Analysis of interactions between human immune system and a pathogenic virus

G. Moza and L. F. VesA

Abstract

In this paper we present a mathematical model for studying the interactions between human immune system and a pathogenic virus, such as Covid-19. A mathematical analysis based on dynamical systems theory is performed. More exactly, we model the interactions between the immune system and the virus by a modified predator-prey method. Several conclusions emerge from this study, and the main two of them are the followings: 1) a deficiency in the concentration of a single type of white blood cells in the early stages of virus proliferation may lead to the virus victory, and 2) if the number of at least one type of white blood cells can be increased beyond the normal threshold by medical interventions in the early stages of virus infection, then the immune system has a better chance to win against the virus.

1. Introduction

The immune system contains the main mechanisms and fighters to protect our bodies from an uncountable number of pathogenic invaders (microbes), such as bacteria, viruses, parasites and fungi [5]. While these minuscule invaders are invisible to the naked eye, they can have a tremendous impact on the organisms they enter, with consequences varying from mild flu-like discomfort to permanent dysfunctionalities of some organs and death.

The main fighters of the immune system with the pathogenic intruders are the white blood cells, which move through blood and tissues throughout body to find evil invaders. The cells are created in bone marrow and are part of the lymphatic system. There are five classes of white blood cells, namely: neutrophils 62%, eosinophils (acidophiles) 2.3%, basophils 0.4%, lymphocytes 30%, and monocytes 5.3%. Two classes of them, neutrophils [17] and lymphocytes [14], are by far the most numerous and together constitute about 92% of the total white blood cells. The typical lifetime of white blood cells varies from hours to days [7], [20].

In this work we aim to propose a mathematical model to study the interactions between a pathogenic virus and the human immune system represented by white blood cells. The approach we use is based on a modified predator-prey methodology [1], [2], [4], [15] used in population dynamics. We need to change some initial hypotheses used in classical predator-prey models to take into account the types of interactions occurring between the virus and white blood cells. While typically in classical predator-prey models [3], [12], known also as Lotka-Volterra models, a prey does not attack and kill a predator, and preys increase indefinitely in the absence of predators, we need to change these two premises to correspond to the reality of the interactions we want to model. More exactly, in our case, the two antagonist combatants are at the same time predators and preys, and, in addition, the preys do not increase indefinitely in the absence of predators but stabilize around a threshold. Several predator-prey models have been discussed in [11] to study

[^0]interactions between host immunity and parasite growth. A model based on four differential equations to describe interactions between an invading pathogen an the innate immune system characterized by plasma cells, antibody concentrations and a health factor, was presented in [22]. The potential use of viruses in treating cancer has been studied in [23]. A bio-mathematical model to describe the interactions between influenza A virus and local tissues such as respiratory tract, has been recently considered in [21].

Compartmental models in epidemiology represent other techniques of mathematical modeling of infectious diseases [18]. Such models divide in more compartments the population to be studied, such that all individuals from the same compartment have the same characteristics. Typically, the models are based on a system of differential equations (often of predator-prey type) describing the evolution of the number of individuals in each compartment. A model with three compartments, susceptible, infectious and recovered individuals, is known as SIR model. There are many SIR models used in epidemiology such as [6], [8], [9], [10], [16] among others.

The paper is organized as follows. In the section two following the Introduction, we propose and study a three-dimensional ($3 D$) model, with two friendly species fighting the same combatant enemy, a pathogenic virus. Since neutrophils and lymphocytes are the most abundant among the white blood cells, the two friendly species may represent these cells. In the next section we take into account all five types of immune cells and present a six-dimensional $(6 D)$ model. In section four we propose a control function to the $3 D$ system and study the new model. Section five presents a model for the case when the immune system is affected by autoimmune diseases. Some conclusions arising from the studied models are presented at the end of the work.

2. The 3D model

Denote by $x(t)$ and $y(t)$ the number of cells at time t of specie 1, respectively, 2 attacking jointly a virus. For example, $x(t)$ represents neutrophils while $y(t)$ lymphocytes. Denote by $z(t)$ the number of viruses of the same type which exist in a body at time t. Consider the time as being continuous, $t \geq 0$. Thus, $\dot{x}(t), \dot{y}(t)$ and $\dot{z}(t)$ are the rates of changes of these three quantities in a short unity of time; $\dot{x}(t)=\frac{d x}{d t}$. Our model is based on the following hypotheses.

H1. In the absence of virus, the two quantities of cells $x(t)$ and $y(t)$ increase up to a threshold value. This hypothesis is based on the fact that the total white cells in a healthy blood is between $4 \times 10^{9} / L$ and $1.1 \times 10^{10} / L$. Thus, in the first stage, we consider the evolution laws of $x(t)$ and $y(t)$ of the form $\dot{x}=a_{1} x-b_{1} x^{2}$ and $\dot{y}=a_{2} y-b_{2} y^{2}$, with $a_{1,2}>0$ and $b_{1,2}>0$. One can check that, the general solution $x(t)$ of the equation in \dot{x} with $x(0)=x_{0}$ satisfies $x(t) \rightarrow \frac{a_{1}}{b_{1}}$ for $t \rightarrow \infty$ and all $x_{0}>0$. Notice that in the absence of the term $-b_{1} x^{2}, x(t)$ would increase exponentially. Similarly, $y(t) \rightarrow \frac{a_{2}}{b_{2}}$ for $t \rightarrow \infty$ and $y_{0}>0$. Thus, $\frac{a_{1}}{b_{1}}$ is the threshold value for $x(t)$ while $\frac{a_{2}}{b_{2}}$ for $y(t)$.

H2. Typically, in a healthy body (without autoimmune diseases), the two classes of white blood cells do not attack each other. Thus, they are destroyed only due to viruses and, as such, a term $-c_{1} x z$ should be added to the first equation in \dot{x}, respectively, $-c_{2} y z$ to the equation in \dot{y}.

H3. In the absence of the immune system the virus would multiplicate indefinitely and exponentially, z satisfying the law $\dot{z}=p_{3} z$. What diminishes the number of viruses are the two classes of white cells, thus, a term of the form $-p_{1} x z-p_{2} y z$ should be added to the law of \dot{z}.

These three hypotheses lead us to the following three-dimensional differential system with nine parameters, given by

$$
\begin{equation*}
\dot{x}=a_{1} x-b_{1} x^{2}-c_{1} x z, \quad \dot{y}=a_{2} y-b_{2} y^{2}-c_{2} y z, \quad \dot{z}=p_{3} z-p_{1} x z-p_{2} y z, \tag{2.1}
\end{equation*}
$$

where the coefficients $a_{1}, b_{1}, c_{1}, \ldots, p_{3}$ are all positive. The model has medical relevance when $x \geq 0, y \geq 0$ and $z \geq 0$, that is, when the system's solutions lie in the set $\Sigma_{+}^{0}=$ $\left\{(x, y, z) \in \mathbb{R}^{3}, x \geq 0, y \geq 0, z \geq 0\right\}$. An important observation on the behavior of the solutions with respect to Σ_{+}^{0} is given in the next remark.

Remark 2.1. The planes of coordinates $\{x=0\},\{y=0\}$ and $\{z=0\}$ are invariant with respect to the flow of (2.1), thus, any orbit starting in the positive octant

$$
\Sigma_{+}=\left\{(x, y, z) \in \mathbb{R}^{3}, x>0, y>0, z>0\right\}
$$

remains in Σ_{+}in forward time. The orbits cannot cross any of the three invariant planes. Therefore, the study of the system where it has medical relevance is well-defined, in the sense that, any orbit starting in the zone with medical relevance does not enter the zone of medical irrelevance and vice versa.
2.1. Local analysis. The system has seven equilibrium points as it follows: $h_{1}=(0,0,0)$, $h_{2}=\left(0, \frac{a_{2}}{b_{2}}, 0\right), h_{3}=\left(\frac{a_{1}}{b_{1}}, 0,0\right), h_{4}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, 0\right), h_{5}=\left(0, \frac{p_{3}}{p_{2}}, \frac{1}{c_{2}}\left(a_{2}-\frac{b_{2}}{p_{2}} p_{3}\right)\right)$,
$h_{6}=\left(\frac{p_{3}}{p_{1}}, 0, \frac{1}{c_{1}}\left(a_{1}-\frac{b_{1}}{p_{1}} p_{3}\right)\right)$, respectively, $h_{7}=\left(x_{7}, y_{7}, z_{7}\right)$, where $x_{7}=\frac{1}{b_{1}}\left(a_{1}-c_{1} z_{7}\right)$, $y_{7}=\frac{1}{b_{2}}\left(a_{2}-c_{2} z_{7}\right)$ and $z_{7}=\frac{b_{1} b_{2}}{b_{2} c_{1} p_{1}+b_{1} c_{2} p_{2}}\left(\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}-p_{3}\right)$.

The point $h_{5} \in \Sigma_{+}^{0}$ if $a_{2} p_{2}-b_{2} p_{3} \geq 0, h_{6}$ if $a_{1} p_{1}-b_{1} p_{3} \geq 0$, respectively, $h_{7} \in \Sigma_{+}^{0}$ if $x_{7} \geq 0, y_{7} \geq 0$ and $z_{7} \geq 0$. We notice that, with the exception of z_{7}, all the points lie on one or more of the invariant planes of coordinates. Denote further by

$$
\Delta_{5}=p_{3}\left(p_{3} b_{2}^{2}+4 a_{2} p_{2}^{2}-4 p_{3} b_{2} p_{2}\right) \text { and } \Delta_{6}=p_{3}\left(p_{3} b_{1}^{2}+4 a_{1} p_{1}^{2}-4 b_{1} p_{1} p_{3}\right)
$$

	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}
$\lambda_{1}^{h_{i}}$	a_{1}	a_{1}	$-a_{1}$	$-a_{1}$	$a_{1}-a_{2} \frac{c_{1}}{c_{2}}+b_{2} \frac{c_{1}}{c_{2} p_{2}} p_{3}$	$a_{2}-\frac{a_{1}}{c_{1}} c_{2}+\frac{b_{1}}{c_{1}} \frac{c_{2}}{p_{1}} p_{3}$
$\lambda_{2}^{h_{i}}$	a_{2}	$-a_{2}$	a_{2}	$-a_{2}$	$\frac{1}{2 p_{2}}\left(\sqrt{\Delta_{5}}-b_{2} p_{3}\right)$	$\frac{1}{2 p_{1}}\left(\sqrt{\Delta_{6}}-b_{1} p_{3}\right)$
$\lambda_{3}^{h_{i}}$	p_{3}	$p_{3}-\frac{a_{2}}{b_{2}} p_{2}$	$p_{3}-\frac{a_{1}}{b_{1}} p_{1}$	k_{1}	$\frac{1}{2 p_{2}}\left(-\sqrt{\Delta_{5}}-b_{2} p_{3}\right)$	$\frac{1}{2 p_{1}}\left(-\sqrt{\Delta_{6}}-b_{1} p_{3}\right)$
type	r	s	s	a, s	s	s

TABLE 1. The eigenvalues and types of the first six equilibrium points of system (2.1); the abbreviations \boldsymbol{r}, \boldsymbol{s} and \boldsymbol{a} stand for repeller, saddle and attractor, respectively, $i=1, . ., 6 . ; k_{1}=p_{3}-\frac{a_{1}}{b_{1}} p_{1}-\frac{a_{2}}{b_{2}} p_{2}$.

Remark 2.2. The equilibria h_{5} and h_{6} are saddles on Σ_{+}^{0}, since $\lambda_{2}^{h_{5}} \lambda_{3}^{h_{5}}=-\frac{p_{3}}{p_{2}}\left(a_{2} p_{2}-b_{2} p_{3}\right)<$ 0 and $\lambda_{2}^{h_{6}} \lambda_{3}^{h_{6}}=-\frac{p_{3}}{p_{1}}\left(a_{1} p_{1}-b_{1} p_{3}\right)<0$.

For the local behavior of the system around the seventh equilibrium h_{7}, we have the next theorem.
Theorem 2.1. The following assertions are true.

1) The equilibrium point h_{7} is a saddle whenever it lies on Σ_{+}.
2) The system does not undergo a fold-Hopf or Hopf bifurcation at h_{7} on Σ_{+}.
3) The equilibrium h_{7} bifurcates from h_{4} along the surface $S=\left\{\left(p_{1}, p_{2}, p_{3}\right), p_{3}=\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}\right\}$ by a transcritical bifurcation.

Proof. The characteristic polynomial at $\left(x_{7}, y_{7}, z_{7}\right)$ is

$$
\begin{equation*}
P(\lambda)=\lambda^{3}+m_{2} \lambda^{2}+m_{1} \lambda+m_{0} \tag{2.2}
\end{equation*}
$$

where $m_{2}=m_{20}+m_{10}, m_{1}=m_{20} m_{10}-z_{7}\left(\frac{c_{1} p_{1}}{b_{1}} m_{20}+\frac{c_{2} p_{2}}{b_{2}} m_{10}\right)$,

$$
\begin{equation*}
m_{0}=-z_{7} \frac{b_{2} c_{1} p_{1}+b_{1} c_{2} p_{2}}{b_{1} b_{2}} m_{20} m_{10} \tag{2.3}
\end{equation*}
$$

$m_{20}=\frac{b_{1}\left(p_{2}\left(a_{1} c_{2}-a_{2} c_{1}\right)+b_{2} c_{1} p_{3}\right)}{b_{2} c_{1} p_{1}+b_{1} c_{2} p_{2}}$ and $m_{10}=\frac{b_{2}\left(-p_{1}\left(a_{1} c_{2}-a_{2} c_{1}\right)+b_{1} c_{2} p_{3}\right)}{b_{2} c_{1} p_{1}+b_{1} c_{2} p_{2}}$.

1) Assume $h_{7} \in \Sigma_{+}$is an attractor, thus, the polynomial $P(\lambda)$ has all roots with negative real part. But, from Routh-Hurwitz conditions, this is equivalent to $m_{2}>0, m_{0}>0$ and $m_{2} m_{1}>m_{0}$. It follows from (2.3) that, on $\Sigma_{+}, m_{0}>0$ iff $m_{20} m_{10}<0$. On the other hand,

$$
\begin{equation*}
m_{2} m_{1}-m_{0}=-\frac{b_{1} c_{2} p_{2} m_{10}^{2}+b_{2} c_{1} p_{1} m_{20}^{2}}{b_{1} b_{2}} z_{7}+m_{10} m_{20}\left(m_{10}+m_{20}\right) \tag{2.4}
\end{equation*}
$$

Thus $m_{2} m_{1}-m_{0}<0$ since $m_{10}+m_{20}>0$ from $m_{2}>0$, which is a contradiction.
Assume further that $h_{7} \in \Sigma_{+}$is a repeller with $\lambda_{i}^{h_{7}}>0, i=1,2,3$. Then $\lambda_{1}^{h_{7}} \lambda_{2}^{h_{7}} \lambda_{3}^{h_{7}}=$ $-m_{0}>0$, thus, $m_{20} m_{10}>0$ by (2.3). When $a_{1} c_{2}-a_{2} c_{1} \geq 0$ then $m_{20}>0$, thus, $m_{10}>0$. It follows that $\lambda_{1}^{h_{7}}+\lambda_{2}^{h_{7}}+\lambda_{3}^{h_{7}}=-\left(m_{20}+m_{10}\right)<0$, which contradicts $\lambda_{i}^{h_{7}}>0$. Similarly, if $a_{1} c_{2}-a_{2} c_{1}<0$ then $m_{10}>0$, which, by $m_{20} m_{10}>0$, yields $m_{20}>0$, leading to the same contradiction. Thus, h_{7} is not a repeller. From 1) and 2) we conclude that h_{7} is a saddle whenever $h_{7} \in \Sigma_{+}$.
2) If $\lambda=0$ is a root of $P(\lambda)$ then, by (2.3), $z_{7}=0$ or $m_{20} m_{10}=0$. In the first case, this occurs on the invariant manifold S when h_{7} collides to h_{4}, having the eigenvalues $-a_{1}$, $-a_{2}$ and 0 , thus, a fold-Hopf bifurcation cannot occur. In the definition of S we assume the two thresholds a_{1} / b_{1} and a_{2} / b_{2} are fixed.

In the second case, $m_{20} m_{10}=0$, we assume first $a_{1} c_{2}-a_{2} c_{1}>0$. Then $m_{10}=0$, which yields $p_{3}=\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}} p_{1}$, thus, $h_{7}=h_{6}$ and $\Delta_{6}>0$. In the second case $a_{1} c_{2}-a_{2} c_{1}<0$, we get $m_{20}=0, p_{3}=-\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{2} c_{1}} p_{2}$ and $h_{7}=h_{5}$ with $\Delta_{5}>0$. Thus, $i \omega$ is not a root of $P(\lambda)$ for $\omega \neq 0$ in either of the two cases, which confirms that a fold-Hopf bifurcation cannot arise. Notice that $m_{20} m_{10} \neq 0$ if $a_{1} c_{2}-a_{2} c_{1}=0$.

Assume further $\lambda_{1}^{h_{7}}<0$ and $\pm i \omega, \omega>0$, are the eigenvalues of $h_{7} \in \Sigma_{+}$for some values of the parameters. Then $\lambda_{1}^{h_{7}} \omega^{2}=-m_{0}<0$, which, by (2.3), leads to $m_{20} m_{10}<0$. On the other hand, the complex value $i \omega$ is a root of the polynomial $P(\lambda)$ if and only if $\omega^{2}=m_{1}>0$ and $m_{2} m_{1}-m_{0}=0$, that is, $\lambda_{1}^{h_{7}}=-m_{2}<0$. Thus, $m_{20}+m_{10}>0$ and, by (2.4), $m_{2} m_{1}-m_{0}<0$, which is a contradiction to $m_{2} m_{1}-m_{0}=0$. Thus, a Hopf bifurcation cannot occur at $h_{7} \in \Sigma_{+}$. The proof for $\lambda_{1}^{h_{7}}>0$ is similar, since $m_{20} m_{10}>0$ and $m_{20}+m_{10}<0$ in this case.
3) It is clear that h_{7} coincides to h_{4} on S; notice that $p_{1,2}>0$. In order to show that a transcritical bifurcation takes place on S, we apply Sotomayor's theorem from [19]. To this end, assume $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, p_{1}, p_{2}$ are fixed (constants) while p_{3} vary, and denote by $\mu=p_{3}-k$, where $k=\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}$. Denote by $u=\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}$ and $F=\left(\begin{array}{lll}f & g & h\end{array}\right)^{T}$, and write the system (2.1) in the form

$$
\begin{equation*}
\dot{u}=F(u, \mu), \tag{2.5}
\end{equation*}
$$

where $f=a_{1} x-b_{1} x^{2}-c_{1} x z, g=a_{2} y-b_{2} y^{2}-c_{2} y z$ and $h=(\mu+k) z-p_{1} x z-p_{2} y z ; T$ stands for the transpose, that is, $\left(\begin{array}{lll}x & y & z\end{array}\right)^{T}=\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$. Denote by $u_{0}=h_{4}$ and $\mu_{0}=0$, respectively, $F_{\mu}=\left(\begin{array}{ccc}\frac{\partial f}{\partial \mu} & \frac{\partial g}{\partial \mu} & \frac{\partial h}{\partial \mu}\end{array}\right)^{T}$ and $D(u, \mu)$ the Jacobian matrix of (2.5). Then 0 is an eigenvalue both for $D\left(u_{0}, \mu_{0}\right)$ and $D^{T}\left(u_{0}, \mu_{0}\right)$, with the corresponding eigenvectors $v=$ $\left(\begin{array}{ccc}-\frac{1}{b_{1}} c_{1} & -\frac{1}{b_{2}} c_{2} & 1\end{array}\right)^{T}$ for $D\left(u_{0}, \mu_{0}\right)$, respectively, $w=\left(\begin{array}{ccc}0 & 0 & 1\end{array}\right)^{T}$ for $D^{T}\left(u_{0}, \mu_{0}\right)$.

The first condition $w^{T} F_{\mu}\left(u_{0}, \mu_{0}\right)=0$ of the transcritical bifurcation is readily satisfied. Denoting by $D F_{\mu}$ the Jacobian matrix of the vector field $F_{\mu}=\left(\begin{array}{lll}0 & 0 & z\end{array}\right)^{T}$, it follows that $w^{T}\left[D F_{\mu}\left(u_{0}, \mu_{0}\right) v\right]=1 \neq 0$. To prove the last condition, denote by $D^{2} F(v, v)=$ $\left(d^{2} f(v, v) \quad d^{2} g(v, v) \quad d^{2} h(v, v)\right)^{T} ; d^{2} f(v, v)$ is the differential of second order applied at the pair (v, v), that is, $d^{2} f(v, v)=-2 b_{1} v_{1}^{2}-2 c_{1} v_{1} v_{3}$, where $v=\left(\begin{array}{ccc}v_{1} & v_{2} & v_{3}\end{array}\right)^{T}$. At $\left(u_{0}, \mu_{0}\right)$, we obtain

$$
w^{T}\left[D^{2} F\left(x_{0}, \mu_{0}\right)(v, v)\right]=2 \frac{c_{1}}{b_{1}} p_{1}+2 \frac{c_{2}}{b_{2}} p_{2} \neq 0
$$

which completes the proof.
Remark 2.3. Two more transcritical bifurcations arise in the system (2.1) on the surfaces $S_{1}=\left\{p_{3}=\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}} p_{1}, a_{1} c_{2}>a_{2} c_{1}\right\}$, respectively, $S_{2}=\left\{p_{3}=-\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{2} c_{1}} p_{2}, a_{1} c_{2}<a_{2} c_{1}\right\}$. More exactly, h_{7} collides to h_{6} on S_{1}, respectively, h_{5} on S_{2}.

From the above analysis of the model, the following conclusions can be drawn, in terms of the relevance of the results for the fight between the immune system and a pathogenic virus.
1). Since $h_{1}=(0,0,0)$ is a repeller (unstable node) with its eigenvalues $a_{1,2}>0$ and $p_{3}>0$, any orbit $\gamma(t)=(x(t), y(t), z(t))$ starting at a point $u_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \Sigma_{+}$close to h_{1} will depart from it in forward time, which implies that $z(t)$ may escape to infinity. Moreover, since a Hopf bifurcation is not possible at h_{1} (its eigenvalues are real), a stable limit cycle surrounding h_{1} does not arise by such a bifurcation. Therefore, if the immune system is sufficiently weak when the virus starts to proliferate, the virus has a big chance to win.
2). Let us look at $h_{2}=\left(0, \frac{a_{2}}{b_{2}}, 0\right)$. Its eigenvalues are $a_{1},-a_{2}$ and $p_{3}-\frac{a_{2}}{b_{2}} p_{2}$, thus, it is a saddle for either $p_{3}-\frac{a_{2}}{b_{2}} p_{2}>0$ or $p_{3}-\frac{a_{2}}{b_{2}} p_{2}<0$. Any orbit $\gamma(t)$ starting at a point $u_{0} \in \Sigma_{+}$close to $h_{2}, u_{0} \notin W_{h_{2}}^{s}$, will depart from h_{2} in forward time, that is, $z(t)$ may escape to infinity. A stable limit cycle around h_{2} cannot arise through a Hopf bifurcation since all eigenvalues are real. Therefore, if the white cells of type 1 (neutrophils in our model) are not in a normal quantity in the blood when the virus invades the body, the virus may win even though the quantity of white cells of type 2 (lymphocytes) is normal. Thus, a deficiency in the quantity of a single type of white blood cells may lead to the virus victory. For $h_{3}=\left(\frac{a_{1}}{b_{1}}, 0,0\right)$ the results are similar.
3). Consider further $h_{4}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, 0\right)$ with $p_{3}<\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}$, that is, h_{4} is an attractor, Fig. 1 (left). In this case, any orbit $\gamma(t)$ starting at a point $u_{0} \in \Sigma_{+}$close to h_{4} will converge to h_{4} for t large, that is, $z(t) \rightarrow 0$ for $t \rightarrow \infty$. Therefore, the model predicts that, if the two types of white blood cells (neutrophils and lymphocytes) are in a sufficient number (i.e. normal concentrations) from the first moment they meet the virus, and if their joint actions kill the virus at a high rate, then the immune system wins.

Figure 1. When $b_{1}=b_{2}=1, a_{1}=2 b_{1}, a_{2}=3 b_{2}, c_{1}=1, c_{2}=2$, $p_{1}=1, p_{2}=2$, the steady state h_{4} attracts nearby orbits for $p_{3}=3$ (left), respectively, repels for $p_{3}=10$ (right).

On the other hand, if the joint destruction rate $\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}$ of the virus by the two white blood cells is not sufficiently strong to overcome the rate p_{3} of the virus proliferation, that is, h_{4} is a saddle with $p_{3}>\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}$, the virus may win since $z(t)$ may escape to infinity, Fig. 1 (right). A Hopf bifurcation leading to a stable limit cycle around h_{2} cannot arise since all eigenvalues are real.
4). Consider h_{5} with $a_{2} p_{2}>b_{2} p_{3}$. The three eigenvalues of h_{5} are real, $\lambda_{i}^{h_{5}} \in \mathbb{R}, i=$ $1,2,3$, since $\Delta_{5}=p_{3}\left(p_{3} b_{2}^{2}+4 a_{2} p_{2}^{2}-4 p_{3} b_{2} p_{2}\right)>b_{2}^{2} p_{3}^{2}>0$. Thus, a Hopf bifurcation is not possible at h_{5}. Since h_{5} is a saddle, $z(t)$ may escape to infinity, thus, the virus may win. For h_{6} the scenario is similar.
5). The model at the saddle $h_{7} \in \Sigma_{+}$offers an interesting perspective. Notice first that $x_{7}<\frac{a_{1}}{b_{1}}, y_{7}<\frac{a_{2}}{b_{2}}$ and $\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}>p_{3}$ if $h_{7} \in \Sigma_{+}$. Since h_{7} is a saddle, $z(t)$ of an orbit $\gamma(t)$ starting close to h_{7} may escape to infinity. Thus, if the normal levels of the two types of white blood cells become at a moment considerably smaller than their normal concentrations, the virus may win even though the immune system kills the virus at a rate higher than the rate of virus proliferation. This case captures the possibility that the virus and the white blood cells increase in number at the same time, but the immune system does not have the ability to limitate the virus proliferation, which may win in the end.
Remark 2.4. From the analysis of the all seven equilibrium points, we notice that in a single case there are sufficient conditions to constraint and destroy the virus, namely, when $h_{4} \in \Sigma_{+}^{0}$ is an attractor with $p_{3}<\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}$.

3. The 6D model

In the same way we can model the interactions between the virus and the five types of white blood cells. The model in this case becomes

$$
\left\{\begin{array}{c}
\dot{x}_{i}=a_{i} x_{1}-b_{i} x_{1}^{2}-c_{i} x_{i} v, \quad i=\overline{1,5}, \tag{3.6}\\
\dot{v}=p_{6} v-\left(p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+p_{4} x_{4}+p_{5} x_{5}\right) v
\end{array} .\right.
$$

A first class of equilibrium points of the 6D model (3.6) which can be studied analytically are those with $v=0$. They are the followings.
$h_{1}=\overline{0} \in \mathbb{R}^{6}$ with eigenvalues a_{i} and $p_{6}, i=1, \ldots, 5$. Thus, it is an unstable node.
$h_{2}=\left(\frac{a_{1}}{b_{1}}, 0,0,0,0,0\right)$ with eigenvalues $-a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, p_{6}-\frac{a_{1}}{b_{1}} p_{1}$. Thus, h_{2} is a saddle. There are five equilibria of type h_{2}, all saddles, having $v=0$ and a single value $x_{i}=\frac{a_{i}}{b_{i}}$
non-zero on the position i, where $i=1, \ldots, 5$. For example, $h_{21}=\left(0, \frac{a_{2}}{b_{2}}, 0,0,0,0\right)$ and so on.
$h_{3}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, 0,0,0,0\right)$ with eigenvalues $-a_{1},-a_{2}, a_{3}, a_{4}, a_{5}, p_{6}-\sum_{k=1}^{2} \frac{a_{k}}{b_{k}} p_{k}$. There are more equilibria of this type, all saddles, having $v=0$ and two values $x_{i}=\frac{a_{i}}{b_{i}}$ non-zero while the other values $x_{i}=0$. For example, $h_{31}=\left(\frac{a_{1}}{b_{1}}, 0, \frac{a_{3}}{b_{3}}, 0,0,0\right)$ and so on.
$h_{4}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, 0,0,0\right)$ with eigenvalues $-a_{1},-a_{2},-a_{3}, a_{4}, a_{5}, p_{6}-\sum_{k=1}^{3} \frac{a_{k}}{b_{k}} p_{k}$. There are more equilibria of this type, all saddles. For example, $h_{41}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, 0, \frac{a_{4}}{b_{4}}, 0,0\right)$.
$h_{5}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \frac{a_{4}}{b_{4}}, 0,0\right)$ with eigenvalues $-a_{1},-a_{2},-a_{3},-a_{4}, a_{5}, p_{6}-\sum_{k=1}^{4} \frac{a_{k}}{b_{k}} p_{k}$. Thus, h_{5} is a saddle along with other four equilibria of this type.
$h_{6}=\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \frac{a_{4}}{b_{4}}, \frac{a_{5}}{b_{5}}, 0\right)$ with eigenvalues $-a_{1},-a_{2},-a_{3},-a_{4},-a_{5}$,
$\lambda_{6}^{h_{6}}=p_{6}-\sum_{k=1}^{5} \frac{a_{k}}{b_{k}} p_{k}$. This equilibrium is unique of this type and can be an attractor or a saddle, depending on the sign of $\lambda_{6}^{h_{6}}$.

A second class of equilibrium points which still can be studied analytically are those with $v \neq 0$ and a single $x_{i}=\frac{p_{6}}{p_{i}} \neq 0, i=1, \ldots, 5$. The first one is $h_{7}=\left(\frac{p_{6}}{p_{1}}, 0,0,0,0, v_{1}\right)$, $v_{1}=\frac{1}{c_{1}}\left(a_{1}-\frac{b_{1}}{p_{1}} p_{6}\right)$, which has the eigenvalues $a_{2}-\frac{a_{1}}{c_{1}} c_{2}+\frac{b_{1}}{c_{1}} \frac{c_{2}}{p_{1}} p_{6}, a_{3}-\frac{a_{1}}{c_{1}} c_{3}+\frac{b_{1}}{c_{1}} \frac{c_{3}}{p_{1}} p_{6}$, $a_{4}-\frac{a_{1}}{c_{1}} c_{4}+\frac{b_{1}}{c_{1}} \frac{c_{4}}{p_{1}} p_{6}, a_{5}-\frac{a_{1}}{c_{1}} c_{5}+\frac{b_{1}}{c_{1}} \frac{c_{5}}{p_{1}} p_{6}$ and $\lambda_{5,6}^{h_{7}}=\frac{1}{2 p_{1}}\left(-b_{1} p_{6} \pm \sqrt{\Delta_{1}}\right)$, where $\Delta_{1}=$ $b_{1}^{2} p_{6}^{2}+4 a_{1} p_{1}^{2} p_{6}-4 b_{1} p_{1} p_{6}^{2}$. We notice that $\Delta_{1}>0$ and $\lambda_{5}^{h_{7}} \lambda_{6}^{h_{7}}=-p_{6} \frac{a_{1} p_{1}-b_{1} p_{6}}{p_{1}}<0$ whenever $v_{1}>0$, thus, h_{7} is a saddle on $a_{1} p_{1}-b_{1} p_{6}>0$. There are four more saddles of this type, for example, $h_{71}=\left(0, \frac{p_{6}}{p_{2}}, 0,0,0, v_{2}\right)$, with $v_{2}=\frac{1}{c_{2}}\left(a_{2}-\frac{b_{2}}{p_{2}} p_{6}\right)$.

The system has four more classes of equilibrium points but their analytical study is intractable. They have the following forms.
$h_{8}=\left(x_{1}, x_{2}, 0,0,0, v_{8}\right)$, where $x_{1}=\frac{1}{b_{1}}\left(a_{1}-v_{8} c_{1}\right), x_{2}=\frac{1}{b_{2}}\left(a_{2}-v_{8} c_{2}\right)$, $v_{8}=\frac{1}{d_{8}}\left(\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}-p_{6}\right)$ with $d_{8}=\frac{c_{1}}{b_{1}} p_{1}+\frac{c_{2}}{b_{2}} p_{2}$.
$h_{9}=\left(x_{1}, x_{2}, x_{3}, 0,0, v_{9}\right)$, where $x_{1}=\frac{1}{b_{1}}\left(a_{1}-v_{9} c_{1}\right), x_{2}=\frac{1}{b_{2}}\left(a_{2}-v_{9} c_{2}\right)$, $x_{3}=\frac{1}{b_{3}}\left(a_{3}-v_{9} c_{3}\right), v_{9}=\frac{1}{d_{9}}\left(\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}+\frac{a_{3}}{b_{3}} p_{3}-p_{6}\right)$ with $d_{9}=d_{8}+\frac{c_{3}}{b_{3}} p_{3}$.
$h_{10}=\left(x_{1}, x_{2}, x_{3}, x_{4}, 0, v_{10}\right)$, where $x_{1}=\frac{1}{b_{1}}\left(a_{1}-v_{10} c_{1}\right), x_{2}=\frac{1}{b_{2}}\left(a_{2}-v_{10} c_{2}\right), x_{3}=$ $\frac{1}{b_{3}}\left(a_{3}-v_{10} c_{3}\right), x_{4}=\frac{1}{b_{4}}\left(a_{4}-v_{10} c_{4}\right), v_{10}=\frac{1}{d_{10}}\left(\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}+\frac{a_{3}}{b_{3}} p_{3}+\frac{a_{4}}{b_{4}} p_{4}-p_{6}\right)$ with $d_{10}=d_{9}+\frac{c_{4}}{b_{4}} p_{4}$.

Finally, there is a single equilibrium of the form $h_{11}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, v_{11}\right)$, where $x_{1}=\frac{1}{b_{1}}\left(a_{1}-v_{11} c_{1}\right), x_{2}=\frac{1}{b_{2}}\left(a_{2}-v_{11} c_{2}\right), x_{3}=\frac{1}{b_{3}}\left(a_{3}-v_{11} c_{3}\right), x_{4}=\frac{1}{b_{4}}\left(a_{4}-v_{11} c_{4}\right)$, $x_{5}=\frac{1}{b_{5}}\left(a_{5}-v_{11} c_{5}\right), v_{11}=\frac{1}{d_{11}}\left(\frac{a_{1}}{b_{1}} p_{1}+\frac{a_{2}}{b_{2}} p_{2}+\frac{a_{3}}{b_{3}} p_{3}+\frac{a_{4}}{b_{4}} p_{4}+\frac{a_{5}}{b_{5}} p_{5}-p_{6}\right)$ and $d_{11}=d_{10}+$ $\frac{c_{5}}{b_{5}} p_{5}$.

Remark 3.5. Of the equilibrium points of the first two classes described above for the 6D system, only the attractor h_{6} predicts that the immune system may win. The conclusion in this case is similar to the one for the 3D system described at 3).

We expect the equilibrium points of the remaining classes for the 6 D system to be all unstable (saddles or repellers), whenever their coordinates are positive, thus, they do not reveal different scenarios. We base our hypothesis on the existing similarities between the 3D and 6D systems. However, since the analytical analysis in the remaining cases is difficult, this remains an open problem.

4. The 3D model with control

In the 3D and 6D models presented above, we modeled the interactions between virus and immune system by considering their natural developments, without external interventions as, for example, drug administration or additional means for increasing the production of white blood cells.

We aim to model in this section the case when the interactions depend also on external factors. To this end, a control function $u(t)$ to one of the first two equations related to the immune system is proposed, having linear terms in u and nonlinear terms in $x y$, in the form of a $4 D$ differential system given by:
(4.7) $\dot{x}=a_{1} x+u-b_{1} x^{2}-c_{1} x z, \dot{y}=a_{2} y-b_{2} y^{2}-c_{2} y z, \dot{z}=p_{3} z-p_{1} x z-p_{2} y z, \dot{u}=\beta u-\alpha x y$, where α and β are real numbers. The system has seven equilibrium points: $q_{1}=(0,0,0,0)$, $q_{2}=\left(\frac{a_{1}}{b_{1}}, 0,0,0\right), q_{3}=\left(0, \frac{a_{2}}{b_{2}}, 0,0\right), q_{4}=\left(0, \frac{p_{3}}{p_{2}}, \frac{1}{c_{2}}\left(a_{2}-b_{2} \frac{p_{3}}{p_{2}}\right), 0\right)$,
$q_{5}=\left(\frac{p_{3}}{p_{1}}, 0, \frac{1}{c_{1}}\left(a_{1}-b_{1} \frac{p_{3}}{p_{1}}\right), 0\right), q_{6}=\left(x_{6}, y_{6}, 0, u_{6}\right)$, where $y_{6}=\frac{a_{2}}{b_{2}}, x_{6}=\frac{1}{b_{1}}\left(a_{1}+\frac{\alpha}{\beta} y_{6}\right)$, $u_{6}=\frac{\alpha}{\beta} x_{6} y_{6}$, respectively, $q_{7}=\left(x_{7}, y_{7}, z_{7}, u_{7}\right)$, with $x_{7}=\frac{1}{p_{1}}\left(p_{3}-y_{7} p_{2}\right), y_{7}=\frac{1}{b_{2}}\left(a_{2}-z_{7} c_{2}\right)$, $z_{7}=\frac{1}{n_{7}}\left(\alpha a_{2} p_{1}+\beta a_{1} b_{2} p_{1}+\beta a_{2} b_{1} p_{2}-\beta b_{1} b_{2} p_{3}\right)$ and $u_{7}=\frac{\alpha}{\beta} x_{7} y_{7}$, with $n_{7}=\alpha c_{2} p_{1}+$ $\beta b_{2} c_{1} p_{1}+\beta b_{1} c_{2} p_{2}$.

The eigenvalues of the first six points q_{i} can be determined analytically and are given in the next table. The equilibria q_{1}, q_{2}, q_{4} and q_{5} are unstable (repellers or saddles), while q_{3} and q_{6} can be attractors; $\lambda_{1}^{q_{4}} \lambda_{2}^{q_{4}}=-\left(a_{2}-b_{2} \frac{p_{3}}{p_{2}}\right) p_{3}<0$ since $z_{4}=\frac{1}{c_{2}}\left(a_{2}-b_{2} \frac{p_{3}}{p_{2}}\right)>0$, while $\lambda_{3}^{q_{5}} \lambda_{4}^{q_{5}}=-p_{3}\left(a_{1}-b_{1} \frac{p_{3}}{p_{1}}\right)<0$ since $z_{5}>0$.
Remark 4.6. Numerical simulations show that q_{7} is a saddle for a large spectrum of the parameters. In particular, if $n_{7}<0$ and $\alpha>0$, one can show $\lambda_{1}^{q_{7}} \lambda_{2}^{q_{7}} \lambda_{3}^{q_{7}} \lambda_{4}^{q_{7}}<-2 y_{7}^{2} z_{7} \alpha c_{2} p_{2}<$ 0 , thus, q_{7} is a saddle. It remains an open problem to determine the type and stability of q ${ }_{7}$ in all cases.

The equilibrium q_{3} is an attractor if $p_{3}<\frac{a_{2}}{b_{2}} p_{2}, \lambda_{3}^{q_{3}} \lambda_{4}^{q_{3}}=\frac{1}{b_{2}}\left(\alpha a_{2}+\beta a_{1} b_{2}\right)>0$ and $\lambda_{3}^{q_{3}}+\lambda_{4}^{q_{3}}=a_{1}+\beta<0$, while q_{6} is an attractor if $\lambda_{2}^{q_{6}}<0, \lambda_{3}^{q_{6}} \lambda_{4}^{q_{6}}=-\frac{1}{b_{2}}\left(\alpha a_{2}+\beta a_{1} b_{2}\right)>0$ and $\lambda_{3}^{q_{6}}+\lambda_{4}^{q_{6}}=-\frac{1}{\beta b_{2}}\left(2 \alpha a_{2}-\beta^{2} b_{2}+\beta a_{1} b_{2}\right)<0$.

	$\lambda_{1}^{q_{i}}$	$\lambda_{2}^{q_{i}}$	$\lambda_{3}^{q_{i}}$	$\lambda_{4}^{q_{i}}$
q_{1}	β	a_{1}	a_{2}	p_{3}
q_{2}	β	$-a_{1}$	a_{2}	$p_{3}-\frac{a_{1}}{b_{1}} p_{1}$
q_{3}	$-a_{2}$	$p_{3}-\frac{a_{2}}{b_{2}} p_{2}$	$\frac{1}{2}\left(a_{1}+\beta+\sqrt{l_{1}}\right)$	$\frac{1}{2}\left(a_{1}+\beta-\sqrt{l_{1}}\right)$
q_{4}	$\frac{1}{2 p_{2}}\left(-b_{2} p_{3}+\sqrt{l_{2}}\right)$	$\frac{1}{2 p_{2}}\left(-b_{2} p_{3}-\sqrt{l_{2}}\right)$	$\frac{1}{2 c_{2} p_{2}}\left(l_{3}+\sqrt{l_{4}}\right)$	$\frac{1}{2 c_{2} p_{2}}\left(l_{3}-\sqrt{l_{4}}\right)$
q_{5}	β	$a_{2}-\frac{a_{1}}{c_{1}} c_{2}+\frac{b_{1}}{c_{1}} \frac{c_{2}}{p_{1}} p_{3}$	$\frac{1}{2 p_{1}}\left(-b_{1} p_{3}+\sqrt{l_{5}}\right)$	$\frac{1}{2 p_{1}}\left(-b_{1} p_{3}-\sqrt{l_{5}}\right)$
q_{6}	$-a_{2}$	k_{2}	$\frac{1}{2 \beta b_{2}}\left(l_{6}+\sqrt{l_{7}}\right)$	$\frac{1}{2 \beta b_{2}}\left(l_{6}-\sqrt{l_{7}}\right)$

Table 2. The eigenvalues of the first six equilibrium points of the controled $\operatorname{system}(4.7) ; k_{2}=p_{3}-\frac{a_{1}}{b_{1}} p_{1}-\frac{a_{2}}{b_{2}} p_{2}-\frac{\alpha}{\beta} \frac{a_{2}}{b_{1} b_{2}} p_{1}$.
where $l_{1}=\left(\beta-a_{1}\right)^{2}-4 \alpha \frac{a_{2}}{b_{2}}, l_{2}=p_{3}\left(4 a_{2} p_{2}^{2}+b_{2}^{2} p_{3}-4 b_{2} p_{2} p_{3}\right)$,

$$
\begin{aligned}
& l_{3}=b_{2} c_{1} p_{3}+p_{2}\left(\beta c_{2}+a_{1} c_{2}-a_{2} c_{1}\right) \\
& l_{4}=\left(\beta c_{2}-a_{1} c_{2}+a_{2} c_{1}\right)^{2} p_{2}^{2}-2 p_{3}\left(2 \alpha c_{2}^{2}+a_{2} b_{2} c_{1}^{2}+\beta b_{2} c_{1} c_{2}-a_{1} b_{2} c_{1} c_{2}\right)+b_{2}^{2} c_{1}^{2} p_{3}^{2}
\end{aligned}
$$

$l_{5}=p_{3}\left(4 a_{1} p_{1}^{2}+b_{1}^{2} p_{3}-4 b_{1} p_{1} p_{3}\right), l_{6}=-2 \alpha a_{2}+\beta^{2} b_{2}-\beta a_{1} b_{2}$ and $l_{7}=\left(2 \alpha a_{2}+\beta a_{1} b_{2}\right)^{2}+$ $\beta^{3} b_{2}^{2}\left(\beta+2 a_{1}\right)$.

The control function u proposed in this section changes the local behavior of the $3 D$ uncontrolled system (2.1) around the saddle $h_{2}=\left(0, \frac{a_{2}}{b_{2}}, 0\right)$, by transforming h_{2} in the attractor $q_{3}=\left(0, \frac{a_{2}}{b_{2}}, 0,0\right)$ in the new $4 D$ system (4.7) with control, for some values of the parameters.

Remark 4.7. 1) The existence of the attractors q_{3} and q_{6} supports the idea that the virus can be better destroyed by external interventions on the immune system.
2) The attractor q_{3} shows that, if the second threshold $\frac{a_{2}}{b_{2}}$ is sufficiently high, then the immune system may win even though the initial level of immune cells of type 1 is very low when meeting the virus.
3) Since $x_{6}=\frac{a_{1}}{b_{1}}+\frac{\alpha}{b_{1} \beta} \frac{a_{2}}{b_{2}}$ in the attractor q_{6}, it follows that the control u stabilizes the long term behavior of (4.7) to various values around the two thresholds $\frac{a_{1}}{b_{1}}$ and $\frac{a_{2}}{b_{2}}$.

5. A MODEL WITH AUTOIMMUNE DISEASE

Assume in this section that the immune system is affected by autoimmune diseases. In other words, the white blood cells attack each other. Therefore, the cells $x(t)$ perish at a rate of $-x z c_{1}-x y d_{1}$, while $y(t)$ at a rate of $-y z c_{2}-x y d_{2}$. These hypotheses lead to the system

$$
\begin{equation*}
\dot{x}=x\left(a_{1}-x b_{1}-z c_{1}-y d_{1}\right), \dot{y}=y\left(a_{2}-y b_{2}-z c_{2}-x d_{2}\right), \dot{z}=z\left(p_{3}-x p_{1}-y p_{2}\right), \tag{5.8}
\end{equation*}
$$

which will be analyzed in what follows. The equilibrium points of the new system (5.8) are:
$P_{1}(0,0,0), P_{2}\left(0, \frac{a_{2}}{b_{2}}, 0\right), P_{3}\left(\frac{a_{1}}{b_{1}}, 0,0\right), P_{4}\left(0, \frac{p_{3}}{p_{2}}, \frac{1}{c_{2}}\left(a_{2}-\frac{p_{3}}{p_{2}} b_{2}\right)\right)$,
$P_{5}\left(\frac{p_{3}}{p_{1}}, 0, \frac{1}{c_{1}}\left(a_{1}-\frac{p_{3}}{p_{1}} b_{1}\right)\right), P_{6}\left(\frac{a_{1} b_{2}-a_{2} d_{1}}{b_{1} b_{2}-d_{1} d_{2}}, \frac{a_{2} b_{1}-a_{1} d_{2}}{b_{1} b_{2}-d_{1} d_{2}}, 0\right)$ and $P_{7}\left(x_{7}, y_{7}, z_{7}\right)$, where $x_{7}=$ $\frac{N_{1}}{N_{2}}, y_{7}=\frac{p_{3}-x_{7} p_{1}}{p_{2}}$ and $z_{7}=\frac{1}{c_{2}}\left(x_{7} b_{2} \frac{p_{1}}{p_{2}}-x_{7} d_{2}+a_{2}-\frac{b_{2}}{p_{2}} p_{3}\right)$, respectively, $N_{1}=a_{1} c_{2} p_{2}-$ $a_{2} c_{1} p_{2}+b_{2} c_{1} p_{3}-c_{2} d_{1} p_{3}$ and $N_{2}=b_{2} c_{1} p_{1}+b_{1} c_{2} p_{2}-c_{2} d_{1} p_{1}-c_{1} d_{2} p_{2}$.
P_{1} is a repeller with eigenvalues $a_{1,2}$ and p_{3}, while, P_{2} can be a saddle or an attractor, with eigenvalues $-a_{2}, a_{1}-\frac{a_{2}}{b_{2}} d_{1}$ and $p_{3}-\frac{a_{2}}{b_{2}} p_{2}$. If $p_{3}<\frac{a_{2}}{b_{2}} p_{2}$ and $d_{1}>\frac{a_{1}}{a_{2}} b_{2}, P_{2}$ is an attractor, thus, an immune disease may not affect the ability of the immune system to defeat the virus; an orbit starting close to P_{2} converges to P_{2}, that is, $z(t) \rightarrow 0$ as t increases. A similar scenario occurs for P_{3}, whose eigenvalues are $-a_{1}, a_{2}-\frac{a_{1}}{b_{1}} d_{2}$ and $p_{3}-\frac{a_{1}}{b_{1}} p_{1}$.

Not the same scenarios arise around P_{4} and P_{5}, since they are both saddles while lying in the first quadrant Q_{1}. Indeed, the eigenvalues of P_{4} are $\lambda_{2,3}^{P_{4}}=-\frac{1}{2 p_{2}}\left(b_{2} p_{3} \pm \sqrt{\Delta_{1}}\right)$ and $\lambda_{1}^{P_{4}}=\frac{1}{c_{2} p_{2}}\left(a_{1} c_{2} p_{2}-a_{2} c_{1} p_{2}+b_{2} c_{1} p_{3}-c_{2} d_{1} p_{3}\right)$, where $\Delta_{1}=p_{3}\left(4 a_{2} p_{2}^{2}+b_{2}^{2} p_{3}-4 b_{2} p_{2} p_{3}\right)$. Since $z_{4}=a_{2}-\frac{p_{3}}{p_{2}} b_{2}>0$, it follows that

$$
\lambda_{2}^{P_{4}} \lambda_{3}^{P_{4}}=-\frac{p_{3}}{p_{2}}\left(a_{2} p_{2}-b_{2} p_{3}\right)<0
$$

that is, P_{4} is a saddle. Similarly, the eigenvalues of P_{5} are $\lambda_{2,3}^{P_{5}}=-\frac{1}{2 p_{1}}\left(b_{1} p_{3} \pm \sqrt{\Delta_{2}}\right)$ and $\lambda_{1}^{P_{5}}=\frac{1}{c_{1} p_{1}}\left(a_{2} c_{1} p_{1}+b_{1} c_{2} p_{3}-a_{1} c_{2} p_{1}-c_{1} d_{2} p_{3}\right)$, where $\Delta_{2}=p_{3}\left(4 a_{1} p_{1}^{2}+b_{1}^{2} p_{3}-4 b_{1} p_{1} p_{3}\right)$, such that, $\lambda_{2}^{P_{5}} \lambda_{3}^{P_{5}}=-\frac{p_{3}}{p_{1}}\left(a_{1} p_{1}-b_{1} p_{3}\right)<0$.

The eigenvalues of P_{6} are $\lambda_{1}^{P_{6}}=p_{3}-x_{6} p_{1}-y_{6} p_{2}$ and $\lambda_{2,3}^{P_{6}}=-\frac{1}{2}\left(x_{6} b_{1}+y_{6} b_{2}\right) \pm \frac{1}{2} \sqrt{\Delta_{3}}$, where $\Delta_{3}=\left(b_{1} x_{6}-b_{2} y_{6}\right)^{2}+4 d_{1} d_{2} x_{6} y_{6}$, respectively, $x_{6}=\frac{a_{1} b_{2}-a_{2} d_{1}}{b_{1} b_{2}-d_{1} d_{2}}>0$ and $y_{6}=$ $\frac{a_{2} b_{1}-a_{1} d_{2}}{b_{1} b_{2}-d_{1} d_{2}}>0$. Notice that

$$
\lambda_{2}^{P_{6}} \lambda_{3}^{P_{6}}=x_{6} y_{6}\left(b_{1} b_{2}-d_{1} d_{2}\right)
$$

and $\lambda_{2}^{P_{6}}+\lambda_{3}^{P_{6}}=-x_{6} b_{1}-y_{6} b_{2}<0$, thus, P_{6} is an attractor if $b_{1} b_{2}<d_{1} d_{2}$, respectively, a saddle if $b_{1} b_{2}>d_{1} d_{2}$, whenever P_{6} lies in the first quadrant Q_{1}. An orbit starting close to P_{6} attractor satisfies $z(t) \rightarrow 0$ as t increases, thus, the immune system may win despite the autoimmune disease.

In order to study P_{7} when it lies in the first quadrant Q_{1}, we use its characteristic polynomial

$$
P(\lambda)=\lambda^{3}+m_{2} \lambda^{2}+m_{1} \lambda+m_{0}
$$

where $m_{2}=x_{7} b_{1}+y_{7} b_{2}, m_{1}=x_{7} y_{7}\left(b_{1} b_{2}-d_{1} d_{2}\right)-z_{7}\left(x_{7} c_{1} p_{1}+y_{7} c_{2} p_{2}\right)$ and $m_{0}=-x_{7} y_{7} z_{7} N_{2}$. Denote by $\lambda_{i}^{P_{7}}$ its roots, with $i=1,2,3$.

Notice that $m_{2}>0$ whenever $P_{7} \in Q_{1}$. Since $S_{1}=\lambda_{1}^{P_{7}}+\lambda_{2}^{P_{7}}+\lambda_{3}^{P_{7}}=-m_{2}<0, P_{7}$ cannot be a repeller but a saddle or an attractor on Q_{1}.

Remark 5.8. P_{7} is a saddle in Q_{1}, if 1) $m_{0}<0$ or 2) $m_{0}>0$ and $b_{1} b_{2}<d_{1} d_{2}$.
Indeed, the proof for $m_{0}<0$ follows from $S_{3}=\lambda_{1}^{P_{7}} \lambda_{2}^{P_{7}} \lambda_{3}^{P_{7}}=-m_{0}>0$ and $S_{1}<0$. To prove 2), we assume by contrary that P_{7} is an attractor. By Routh-Hurwitz conditions, P_{7} is an attractor if and only if $m_{0}>0$ and $m_{2} m_{1}>m_{0}$, which, by $m_{2}>0$, yield $m_{1}>0$. But $m_{1}<0$ if $P_{7} \in Q_{1}$ and $b_{1} b_{2}<d_{1} d_{2}$, thus, a contradiction, and 2) follows.

If $m_{0}>0$ and $b_{1} b_{2}>d_{1} d_{2}$, numerical simulations show that $P_{7} \in Q_{1}$ is also a saddle. However, a full analytical proof remains open. It needs to determine the signs of m_{1} and $M=m_{2} m_{1}-m_{0}$, which can be written in the form
$M=-c_{1} x_{7} z_{7}\left(x_{7} b_{1} p_{1}+y_{7} d_{2} p_{2}\right)-c_{2} y_{7} z_{7}\left(x_{7} d_{1} p_{1}+y_{7} b_{2} p_{2}\right)+y_{7} x_{7}\left(b_{1} b_{2}-d_{1} d_{2}\right)\left(x_{7} b_{1}+y_{7} b_{2}\right)$.
Remark 5.9. One can show that P_{7} is born from P_{4}, P_{5} or P_{6} by a transcritical bifurcation.
From the above analysis of this section, it follows that, our model predicts that the immune system may win even though it is affected by autoimmune diseases.

6. CONCLUSIONS

We presented in this work a study on interactions between the white blood cells of immune system and a pathogenic virus, such as Covid-2019. We used a mathematical approach based on differential equations for modeling the interactions, and tools from dynamical systems theory to analyze the models. The study reveals the importance of the white blood cells in the fight against the virus. Several conclusions arising from our study are the followings:

1. If the immune system is sufficiently weak when the virus starts to proliferate, then the virus has a big chance to win.
2. A deficiency in the normal concentration of a single type of white blood cells in the early stages of virus proliferation, may lead to the virus victory.
3. If the levels of white blood cells become at a moment during the battle with the virus considerably smaller than their normal concentrations, the virus may win even though the immune system kills the virus at a rate higher than the rate of virus proliferation.
4. If the white blood cells are within their normal concentrations from the first moment they discover the virus and if the immune system is in a healthy condition to kill the virus at a high rate, then the immune system can win.
5. If the concentration of at least one type of white blood cells can be significantly increased beyond its normal threshold by medical interventions in the early stages of virus infection, then the immune system has a better chance to win. This conclusion reveals the possibility of winning against a virus by increasing the number of a single category of fighters.
6. The immune system may win even though it is affected by autoimmune diseases.

Acknowledgments. This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number PN-III-P3-3.6-H2020-2020-0100, within PNCDI III, and by H2020-MSCA-RISE-2017-777911.

References

[1] Abrams, P. A.; Ginzburg, R. The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology E Evolution 15 (2000), no. 8, 337-341.
[2] Bennett, J. J. R.; Sherratt, J. A. Periodic Traveling Waves Generated by Invasion in Cyclic Predator-Prey Systems: The Effect of Unequal Dispersal. SIAM J. Appl. Math. 77 (2017), no. 6, 2136-2155.
[3] Brauer, F.; Castillo-Chavez, C. Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, Heidelberg, 2000.
[4] Buzzi, C. A.; Santos, R. A. T.; Llibre, J. Final evolutions of a class of May-Leonard Lotka-Volterra systems. J. Nonlinear Math. Phys. 27 (2020), no. 2, 267-278.
[5] Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125 (2010), no. 2, 3-23.
[6] Chladna, Z.; Kopfova, J.; Rachinskii, D.; Rouf, S. C. Global dynamics of SIR model with switched transmission rate. J. Math. Biol 80 (2020), 1209-1233.
[7] Daniels, V. G. ; Wheater, P. R.; Burkitt, H. G. Functional histology: A text and colour atlas. Edinburgh, Churchill Livingstone, 1979.
[8] Das, P.; Nadim, S. S.; Das, S.; Das, P. Dynamics of COVID-19 transmission with comorbidity: a data driven modelling based approach. Nonlinear Dynamics 106 (2021), 1197-1211.
[9] van den Driessche, P. Reproduction numbers of infectious disease models. Infectious Disease Modelling 2 (2017), 288-303.
[10] Duarte, J.; Januario, C.; Martins, N.; Rogovchenko, S.; Rogovchenko, Y. Chaos analysis and explicit series solutions to the seasonally forced SIR epidemic model. Journal of Mathematical Biology 78 (2019), 2235-2258.
[11] Fenton, A.; Perkins, S. E. Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions. Parasitology 137 (2010), 1027-1038.
[12] Freedman, H. I. Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker, 1980.
[13] Handel, A.; Liao, L. E.; Beauchemin, C. A. A. Progress and trends in mathematical modelling of influenza A virus infections. Curr. Opin. Syst. Biol. 12 (2018), 30-36.
[14] Hoffman, W.; Lakkis, F. G.; Chalasani, G. B. Cells, Antibodies, and More. Clin. J. Am. Soc. Nephrol. 11 (2016), no. 1, 137-54.
[15] Llibre, J.; Valls, C. Global analytic first integrals for the real planar Lotka-Volterra system. J. Math. Phys. 48 (2007), no. 3, 033507.
[16] Lobato, F. S.; Libotte, G. B.; Platt, G. M. Mathematical modelling of the second wave of COVID-19 infections using deterministic and stochastic SIDR modelsc. Nonlinear Dynamics 106 (2021), 1359-1373.
[17] Mayadas, T. N.; Cullere, X.; Lowell, C. A.The multifaceted functions of neutrophils. Annual Review of Pathology 9 (2014), 181-218.
[18] Nucci, M. C.; Leach, P. G. L. Lie integrable cases of the simplified multistrain/two-stream model for tuberculosis and dengue fever. J. Math. Anal. Appl. 333 (2007), 430-449.
[19] Perko, L. Differential Equations and Dynamical Systems. Third Edition. Springer Verlag, New York, 2001.
[20] Pillay, J.; den Braber, I.; Vrisekoop, N.; Kwast, L. M.; de Boer, R. J.; Borghans, J. A. M.; Tesselaar, K.; Koenderman, L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116 (2010), no. 4, 625-627.
[21] Quirouette, C.; Younis, N. P. ; Reddy, M. B.; Beauchemin, C. A. A. A mathematical model describing the localization and spread of influenza A virus infection within the human respiratory tract. PLOS Computational Biology 16 (2020), no. 4, e1007705.
[22] Stengel, R. F.; Ghigliazza, R. M.; Kulkarni, N. V. Optimal enhancement of immune response. Bioinformatics 18 (2002), no. 9, 1227-1235.
[23] Wodarz, D.; Hofacre, A.; Lau, J. W.; Sun, Z.; Fan, H.; Komarova, N. L. Complex spatial dynamics of oncolytic viruses on vitro: mathematical and experimental approaches. PLoS Computational Biology 8 (2012), no. 6, 1-15.

Department of Mathematics
Politehnica University of Timişoara
Pta Victoriei, No. 2, 300006, Timişoara, Romania
Email address: gheorghe.moza@upt.ro
Email address: loredana.vesa@upt.ro

[^0]: Received: 21.03.2022. In revised form: 19.06.2022. Accepted: 26.06.2022
 2020 Mathematics Subject Classification. 37N25, 34C23.
 Key words and phrases. dynamical systems, models for population dynamics, bifurcations.
 Corresponding author: G. Moza; gheorghe.moza@upt.ro

