥
≤ ∥xn+1 − xn∥+ θ∥xn − xn−1∥

and so

lim
n→∞

∥xn+1 − un∥ = 0.

Also, by Lemma 3.8, we obtain

lim
n→∞

∥un − yn∥ = 0.(3.30)

Since {xn} is bounded, without loss of generality, we assume that there exists a subse-
quence {xnk

} of {xn} such that xnk
⇀ v for some v ∈ H . From (3.29), we also get unk

⇀ v.
This together with (3.29) and Lemma 3.10 concludes that v ∈ V I(C,A).
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On the other hand, from (3.21), it follows that, for all n ≥ n0,

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2) + θ(1 + θ)∥xn − xn−1∥2.(3.31)

From (3.28) and Lemma 2.2, we can show that limn→∞ ∥xn − p∥2 exists. In summary, we
have shown that

• limn→∞ ∥xn − p∥ exists for each p ∈ V I(C,A);
• every weak cluster point of {xn} is in V I(C,A).

Therefore, by Lemma 2.1, we conclude that {xn} converges weakly to a point in V I(C,A).
This completes the proof. □

3.2. The strong convergence. In this subsection, we propose another inertial algorithm
which combines the viscosity approximation method and the projection and contraction
algorithm with adaptive stepsize rule for solving the psuedomonotone VIP.

In order to obtain the strong convergence, we assume that f : H → H is a contraction
mapping with constant α ∈ [0, 1). Suppose, in addition, that

lim
n→∞

θn
αn

∥xn − xn−1∥ = 0,

where {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
The algorithm is formulated as follows:

Algorithm 2:

Initialization: Given λ1 > 0, µ ∈ (0, 1) and γ ∈
(
0, 2

σ

)
, where σ ∈ (1, 2). Choose

{θn} ⊂ [0, θ) for some θ > 0.
Iterative Steps: Let x0, x1 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Compute

un = xn + θn(xn − xn−1).

Step 2. Compute
yn = PC(un − λnAun).

If un = yn or Ayn = 0, then stop and yn is a solution of VIP. Otherwise, go to Step
3.

Step 3. Compute
xn+1 = αnf(xn) + (1− αn)(un − γηndn),

where ηn and dn are defined in (3.10), and update the stepsize by (3.11).
Set n := n+ 1 and return to Step 1.

Theorem 3.2. Suppose that Conditions 1-4 hold. Then the sequence {xn} generated by Algorithm
2 converges strongly to z = PV I(C,A)f(z).

Proof. For each n ≥ 1, let zn := un − γηndn and p ∈ V I(C,A). Following the similar
argument in Lemma 3.7, it follows that, for each n ≥ n0,

∥zn − p∥2 ≤ ∥un − p∥2 − 1

γ

( 2

σ
− γ

)
∥zn − un∥2.(3.32)

This gives

∥zn − p∥ ≤ ∥un − p∥.(3.33)

Moreover, we have

∥un − p∥ = ∥xn + θn(xn − xn−1)− p∥
≤ ∥xn − p∥+ θn∥xn − xn−1∥.(3.34)
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It follows from (3.33) and (3.34) that

∥xn+1 − p∥ = ∥αn(f(xn)− p) + (1− αn)(zn − p)∥
≤ αn∥f(xn)− p∥+ (1− αn)∥zn − p∥
≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥+ (1− αn)∥zn − p∥
≤ αnα∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)∥xn − p∥+ (1− αn)θn∥xn − xn−1∥

= (1− (1− α)αn)∥xn − p∥+ (1− α)αn

[∥f(p)− p∥
1− α

+
(1− αn)θn∥xn − xn−1∥

(1− α)αn

]
.

Put

µn :=
∥f(p)− p∥

1− α
+

(1− αn)θn∥xn − xn−1∥
(1− α)αn

.

It is easy to see that limn→∞ µn exists. So there exists M > 0 such that µn ≤ M for all
n ∈ N. By Lemma 2.3, we know that {∥xn − p∥} is bounded. Moreover, we see that
∥xn∥ ≤ ∥xn− p∥+ ∥p∥. This implies that {xn} is bounded and so are {un}, {yn} and {dn}.

Now, let z = PV I(C,A)f(z). From (2.6), we have

∥un − z∥2 = ∥xn − z + θn(xn − xn−1)∥2

≤ ∥xn − z∥2 + 2θn⟨xn − xn−1, un − z⟩
≤ ∥xn − z∥2 + 2θn∥xn − xn−1∥K,(3.35)

where K = supn≥1{∥un − z∥}. By the convexity of ∥ · ∥2 and (3.32), it follows that, for all
n ≥ n0,

∥xn+1 − z∥2 = ∥αn(f(xn)− z) + (1− αn)(zn − p)∥2

≤ αn∥f(xn)− z∥2 + (1− αn)∥zn − z∥2

≤ αn∥f(xn)− z∥2 + ∥zn − z∥2

≤ αn∥f(xn)− z∥2 + ∥un − z∥2 − 1

γ

( 2

σ
− γ

)
∥zn − un∥2.(3.36)

Combining (3.35) and (3.36), it follows that, for all n ≥ n0,

∥xn+1 − z∥2 ≤ αn∥f(xn)− z∥2 + ∥xn − z∥2 + 2θn∥xn − xn−1∥K − 1

γ

( 2

σ
− γ

)
∥zn − un∥2,

which implies that

1

γ

( 2

σ
− γ

)
∥zn − un∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + αn∥f(xn)− z∥2 + 2θn∥xn − xn−1∥K.

On the other hand, from (2.6), (3.32) and (3.35), it follows that

∥xn+1 − z∥2 = ∥αn(f(xn)− z) + (1− αn)(zn − p)∥2

= ∥αn(f(xn)− f(z)) + (1− αn)(zn − z) + αn(f(z)− z)∥2

≤ ∥αn(f(xn)− f(z)) + (1− αn)(zn − z)∥2 + 2αn⟨f(z)− z, xn+1 − z⟩
≤ αn∥f(xn)− f(z)∥2 + (1− αn)∥zn − z∥2 + 2αn⟨f(z)− z, xn+1 − z⟩
≤ αnα∥xn − z∥2 + (1− αn)

[
∥xn − z∥2 + 2θn∥xn − xn−1∥K

]
+2αn⟨f(z)− z, xn+1 − z⟩

= (1− (1− α)αn)∥xn − z∥2 + 2(1− αn)θn∥xn − xn−1∥K
+2αn⟨f(z)− z, xn+1 − z⟩.
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Now, we show that the sequence {∥xn − z∥2} converges to zero. In order to do this,
using Lemma 2.4, it is sufficient to show that

lim sup
k→∞

⟨f(z)− z, xnk+1 − z⟩ ≤ 0

for every subsequence {∥xnk
− z∥} of {∥xn − z∥} satisfying

lim inf
k→∞

[
∥xnk+1 − z∥ − ∥xnk

− z∥
]
≥ 0.

Let {∥xnk
− z∥} be a subsequence of {∥xn − z∥} such that

lim inf
k→∞

[
∥xnk+1 − z∥ − ∥xnk

− z∥
]
≥ 0.

Thus we have

lim inf
k→∞

[
∥xnk+1 − z∥2 − ∥xnk

− z∥2
]

= lim inf
k→∞

[
(∥xnk+1 − z∥ − ∥xnk

− z∥)(∥xnk+1 − z∥+ ∥xnk
− z∥)

]
≥ 0.

From (3.37), it follows that

lim sup
k→∞

1

γ

( 2

σ
− γ

)
∥znk

− unk
∥2

≤ lim sup
k→∞

[
∥xnk

− z∥2 − ∥xnk+1 − z∥2 + αnk
∥f(xnk

)− z∥2

+2θnk
∥xnk

− xnk−1∥K
]

≤ lim sup
k→∞

[
∥xnk

− z∥2 − ∥xnk+1 − z∥2
]
+ lim sup

k→∞
αnk

∥f(xnk
)− z∥2

+ lim sup
k→∞

2αnk

θnk

αnk

∥xnk
− xnk−1∥K

= − lim inf
k→∞

[
∥xnk+1 − z∥2 − ∥xnk

− z∥2
]

≤ 0.

Hence we have

lim
k→∞

∥znk
− unk

∥ = 0.(3.37)

As in the proof lines of Lemma 3.8, we can deduce that

∥unk
− ynk

∥2 ≤
(1 + µ

λnk

λnk+1

γ(1− µ)

)2

∥znk
− unk

∥2.

Thus it follows from (3.37) that

lim
k→∞

∥unk
− ynk

∥ = 0.(3.38)

Moreover, we see that

∥unk
− xnk

∥ = θnk
∥xnk

− xnk−1∥ = αnk

θnk

αnk

∥xnk
− xnk−1∥ → 0.(3.39)

It follows from (3.37) and (3.38) that

∥znk
− xnk

∥ ≤ ∥znk
− unk

∥+ ∥unk
− xnk

∥ → 0(3.40)

and so

∥xnk+1 − xnk
∥ = ∥αnk

f(xnk
) + (1− αnk

)znk
− xnk

∥
≤ αnk

∥f(xnk
)− xnk

∥+ (1− αnk
)∥znk

− xnk
∥

→ 0.(3.41)
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Since {xnk
} is bounded, without loss of generality, we assume that there exists a subse-

quence {xnkj
} of {xnk

} such that xnkj
⇀ v for some v ∈ H and

lim sup
k→∞

⟨f(z)− z, xnk
− z⟩ = lim

j→∞
⟨f(z)− z, xnkj

− z⟩.

From (3.39), we also get unkj
⇀ v. This together with (3.38) and Lemma 3.10 concludes

that v ∈ V I(C,A). Hence we have

lim sup
k→∞

⟨f(z)− z, xnk
− z⟩ = ⟨f(z)− z, v − z⟩ ≤ 0.(3.42)

Combining (3.41) and (3.42), we obtain

lim sup
k→∞

⟨f(z)− z, xnk+1 − z⟩ ≤ lim sup
k→∞

⟨f(z)− z, xnk+1 − xnk
⟩+ lim sup

k→∞
⟨f(z)− z, xnk

− z⟩

≤ 0.(3.43)

From (3.37), we can write it as

∥xnk+1 − z∥2 ≤ (1− (1− α)αnk
)∥xnk

− z∥2

+ (1− α)αnk

[2(1− αnk
)θnk

∥xnk
− xnk−1∥K

(1− α)αnk

+
2

1− α
⟨f(z)− z, xnk+1 − z⟩

]
.

This together with (3.43) and Lemma 2.4 yields that limk→∞ ∥xn − z∥2 = 0. Therefore,
xn → z. This completes the proof. □

4. NUMERICAL EXPERIMENTS

In this section, we give some numerical experiments in two parts. In the first part, we
provide a comparison the numerical behaviour of the proposed algorithms and their algo-
rithms with non-inertial terms to illustrate the efficiency and advantages of the proposed
algorithms and also compare them with the following:

• Algorithm A: The TEGM for the pseudomonotone VIP [36];
• Algorithm B: The SEGM for the pseudomonotone VIP [21].

In the second part, we apply the proposed algorithms to solve the image restoration
problem and compare the computational results with Algorithm A and Algorithm B. In
the following, we denote “iter.” and “time” by the number of iteration and the running
time in seconds, respectively.

4.1. Numerical results.

Problem 4.1. The variational inequality problem in infinite-dimensional spaces
Consider a Hilbert space H := ℓ2 = {x = (x1, x2, x3, · · · ) :

∑∞
i=1 |xi|2 < ∞} with

the norm ∥x∥ =
(∑∞

i=1 |xi|2
) 1

2

and the inner product ⟨x, y⟩ =
∑∞

i=1 xiyi for all x =

(x1, x2, x3, · · · ), y = (y1, y2, y3, · · · ) ∈ ℓ2. Let A : ℓ2 → ℓ2 be a mapping defined by

A(x1, x2, x3, · · · ) = (x1e
−x2

1 , 0, 0, · · · ).

It was shown in [5, Example 2.1] that A is pseudomonotone, Lipschitz continuous and
sequentially weakly continuous (hence A satisfies the Condition 3), but not monotone on
ℓ2. The feasible set is C = {x = (x1, x2, x3, · · · ) ∈ ℓ2 : ∥x∥ ≤ 1} and then the projection
onto C is easily calculated by the following formula:

PC(x) =

{
x

∥x∥ if ∥x∥ > 1,

x otherwise.
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In this experiment, for Algorithm 1, we take λ1 = 0.36, µ = 0.54, σ = 3
2 , γ = 7

6 , θn = 9
10

and, in addition, for Algorithm 2, we take f(x) = x
4 , αn = 1

n+1 , θn = α2
n. More so, for

Algorithm A and Algorithm B, we take γ = 3, l = 0.68, µ = 0.34. We perform numerical
test of all algorithms with three different cases of the starting point as follows:

Case A: x0 = ( 12 ,
1
3 ,

1
4 , · · · ) and x1 = (1, 2, 3, · · · );

Case B: x0 = (5, 5, 5, · · · ) and x1 = (2, 1, 2, · · · );
Case C: x0 = (1, 1

2 ,
1
3 , · · · ) and x1 = (1, 1√

2
, 1√

4
, · · · ).

We use TOLn = ∥xn+1 − xn∥ < 10−4 as the stopping criteria in each algorithm. The
numerical results are shown in Table 1 and Figure 1.

TABLE 1. Numerical results for Problem 4.1.

x0, x1 Alg 1 Alg 1 (θn = 0) Alg 2 Alg 2 (θn = 0) Alg A Alg B

iter. time iter. time iter. time iter. time iter. time iter. time
Case A 14 0.0065 28 0.0122 10 0.0024 14 0.0031 55 0.0193 87 0.0256
Case B 14 0.0057 33 0.0119 10 0.0041 20 0.0076 56 0.0129 64 0.0229
Case C 13 0.0048 37 0.0097 10 0.0022 20 0.0088 84 0.0209 76 0.0241

0 20 40 60 80

Iteration number (n)

10-4

10-2

100

T
O

L
n
 

Alg 1

Alg 1(  = 0)

Alg 2

Alg 2 (  = 0)

Alg A

Alg B

FIGURE 1. Example 4.1, Top Left: Case A; Top Right: Case B; Bottom:
Case C.

Problem 4.2. The quadratic fractional programming problem
Consider the following quadratic fractional programming problem:

min
x∈C

f(x),

where f(x) = xTQx+aT x+c
bT x+d

and C = {x ∈ R4 : 1 ≤ xi ≤ 10, i = 1, 2, 3, 4}. Let

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , c = −2, d = 4.
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It is easy to see that Q is symmetric and positive definite on R4 and so f is pseudoconvex
on R4. It is known that this problem is equivalent to the VIP [13, 23] with

Ax := ∇f(x) =
(bTx+ d)(2Qx+ a)− b(xTQx+ aTx+ c)

(bTx+ d)2
.

It was shown in [19] that ∇f is continuous pseudomonotone. The VIP has unique solution
is z = (1, 1, 1, 1)T ∈ C.

In this experiment, for Algorithm 1, we take λ1 = 0.28, µ = 0.45, σ = 4
3 , γ = 5

4 , θn = 3
5

and, in addition, we take f(x) = x
8 , αn = 1√

n+1
, θn = 1

n+1 for Algorithm 2. Also, for
Algorithms A and B, we choose γ = 0.33, l = 0.66 and µ = 0.64.. We perform numerical
test of all algorithms with three different cases of the starting point as follows:

Case A: x0 = (2, 2, 2, 2)T and x1 = (4, 4, 4, 4)T ;
Case B: x0 = (3, 3, 3, 3)T and x1 = (5, 5, 5, 5)T ;
Case C: x0 = (2, 0, 0, 4)T and x1 = (3, 1, 3, 1)T .

Since we know the solution of the problem, we use TOLn=∥xn− z∥ < 10−4 as the sto-
pping criteria in each algorithm. The numerical results are shown in Table 2 and Figure 2.

TABLE 2. Numerical results for Problem 4.2.

x0, x1 Alg 1 Alg 1 (θn = 0) Alg 2 Alg 2 (θn = 0) Alg A Alg B

iter. time iter. time iter. time iter. time iter. time iter. time
Case A 7 0.0038 13 0.0046 8 0.0044 12 0.0059 28 0.0138 37 0.0317
Case B 8 0.0036 14 0.0049 8 0.0038 12 0.0049 25 0.0145 37 0.0220
Case C 8 0.0036 16 0.0083 8 0.0030 12 0.0043 27 0.0132 37 0.0155

FIGURE 2. Example 4.2, Top Left: Case A; Top Right: Case B; Bottom:
Case C.
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Remark 4.3. From the above experimental results, we can summarize in the following
points:

(1) Algorithm 1 and Algorithm 2 have less iteration numbers and computation times
than algorithms without the inertial. It is remarkable that by adding the inertial θn(xn −
xn−1) makes convergence faster. This is main advantage of adding inertial term to algo-
rithms in solving the problem.

(2) Algorithm 1 and Algorithm 2 with adaptive stepsizes have a better performance in
terms of convergence speed than Algorithm A and Algorithm B with Armijo linesearch
procedures. This shows that the proposed algorithms have higher superiority and effi-
ciency than Algorithm A and Algorithm B in solving the pseudomonotone VIP. It is due
to the fact that Armijo linesearch procedures use an inner-loop until some stopping crite-
rion is reached. This may takes time-consuming in evaluations of the projections on the
feasible set in each iteration.

4.2. Applications to the image restoration problem. The image restoration problem is
one of the interest topics in image processing and computer vision. This problem has
been extensively studied by many authors because of its applications in almost every field
such as film restoration, image and video coding, medical and astronomical imaging (see,
for example, [10, 40]). Image restoration is a process of recovering images from blurring
and noise observation which is to improve the quality of the image. Recall that the image
restoration problem can be formulated as the following linear inverse problem:

(4.44) b = Bx+ v,

where x ∈ RN is the original image, b ∈ RM is the degraded image, B ∈ RM×N is the
blurring matrix and v is an additive noise. An efficient method for recovering the original
image is the ℓ1-norm regularized least square method given by

min
x∈RN

{
1

2
∥Bx− b∥22 + λ∥x∥1

}
.(4.45)

Our main task is to restore the original image x given the data of the blurred image b.
The least square problem (4.45) can be expressed as a variational inequality problem by
setting A := BT (Bx− b). It is known that the operator A in this case is monotone (hence
it is pseudomonotone) and Lipschitz continuous with L = ∥BTB∥. We consider the grey
scale image of M pixels wide and N pixel height, each value is known to be in the range
[0, 255]. The quality of the restored image is measured by the signal to noise ratio (SNR)
which is defined by

SNR = 20 log10

(
∥x∥2

∥x− x∗∥2

)
,

where x is the original image and x∗ is the restored image. Note that the larger the value
of SNR, the better the quality of the restored image. In our experiments, we use the grey
test image Tire (291 × 240) and Cameraman (256 × 256), each test image is degraded by
Gaussian 7× 7 blur kernel with standard deviation 4 and the maximum iteration is set to
be 1000. We choose λ1 = 0.5, µ = 0.8, σ = 1.5, γ = 1, θn = 0.99, αn = 1

100(n+1) , f(x) =
x
4 ,

l = 0.3, µ = 0.6, x0 = 0 ∈ RD and x1 = 1 ∈ RD, where D = M ×N.
Figures 3 and 4 show the original, blurred and restored image by using Algorithm 1,

Algorithm 2, Algorithm A and Algorithm B. Also, Figure 5 shows the graph of the SNR
against number of iterations for each test image using the algorithms. Then we report the
time for each algorithm in Table 3.
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FIGURE 3. Top shows original image of Cameraman (left) and degraded
image of Cameraman (right); Bottom shows recovered image by Algo-
rithm 1, Algorithm 2, Algorithm A and Algorithm B.

FIGURE 4. Top shows original image of Tire (left) and degraded image of
Tire (right); Bottom shows recovered image by Algorithm 1, Algorithm 2,
Algorithm A and Algorithm B.
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FIGURE 5. Graphs of the SNR values against number of iteration for
Cameraman (Left) and Tire (Right).

TABLE 3. Computational results for Deblurring the images

Algorithms Cameraman Tire
SNR time SNR time

Alg 1 34.2083 42.0504 31.4482 31.3819
Alg 2 38.7060 38.6614 30.4481 29.7643
Alg A 27.5191 91.8467 26.3005 64.4750
Alg B 29.7150 94.2898 28.9397 64.5418

Remark 4.4. From the obtained computational results, we show that both the quality
of the restored images and running times of Algorithm 1 and Algorithm 2 are good as
compared with Algorithm A and Algorithm B. This shows that the proposed algorithms
are more efficient for restoring the degraded image than Algorithm A and Algorithm B.
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