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The crossing numbers of join products of seven graphs of
order six with paths and cycles

MICHAL STAŠ and MÁRIA TIMKOVÁ

ABSTRACT. The crossing number cr(G) of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. The main aim of this paper is to give the crossing numbers of the join products of
seven graphs on six vertices with paths and cycles on n vertices. The proofs are done with the help of several
well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that
do not cross the edges of the examined graphs. Finally, for m at least three and n = 5, we also establish the
validity of a conjecture introduced by Staš and Valiska concerning the crossings numbers of the join products of
the wheels on m+ 1 vertices with the paths on n vertices.

1. INTRODUCTION

The problem of reducing the number of crossings on edges of graphs is interesting in
many areas. One of the most popular areas is the implementation of the VLSI layout,
which has revolutionized circuit design and had a strong impact on parallel computing.
Crossing numbers were also studied to improve the readability of hierarchical structures
and automated graphs. The visualized graph should be easy to read and understand.
For the sake of clarity of the graphical drawings, the reduction of crossings is likely the
most important. Therefore, the investigation on the crossing number of simple graphs is
a classical, but very difficult problem. Garey and Johnson [7] proved that determining
cr(G) is an NP-complete problem. Nevertheless, many researchers are trying to solve this
problem. Note that the exact values of the crossing numbers are known for some families
of graphs, see Clancy et al. [4].

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane
(for the definition of a drawing see Klešč [11]). A drawing with a minimum number of
crossings (an optimal drawing) is always a good drawing, meaning that no edge crosses
itself, no two edges cross more than once, and no two edges incident with the same vertex
cross. Let D be a good drawing of the graph G. We denote the number of crossings in
D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number of
crossings between edges of Gi and edges of Gj by crD(Gi, Gj), and the number of cross-
ings among edges of Gi in D by crD(Gi). For any three mutually edge-disjoint subgraphs
Gi, Gj , and Gk of G by [11], the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .
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Some parts of proofs will be based on Kleitman’s result [10] on the crossing numbers
for some complete bipartite graphs Km,n. He showed that

(1.1) cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6.

The join product of two graphs Gi and Gj , denoted Gi + Gj , is obtained from vertex-
disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| =
m and |V (Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge sets of the
graphs Gi, Gj , and the complete bipartite graph Km,n. Let Pn and Cn be the path and
the cycle on n vertices, respectively, and let Dn denote the discrete graph (sometimes called
empty graph) on n vertices. The crossings numbers of the join products of the paths and
the cycles with all graphs of order at most four have been well-known for a long time by
Klešč [12, 13], and Klešč and Schrötter [16], and therefore it is understandable that our
immediate goal is to establish the exact values for the crossing numbers of G + Pn and
G + Cn also for all graphs G of order five and six. Of course, the crossing numbers of
G + Pn and G + Cn are already known for a lot of graphs G of order five and six [2, 5, 6,
11, 14, 17, 19, 21, 22, 23, 24, 26]. In all these cases, the graph G is connected and contains
usually at least one cycle. Note that the crossing numbers of the join product G+ Pn and
G+ Cn are known only for some disconnected graphs G on five or six vertices [3, 18, 25].

For this purpose, we present a new technique regarding the use of knowledge from the
subgraphs whose values of crossing numbers are already known. Due to several possible
isomorphisms, the results on the smaller graphs are important to confirm the validity of
many conjectures, e.g., Corollary 5.11 in which the crossings numbers of the join products
of the wheels Wm on m+ 1 vertices with the paths Pn are established for m at least three
and n = 5.

In this paper, we will use definitions and notation of the crossing numbers of graphs
presented by Klešč [12]. We will also use special designation of seven graphs of order
six that are represented by lower indexes in the order originally designated by Clancy et
al. [4]. Their planar drawings are shown in Fig. 1, 2, and 9.

G31 G48 G72

G73 G79

v
1

v
1

v
1

v
1

v
1

v
2

v
2

v
2

v
2 v

2

v
3v

3
v
3

v
3

v
3

v
4

v
4 v

4

v
4

v
4

v
5

v
5

v
5

v
5

v
5

v
6

v
6

v
6

v
6

v
6

FIGURE 1. Planar drawings of five graphs G31, G48, G72, G73, and G79.

Let G80 be the connected graph consisting of the complete bipartite graph K1,5 and
three edges which form the path P4 on four leaves of K1,5. The crossing number of
G80 + Dn is determined in Corollary 3.1 as some consequence of the result cr(K1,5,n)
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by Mei and Huang [20] if we add the four mentioned edges without additional crossings
on them in some optimal drawing of K1,5,n. The main aim of the paper is to establish the
crossing numbers of G80 + Pn and G80 + Cn presented in Theorems 3.2 and 4.4, respec-
tively. The paper concludes by giving the crossing numbers of the join products of one
other graph G104 with Dn, Pn, and Cn in Corollaries 5.8, 5.9, and 5.10, respectively, where
the graph G104 is obtained from G80 by adding new edge joining one vertex of order two
with the leaf in G80. In certain parts of the presented proofs, it is also possible to simplify
the procedure with the help of software COGA generating all cyclic permutations of six
elements. Its description can be found in Berežný and Buša [1]. In the proofs of the paper,
we will often use the term “region” also in nonplanar subdrawings. In this case, crossings
are considered to be vertices of the “map”.

2. CYCLIC PERMUTATIONS AND POSSIBLE DRAWINGS OF G80

In the rest of the paper, let V (G80) = {v1, v2, . . . , v6}, and let v5 and v6 be the vertex
notation of the dominating vertex and the leaf of G80 in all considered good subdrawings
of the graph G80, respectively. We consider the join product of the graph G80 with the
discrete graph Dn, which yields that the graph G80 + Dn consists of just one copy of
G80 and n vertices t1, t2, . . . , tn. Here, each vertex ti, i = 1, 2, . . . , n, is adjacent to every
vertex of the graph G80. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges
incident with the fixed vertex ti. This means that the graph T 1 ∪ · · · ∪ Tn is isomorphic to
the complete bipartite graph K6,n and

(2.2) G80 +Dn = G80 ∪K6,n = G80 ∪

(
n⋃

i=1

T i

)
.

The graph G80 + Pn contains G80 +Dn as a subgraph, and therefore let P ∗
n denote the

path induced on n vertices of G80 + Pn not belonging to the subgraph G80. The path P ∗
n

consists of the vertices t1, t2, . . . , tn and of the edges {ti, ti+1} for i = 1, 2, . . . , n − 1, and
thus

(2.3) G80 + Pn = G80 ∪K6,n ∪ P ∗
n = G80 ∪

(
n⋃

i=1

T i

)
∪ P ∗

n .

Similarly, the graph G80 + Cn contains both G80 +Dn and G80 + Pn as subgraphs. Let
C∗

n denote the subgraph of G80 + Cn induced on the vertices t1, t2, . . . , tn. Therefore,

(2.4) G80 + Cn = G80 ∪K6,n ∪ C∗
n = G80 ∪

(
n⋃

i=1

T i

)
∪ C∗

n.

Let D be a good drawing of the graph G80 +Dn. The rotation rotD(ti) of a vertex ti in
the drawing D is the cyclic permutation that records the (cyclic) counterclockwise order
in which the edges leave ti, as defined by Hernández-Vélez et al. [8] or Woodall [27]. We
use the notation (123456) if the counter-clockwise order the edges incident with the vertex
ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. Recall that a rotation is a cyclic permutation; that is,
(123456), (234561), (345612), (456123), (561234), and (612345) denote the same rotation.
We separate all subgraphs T i, i = 1, 2, . . . , n, of the graph G80 + Dn into four mutually-
disjoint families of subgraphs depending on how many times the considered T i crosses
the edges of G80 in D. Let RD = {T i : crD(G80, T

i) = 0}, SD = {T i : crD(G80, T
i) = 1},

and TD = {T i : crD(G80, T
i) = 2}. Every other subgraph T i crosses the edges of G80
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at least three times in D. For T i ∈ RD ∪ SD ∪ TD, let F i denote the subgraph G80 ∪ T i,
i ∈ {1, 2, . . . , n}, of G80+Dn and let D(F i) be its good subdrawing induced by D. Clearly,
this idea of dividing all subgraphs T i into four mentioned families of subgraphs will be
also retained in all drawings of the graphs G80 + Pn and G80 + Cn.

Lemma 2.1. In an effort to obtain a drawing D of the join product of the graph G80 with paths or
cycles with the smallest numbers of crossings, the edges of G80 do not cross each other. Moreover,
the planar subdrawing of G80 induced by D is isomorphic to one of the five drawings depicted in
Fig. 2.
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FIGURE 2. Five possible non isomorphic planar drawings of the graph G80.

According to the relevant Lemmas 3.2 and 4.5, let us discuss all possible non isomor-
phic planar good drawings of G80. The graph G80 consists of three edge disjoint sub-
graphs, namely K1,1,2, P3, and P2. There is only one possibility of planar good subdraw-
ing of K1,1,2 (denote this subdrawing by K∗

1,1,2). In the next, we have two possibilities
to add two new edges with common inner vertex of P3 in K∗

1,1,2. If we consider a good
subdrawing in which P3 is placed in a quadrangular region of K∗

1,1,2, we have three pos-
sibilities for adding one leaf with corresponding edge of P2 and there are three possible
different drawings of G80 (Fig. 2(a), (b), and (c)). If we consider a good subdrawing in
which P3 is placed in a triangular region of K∗

1,1,2, we have four possibilities for adding
P2, but only two new non isomorphic drawings of G80 are obtained (Fig. 2(d) and (e)).

3. THE CROSSING NUMBER OF G80 + Pn

In the order originally designated by Clancy et al. [4], let G31 be the graph isomorphic
to the complete bipartite graph K1,5. The crossing numbers of the join products of K1,5

with the discrete graphs Dn have been well known by Mei and Huang [20].

Theorem 3.1 ([20], Theorem 1). If n ≥ 1, then cr(G31 +Dn) = cr(K1,5,n) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+

4
⌊
n
2

⌋
.
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FIGURE 3. The good drawing of G31 +Dn with 6
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+ 4
⌊
n
2

⌋
crossings.

Due to Theorem 3.1, the good drawing of G31 + Dn in Fig. 3 is optimal. We can add
new edges v1v2, v2v3, v4v6, titi+1 for i = 1, . . . , n− 1 into this drawing without additional
crossings, and therefore, the drawings of the join products of G48, G72, G73, G79 with
Dn and G31, G48, G72, G73, G79 with Pn are obtained, respectively. Moreover, the same
edge crossings can be also obtained by adding three edges v1v2, v2v3, and v3v4. So, the
following results are obvious.

Corollary 3.1. If n ≥ 1, then cr(Gk+Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+4
⌊
n
2

⌋
for any k = 48, 72, 73, 79, 80.

Corollary 3.2. If n ≥ 2, then cr(Gk +Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+4
⌊
n
2

⌋
for any k = 31, 48, 72, 73, 79.

The assumption of a planar subdrawing of the subgraph G80 will be very strongly used
in an effort to determine the crossing number of G80 + Pn according to Lemma 3.2.

Lemma 3.2. For n ≥ 2, if D is any good drawing of the join product G80+Pn with crD(G80) ≥ 1,
then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 1 crossings in D.

Proof. Let us consider any good drawing D of G80 + Pn with crD(G80) ≥ 1. In the rest of
the proof, suppose that let v1, v4, and v2, v3 be the vertex notation of two vertices of de-
gree 2 and two vertices of degree 3 in the considered good subdrawing of the graph G80,
respectively. Since no two edges incident with the same vertex cross, there is at least one
crossing on the edge v1v2, v2v3, or v3v4 in the subdrawing of G80 induced by D. By remov-
ing three mentioned edges from the graph G80, we obtain a subgraph isomorphic to the
graph G31. The exact value for the crossing number of G31 + Pn is given by Corollary 3.2,
which yields that there are at least 6⌊n

2 ⌋⌊
n−1
2 ⌋+ 4⌊n

2 ⌋+ 1 crossings in D. □
As the same argument with the removing of the edges v1v2, v2v3, and v3v4 from the

graph G80 can be also applied for all possible planar subdrawings of G80 in D, the proof
of Corollary 3.3 can be omitted.

Corollary 3.3. For n ≥ 2, let D be any good drawing of the join product G80 + Pn with
crD(G80) = 0 and also with one vertex notation of G80 given in Fig. 2(a) − (e). If any of the
edges v1v2, v2v3, or v3v4 is crossed in D, then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+4
⌊
n
2

⌋
+1 crossings

in the drawing D.

Lemma 3.3. For n ≥ 2, let D be a good drawing of G80+Pn in which for some i, i ∈ {1, . . . , n},
and for all j = 1, . . . , n, j ̸= i, crD(G80 ∪ T i, T j) ≥ 5. If crD(G80 ∪ T i, T j) > 5 for p different
subgraphs T j , then D has at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ p+ crD(G80, T

i) crossings.
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Proof. Assume, without loss of generality, that the edges of Fn = G80 ∪ Tn are crossed in
D at least five times by the edges of every subgraph T j , j = 1, . . . , n− 1, and that p of the
subgraphs T j cross the edges of Fn more than five times. As G80 + Dn = K6,n−1 ∪ Fn,
we have

crD(G80 + Pn) ≥ crD (K6,n−1) + crD(K6,n−1, F
n) + crD(Fn) ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+5(n− 1) + p+ crD(G80, T
n) ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
+ p+ crD(G80, T

n).

□
Note that the last estimate used in the proof of Lemma 3.3 offers at least 6⌊n

2 ⌋⌊
n−1
2 ⌋ +

4⌊n
2 ⌋+ 1 crossings for n even if p = 0 and Tn ∈ RD.

Corollary 3.4. For n ≥ 2, let D be a good drawing of G80+Pn with |TD| = n. If some subgraph
T i is crossed at least three times by any subgraph T j , j = 1, . . . , n, j ̸= i, then there are at least
6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 2 crossings in D.

Lemma 3.4 ([27]). For m ≥ 3, let t1 and t2 be two different vertices of degree m in any good draw-
ing D of the graph Km,2. Let T 1 and T 2 be two considered subgraphs represented by their rot(t1)
and rot(t2) of the length m, respectively. If the minimum number of interchanges of adjacent
elements of rot(t1) required to produce rot(t2) is at most z, then crD(T 1, T 2) ≥

⌊
m
2

⌋⌊
m−1
2

⌋
− z.
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Theorem 3.2. If n ≥ 2, then cr(G80 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 1.

Proof. In Fig. 4, the edges of K6,n cross each other 6⌊n
2 ⌋⌊

n−1
2 ⌋ times, each subgraph T i, i =

1, . . . , ⌈n
2 ⌉ on the right side does not cross the edges of the graph G80 and each subgraph

T i, i = ⌈n
2 ⌉+1, . . . , n on the left side crosses the edges of G80 exactly four times. The path

P ∗
n crosses G80 once, and so 6⌊n

2 ⌋⌊
n−1
2 ⌋ + 4⌊n

2 ⌋ + 1 crossings appear among the edges of
the graph G80+Pn in this drawing. Thus, cr(G80+Pn) ≤ 6⌊n

2 ⌋⌊
n−1
2 ⌋+4⌊n

2 ⌋+1. To prove
the reverse inequality, let us suppose that for some n ≥ 2, there is a drawing D such that

(3.5) crD(G80 + Pn) ≤ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
.

Since the graph G80 +Dn is a subgraph of G80 + Pn, the edges of G80 + Pn are crossed
exactly 6⌊n

2 ⌋⌊
n−1
2 ⌋+4⌊n

2 ⌋ times by Corollary 3.1. This enforces that no edge of the path P ∗
n

is crossed in D, and therefore, all vertices ti of the path P ∗
n have to be placed in the same

region of the considered good subdrawing D(G80). Lemmas 2.1 and 3.2 together with the
assumption (3.5) offer only five possible planar subdrawings of the graph G80 presented
in Fig. 2 that can be induced by D. Corollary 3.3 also implies no crossing on the edges
v1v2, v2v3, and v3v4 in any such drawing D. Moreover, if r = |RD|, s = |SD| and t = |TD|,
the assumption (3.5) together with the well-known fact crD(K6,n) ≥ 6⌊n

2 ⌋⌊
n−1
2 ⌋ by (1.1)

imply the relation 4⌊n
2 ⌋ ≥ crD(G80)+ crD(G80,K6,n) with respect to the edge crossings of

the subgraph G80 in D. More precisely

6
⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
= crD(G80) + crD(K6,n) + crD(P ∗

n) + crD(G80,K6,n)+

+crD(G80, P
∗
n) + crD(K6,n, P

∗
n) ≥ crD(G80) + 6

⌊n
2

⌋⌊n− 1

2

⌋
+ crD(G80,K6,n)

i.e.,

(3.6) 4
⌊n
2

⌋
≥ 0 + 0r + 1s+ 2t+ 3(n− r − s− t).

The obtained inequality (3.6) forces 3r + 2s + t ≥ 2⌈n
2 ⌉, that is, r + s + t ≥ 1, and so

there is at least one subgraph T i whose edges cross the edges of G80 at most twice in D.
However, if r = s = 0, then t = n. Now, we will show that a contradiction with the
assumption (3.5) can be obtained in all subcases:

Case 1: r ≥ 1. In this case, we can only suppose the planar subdrawing of the graph
G80 given in Fig. 2(a). Since the set RD is nonempty and no edge of the path P ∗

n is crossed
in the drawing D, all vertices ti of P ∗

n are placed in the region of subdrawing D(G80) with
all six vertices of G80 on its boundary.

Now, let us turn to list all possible rotations rotD(ti) that can appear in the drawing D
if the edges of the graph G80 are not crossed by the edges of T i. For T i ∈ RD, there is only
one possible subdrawing of F i \ v5 represented by the subrotation (16432). This offers
two ways of obtaining the subdrawing of F i depending on which of the two regions of
D(F i \ v5) the edge tiv5 is placed in. For both these subdrawings of F i, we can easily
verify in six possible regions of D(G80 ∪ T i) that crD(G80 ∪ T i, T j) ≥ 5 is fulfilling for
any T j , j ̸= i. If there is a subgraph T j by which are crossed the edges of G80 ∪ T i at
least six times, then Lemma 3.3 confirms a contradiction with the assumption (3.5) in D.
The same contradiction is also obtained for n even using the same fixation in the proof of
Lemma 3.3. In the following, let us assume that crD(G80 ∪ T i, T j) = 5 holds for each T j ,
j ̸= i, and let n be odd. In the rest of the proof, for T i ∈ RD with rotD(ti) = (165432)
(based on their symmetry), there are seven possible different subgraphs T j ̸∈ RD with
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respect to the restriction crD(G80 ∪ T i, T j) = 5 only if the vertices tj are placed in the
quadrangular region of D(G80 ∪ T i) with three vertices v1, v5, and v6 of the graph G80 on
its boundary, see Fig. 5.
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FIGURE 5. Seven possible subdrawings of G80∪T i∪T j for T j ̸∈ RD with
crD(G80 ∪ T i, T j) = 5.

For all their presented subdrawings it is not difficult to show over considered regions
of D(G80 ∪ T i ∪ T j) that crD(G80 ∪ T i ∪ T j , T k) ≥ 8 holds for any other T k ̸∈ RD,
k ̸= j. Moreover, if there is some subgraph T l ∈ RD with rotD(tl) = (156432) and
crD(T i, T l) = 5, then the edges of G80 ∪ T l would be crossed at least six times by each
possible considered subgraph T j mentioned above (this verification can be performed
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using the properties of cyclic permutations with the help of Lemma 3.4). The obtained
contradiction again by Lemma 3.3 forces r = 1, and so by fixing the subgraph G80∪T i∪T j ,
we have

crD(G80 + Pn) ≥ 6
n− 3

2

n− 3

2
+ 8(n− 2) + 5 ≥ 6

n− 1

2

n− 1

2
+ 4

n− 1

2
+ 1.

This also confirms a contradiction with the assumption in D.
Case 2: r = 0 and s ≥ 1. Clearly, the vertex tj of any subgraph T j ∈ SD must be placed

in some region of subdrawing D(G80) with at least five vertices of G80 on its boundary.
Assume the planar subdrawing of the graph G80 given in Fig. 2(a). For a subgraph T j ∈
SD, there are six ways how to obtain the subdrawing of F j = G80 ∪ T j depending on
which of three edges v1v5, v4v5, and v5v6 of the graph G80 is crossed by the edge tjv2,
tjv3, and either tjv1 or tjv4 of T j , respectively. For all these six possible subdrawings
in Fig. 6, we can show that crD(G80 ∪ T j , T k) ≥ 5 holds for any T k, k ̸= j, over all
considered regions of D(G80 ∪ T j). As crD(G80, T

j) = 1, Lemma 3.3 again contradicts the
assumption (3.5).
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FIGURE 6. Six possible subdrawings of F j = G80 ∪ T j for T j ∈ SD.

Now, we consider the planar subdrawing of G80 in D given in Fig. 2(b). For a subgraph
T j ∈ SD, only the edge v4v5 of G80 can be crossed by the the edge tjv6. We can easily
verify in six considered regions of D(G80 ∪ T j) that crD(G80 ∪ T j , T k) ≥ 5 holds for any
T k, k ̸= j, and so Lemma 3.3 also confirms a contradiction with the assumption of D. For
both subdrawings of G80 in D given in Fig. 2(c) and (d), there is no possibility to obtain
a subdrawing of G80 ∪ T j for some T j ∈ SD. Finally, the subdrawing of the graph G80

given in Fig. 2(e) offers two ways of obtaining the subdrawing of F j = G80 ∪ T j with
T j ∈ SD depending on which of the two regions of D(F j \ v5) the edge tjv5 is placed
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in. For both such possibilities of F j , Lemma 3.3 again contradicts the assumption in D
because the edges of F j are crossed at least five times by any other subgraph T k, k ̸= j,
based on the discussion of an inserting the vertex tk with corresponding edges over six
considered regions of D(G80 ∪ T j).

Case 3: r = 0 and s = 0, that is, t = n according to the inequality (3.6). Assume
the planar subdrawing of the graph G80 given in Fig. 2(a), which yields that all vertices
tj of the path P ∗

n are placed in the region of subdrawing D(G80) with all six vertices of
G80 on its boundary. By Berežný and Staš [3], it was proved that cr(C5 ∪ {v} + Pn) =
6⌊n

2 ⌋⌊
n−1
2 ⌋ + ⌊n

2 ⌋ + 1, and thus there are less than 3⌊n
2 ⌋ crossings on the edge v5v6 in D.

Since each subgraph T k cannot cross only the edge v5v6 of G80, at least one of the edges
v1v5 and v4v5 must be crossed by some subgraph T k. In the rest of the proof, based on
their symmetry, let the edge v4v5 be crossed at most as many times as the edge v1v5 in D.
There are six ways how to obtain the subdrawing of F k = G80 ∪ T k depending on which
of three edges v2v5, v4v5, and v5v6 of the graph G80 is also crossed by some edge of T k,
see Fig. 7. As crD(T k, T l) ≥ 3 for any other subgraphs T l with l ̸= k, Corollary 3.4 also
forces a contradiction with the assumption in D.
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FIGURE 7. Six possible subdrawings of F k = G80 ∪ T k with one crossing
on the edge v1v5 and exactly one crossing on one of the edges v2v5, v4v5,
and v5v6.

Now, we consider the planar subdrawing of G80 in D given in Fig. 2(b). If all vertices
of the path P ∗

n are placed in the region of D(G80) with four vertices v3, v4, v5, and v6 of
G80 on its boundary, then the edges tkv1 and tkv2 cross the edges v4v5 and v3v5 of G80,
respectively. This enforces that there are only two ways of obtaining the subdrawing of
F k = G80 ∪ T k with T k ∈ TD depending on which of the two regions of D(F k \ v5)
the edge tkv5 is placed in. Using their rotations by Lemma 3.4, crD(T k, T l) ≥ 5 holds
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for all two different subgraphs T k and T l, which yields that Corollary 3.4 contradicts the
assumption (3.5) of D. If all vertices tk of P ∗

n are placed in the region of D(G80) with five
vertices v1, v2, v3, v4, and v5 of G80 on its boundary, then tkv6 crosses v4v5 and either tkv2
crosses v1v5 or tkv3 crosses v4v5. Again using their rotations, Corollary 3.4 together with
Lemma 3.4 contradict the assumption (3.5) of D provided by there at least four crossings
on edges of D(T k ∪ T l) for any two different subgraphs T k, T l ∈ TD.

If we assume the planar subdrawing of G80 in D given in Fig. 2(c), then either all edges
tkv6 cross just two of the edges v1v5, v2v5 and v4v5, v3v5 (if tk is placed in the region of
subdrawing D(G80) with the five vertices v1, v2, v3, v4, and v5 of G80 on its boundary) or
there are only two ways of obtaining the subdrawing of F k = G80 ∪ T k (if tk is placed
in the region of subdrawing D(G80) with the four vertices v2, v3, v5, and v6 of G80 on its
boundary) depending on which of the two regions of D(F k \ v5) the edge tkv5 is placed
in if the edges tkv1 and tkv4 cross the edges v2v5 and v3v5 of G80, respectively. For both
such possibilities, Corollary 3.4 together with Lemma 3.4 again imply a contradiction with
the assumption in D because there are at least five crossings on edges of D(T k ∪ T l)
for any two different subgraphs T k, T l ∈ TD. The same idea of discussions for three
quadrangular regions in the subdrawing of the graph G80 given in Fig. 2(d) forces the
same contradictions.

Finally, if we consider the subdrawing of G80 in D given in Fig. 2(e), then all vertices tk
of P ∗

n must be placed in the region of D(G80) with five vertices v1, v2, v3, v5, and v6 of G80

on its boundary.

(a)

v5
v6

v1

v2

v3v4

v5
v6

v1

v2

v3v4

v5
v6

v1

v2

v3v4

v5
v6

v1

v2

v3v4

(c) (d)
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FIGURE 8. Four possible subdrawings of F k = G80∪T k with one crossing
on the edge v1v5 and one crossing on one of the edges v2v5 and v3v5.
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For any T k ∈ TD, at least one edge of G80 is crossed by tkv4, which yields that no
edge of G80 is crossed by tkv3. Each subgraph T k cannot cross both edges v3v5 and v5v6
using at least 6⌊n

2 ⌋⌊
n−1
2 ⌋+ ⌊n

2 ⌋+ 1 crossings on the edges of G80 \ {v2v5, v3v5, v5v6}+ Pn

isomorphic to C5 ∪ {v} + Pn. Thus, there is at least one subgraph T k by which both
edges either v1v5, v2v5 or v1v5, v3v5 are crossed. Since the edge tkv5 can be placed in two
regions of D(F k \ v5), we obtain four possible subdrawings of F k = G80 ∪ T k shown in
Fig. 8. For all such possibilities of F k, Corollary 3.4 again contradicts the assumption in D
because the edges of T k are crossed at least three times by any other subgraph T l based on
the discussion of an inserting the vertex tl with corresponding edges over six considered
regions of D(G80 ∪ T k).

We have shown, in all cases, that there are at least 6⌊n
2 ⌋⌊

n−1
2 ⌋ + 4⌊n

2 ⌋ + 1 crossings in
each good drawing D of the graph G80 + Pn. The proof of Theorem 3.2 is done. □

4. THE CROSSING NUMBER OF G80 + Cn

Our aim in this section is to give the crossing number of the join product G80+Cn for n
at least three. Let Sm denote the star on m+1 vertices. Using the results of Klešč et al. [15],
the crossing numbers of the graphs Sm + Cn for m = 3, 4, 5 and n ≥ 3 were established.
As the graph G31 is isomorphic to the star S5, the crossing number of the join product
G31 + Cn is given in Theorem 4.3.

Theorem 4.3 ([15], Theorem 9). If n ≥ 3, then cr(G31 + Cn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 3.

For any k = 48, 72, 73, 79, we can also obtain the good drawings of Gk + Cn with
exactly 6⌊n

2 ⌋⌊
n−1
2 ⌋+ 4⌊n

2 ⌋+ 3 crossings by adding new edges v1v2, v2v3, v4v6, tnt1, titi+1

for i = 1, . . . , n− 1 only with three additional crossings on the edge tnt1 in Fig. 3. So, the
following results are obvious.

Corollary 4.5. If n ≥ 3, then cr(Gk+Cn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+4
⌊
n
2

⌋
+3 for any k = 48, 72, 73, 79.

The exact value for the crossing number of G31 +Cn is given by 6⌊n
2 ⌋⌊

n−1
2 ⌋+4⌊n

2 ⌋+3.
Given the use of arguments similar to those in the proof of Lemma 3.2, the proofs of
Lemma 4.5 and Corollary 4.6 can be omitted.

Lemma 4.5. For n ≥ 3, if D is any good drawing of the join product G80+Cn with crD(G80) ≥ 1,
then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 4 crossings in D.

Corollary 4.6. For n ≥ 3, let D be any good drawing of the join product G80 + Cn with
crD(G80) = 0 and also with the vertex notation of G80 given in Fig. 2(a) − (e). If any of the
edges v1v2, v2v3, or v3v4 is crossed in D, then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+4
⌊
n
2

⌋
+4 crossings

in the drawing D.

Let t1, t2, . . . , tn, t1 be the vertex notation of the n-cycle Cn for n ≥ 3. The join product
G80 + Cn consists of one copy of the graph G80, one copy of the cycle Cn, and the edges
joining each vertex of G80 with each vertex of Cn. Let C∗

n denote the cycle as a subgraph
of G80 + Cn induced on the vertices of Cn not belonging to the subgraph G80. The sub-
drawing D(C∗

n) induced by any good drawing D of G80+Cn represents some drawing of
Cn. For the vertices v1, v2, . . . , v6 of the graph G80, let T vi denote the subgraph induced
by n edges joining the vertex vi with n vertices of C∗

n. The edges joining the vertices of
G80 with the vertices of C∗

n form the complete bipartite graph K6,n, and so
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(4.7) G80 + Cn = G80 ∪K6,n ∪ C∗
n = G80 ∪

(
6⋃

i=1

T vi

)
∪ C∗

n.

In the proof of the main theorem of this section, the following three statements related
to some restricted subdrawings of the graphs G+ Cn will be helpful.

Lemma 4.6 ([12], Lemma 2.2). For m ≥ 2 and n ≥ 3, let D be a good drawing of Dm + Cn

in which no edge of C∗
n is crossed, and C∗

n does not separate the other vertices of the graph. Then,
for all i, j = 1, 2, . . . ,m, two different subgraphs T vi and T vj cross each other in D at least⌊
n
2

⌋⌊
n−1
2

⌋
times.

Corollary 4.7 ([15], Corollary 4). For m ≥ 2 and n ≥ 3, let D be a good drawing of the join
product Dm + Cn in which the edges of C∗

n do not cross each other and C∗
n does not separate p

vertices v1, v2, . . . , vp, 2 ≤ p ≤ m. Let T v1 , T v2 , . . . , T vq , q < p, be the subgraphs induced on the
edges incident with the vertices v1, v2, . . . , vq that do not cross C∗

n. If k edges of some subgraph
T vj induced on the edges incident with the vertex vj , j ∈ {q+1, q+2, . . . , p}, cross the cycle C∗

n,
then the subgraph T vj crosses each of the subgraphs T v1 , T v2 , . . . , T vq at least

⌊
n−k
2

⌋⌊ (n−k)−1
2

⌋
times in D.

Lemma 4.7 ([15], Lemma 1). For m ≥ 1, let G be a graph of order m. In an optimal drawing of
the join product G+ Cn, n ≥ 3, the edges of C∗

n do not cross each other.

In the following, we are able to compute the exact values of crossing numbers of the join
products of the graph G80 with both cycles C3 and C4 using the algorithm located on the
website http://crossings.uos.de/. This algorithm can find the crossing numbers
of small undirected graphs. It uses an ILP formulation, based on Kuratowski subgraphs,
and solves it via branch-and-cut-and-price. The system also generates verifiable formal
proofs, as described by Chimani and Wiedera [9]. Unfortunately, the capacity of this
system is restricted.

Lemma 4.8. cr(G80 + C3) = 14 and cr(G80 + C4) = 24.

Theorem 4.4. If n ≥ 3, then cr(G80 + Cn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 4.

Proof. By Lemma 4.8, the result holds for n = 3 and n = 4. Into the drawing in Fig. 4,
it is possible to add the edge t1tn which forms the cycle C∗

n on the vertices of P ∗
n with

just three another crossings, i.e., C∗
n is crossed by three edges v1v5, v2v5, and v3v5 of the

graph G80. Thus, cr(G80 + Cn) ≤ 6⌊n
2 ⌋⌊

n−1
2 ⌋+ 4⌊n

2 ⌋ + 4, and let us suppose that there is
a drawing D such that

(4.8) crD(G80 + Cn) ≤ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
+ 3 for some n ≥ 5.

By Corollary 3.1, at most three edges of the cycle C∗
n can be crossed in D, and we can also

suppose that the edges of C∗
n do not cross each other using Lemma 4.7. The subdrawing

of C∗
n induced by D divides the plane into two regions with at least three vertices of G80

in one of them, and so three possible cases may occur:
Case 1: There is at most one crossing on the edges of C∗

n. Since at least five vertices of
G80 are placed in one region of D(C∗

n), any two different considered subgraphs T vi and
T vj cross each other at least ⌊n

2 ⌋⌊
n−1
2 ⌋ times by Lemma 4.6, and therefore, there are at

least
(
5
2

)
⌊n
2 ⌋⌊

n−1
2 ⌋ ≥ 6⌊n

2 ⌋⌊
n−1
2 ⌋+ 4⌊n

2 ⌋+ 4 crossings in D.
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Case 2: There are exactly two crossings on the edges of C∗
n. If crD(G80, C

∗
n) = 2, then

only one edge of G80 can be crossed by the edges of C∗
n using Corollary 4.6. All vertices of

G80 are placed in one region of D(C∗
n), and so there are at least

(
6
2

)
⌊n
2 ⌋⌊

n−1
2 ⌋+2 crossings in

D. But, for n ≥ 5,
(
6
2

)
⌊n
2 ⌋⌊

n−1
2 ⌋+2 ≥ 6⌊n

2 ⌋⌊
n−1
2 ⌋+4⌊n

2 ⌋+4 which confirms a contradiction
in D. If crD(T vi , C∗

n) = 2 for some subgraph T vi , the same idea as in Case 1 contradicts
again the assumption (4.8) of D. Now, let us turn to the possibility of an existence of two
different subgraphs T vi and T vj with crD(T vi , C∗

n) = 1 and crD(T vj , C∗
n) = 1. This, by

Corollary 4.7 for p = 6, q = 4, and k = 1, enforces at least

(4.9)
(
4

2

)⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 1 + 1

crossings in D. This also confirms a contradiction with the assumption (4.8) in D.
Now, assume crD(T vi , C∗

n) = 1 for only one i ∈ {1, . . . , 6} and crD(G80, C
∗
n) = 1. All

five vertices v1, v2, v3, v4, and v5 of the graph G80 must be placed in one region of D(C∗
n).

For i = 6, we obtain at least
(
5
2

)
⌊n
2 ⌋⌊

n−1
2 ⌋+ 2 crossings in D. If i ̸= 6, then there at least

(4.10)
(
4

2

)⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 1 + 1 + 1

crossings in D provided by crD(T vi , T v6) ≥ 1 and using Corollary 4.7 again for p = 5,
q = 4, and k = 1. The number of crossings obtained in (4.10) can confirm a contradiction in
D for all n at least 6. For n = 5, if there is at least one subgraph T j ̸∈ RD, then we can add
at least one additional crossing on edges of G80 in (4.10) with a contradiction in D. Finally,
for n = |RD| = 5, suppose only planar subdrawing of G80 in D given in Fig. 2(a). Any
T j ∈ RD can be represented by one from two possible rotations (156432) and (165432).
Since crD(T j , T k) ≥ 5 holds for any subgraphs T j , T k ∈ RD with rotD(tj) ̸= rotD(tk) and
crD(T j , T k) ≥ 6 with rotD(tj) = rotD(tk), j ̸= k, we obtain at least 54 crossings in D. This
also contradicts the assumption of D.

Case 3: There are exactly three crossings on the edges of C∗
n. If crD(G80, C

∗
n) = 0, then

all vertices of the cycle C∗
n have to be placed in one region of D(G80). Let D

′
be the sub-

drawing of G80+Dn induced by D without the edges of C∗
n. Clearly, the subdrawing D

′
is

some optimal drawing of the graph G80+Dn with exactly 6⌊n
2 ⌋⌊

n−1
2 ⌋+4⌊n

2 ⌋ crossings and
all vertices ti are also placed in the same region of D

′
(G80). But, the same idea of discus-

sions as in the proof of Theorem 3.2 enforces at least 6⌊n
2 ⌋⌊

n−1
2 ⌋+4⌊n

2 ⌋+1 crossings in D
′
.

In the subcase of crD(G80, C
∗
n) = 1, the proof proceeds in a similar way provided that the

edge v5v6 is crossed by C∗
n, and therefore, all vertices of C∗

n are only placed in the region
of D

′
(G80) with the vertex v6 on its boundary. Finally, if 2 ≤ crD(G80, C

∗
n) ≤ 3, then either

only one edge of G80 is crossed twice, or the edge v5v6 and the edge v5vi, i ∈ {1, . . . , 4},
is crossed once and twice, respectively, by the edges of C∗

n using Corollary 4.6. Both sub-
cases confirm a contradiction with the assumption in D using Lemma 4.6, because imply
at least

(
5
2

)
⌊n
2 ⌋⌊

n−1
2 ⌋+ 3 crossings in D.

Thus, it was shown in all mentioned cases that there is no good drawing D of the graph
G80 + Cn with fewer than 6⌊n

2 ⌋⌊
n−1
2 ⌋ + 4⌊n

2 ⌋ + 4 crossings. This completes the proof of
Theorem 4.4. □
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5. SOME CONSEQUENCES OF THE MAIN RESULT
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FIGURE 9. Planar drawing of one graph G104.

In Fig. 9, let G104 be the connected graph of order six obtained from G80 by adding the
edge v4v6 to the drawing in Fig. 2(a). Since we can add the mentioned edge v4v6 to the
graph G80 without additional crossings in Fig. 4, the drawings of the graphs G104 + Pn

and G104+Cn with exactly 6⌊n
2 ⌋⌊

n−1
2 ⌋+4⌊n

2 ⌋+1 and 6⌊n
2 ⌋⌊

n−1
2 ⌋+4⌊n

2 ⌋+4 crossings can
be obtained, respectively. Further, the graph G80 is some subgraph of G104, and therefore,
cr(G104 + Pn) ≥ cr(G80 + Pn) and cr(G104 + Cn) ≥ cr(G80 + Cn). Thus, the following
results are obvious.

Corollary 5.8. If n ≥ 1, then cr(G104 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
.

Corollary 5.9. If n ≥ 2, then cr(G104 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 1.

Corollary 5.10. If n ≥ 3, then cr(G104 + Cn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
+ 4.

Finally, Staš and Valiska [26] conjectured that the crossing numbers of Wm + Pn are
given by (Z(m) − 1)⌊n

2 ⌋ + Z(m + 1)Z(n) + n + 1, for all m ≥ 3 and n ≥ 2, where Wm

denotes the wheel on m + 1 vertices and the Zarankiewicz’s number Z(n) = ⌊n
2 ⌋⌊

n−1
2 ⌋

is defined for all positive integers n. Recently, this conjecture was proved for W3 + Pn,
W4 +Pn, and W5 +Pn by Klešč and Schrötter [16], Staš and Valiska [26], and Berežný and
Staš [2], respectively. On the other hand, the graphs Wm+P2 and Wm+P3 are isomorphic
to the join product of the cycle Cm with the cycle C3 and with the graph K4 \ e obtained
by removing one edge from K4, respectively. The exact values for the crossing numbers of
the graphs Cm +Cn and K4 \ e+Cm are given by Klešč [12] and [13], respectively, and so
the graphs Wm + P2 and Wm + P3 confirm the validity of this conjecture. This conjecture
was also proved for Wm+P4 by Staš [23] again due to some isomorphism. Since the graph
Wm+P5 is isomorphic to the graph G104+Cm, we establish the validity of this conjecture
also for the graph Wm + P5.

Corollary 5.11. If m ≥ 3, then cr(Wm + P5) = 6
⌊
m
2

⌋⌊
m−1
2

⌋
+ 4
⌊
m
2

⌋
+ 4.

6. CONCLUSIONS

All values of crossing numbers of the join products for all seven considered graphs Gk

on six vertices with the paths Pn and with the cycles Cn are collected in Table 1 (here, the
Zarankiewicz’s number Z(m,n) = ⌊m

2 ⌋⌊
m−1
2 ⌋⌊n

2 ⌋⌊
n−1
2 ⌋ is defined for all positive integers

m,n.) We suppose that similar forms of discussions can be used to estimate the unknown
values of the crossing numbers of the remaining graphs on six vertices with a much larger
number of edges in the join products with the paths, and also with the cycles.
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Gk cr(Gk + Pn), n ≥ 2 cr(Gk + Cn), n ≥ 3

G31 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

G48 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

G72 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

G73 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

G79 Z(6, n) + 4
⌊
n
2

⌋
Z(6, n) + 4

⌊
n
2

⌋
+ 3

G80 Z(6, n) + 4
⌊
n
2

⌋
+ 1 Z(6, n) + 4

⌊
n
2

⌋
+ 4

G104 Z(6, n) + 4
⌊
n
2

⌋
+ 1 Z(6, n) + 4

⌊
n
2

⌋
+ 4

TABLE 1. Summary of crossing numbers for Gk + Pn and Gk + Cn.
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[14] Klešč, M.; Kravecová, D.; Petrillová, J. The crossing numbers of join of special graphs, Electrical Engineering

and Informatics 2: Proceeding of the Faculty of Electrical Engineering and Informatics of the Technical University of
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