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Analysis of interactions between human immune system
and a pathogenic virus

G. MOZA and L. F. VESA

ABSTRACT. In this paper we present a mathematical model for studying the interactions between human
immune system and a pathogenic virus, such as Covid-19. A mathematical analysis based on dynamical systems
theory is performed. More exactly, we model the interactions between the immune system and the virus by a
modified predator-prey method. Several conclusions emerge from this study, and the main two of them are the
followings: 1) a deficiency in the concentration of a single type of white blood cells in the early stages of virus
proliferation may lead to the virus victory, and 2) if the number of at least one type of white blood cells can be
increased beyond the normal threshold by medical interventions in the early stages of virus infection, then the
immune system has a better chance to win against the virus.

1. INTRODUCTION

The immune system contains the main mechanisms and fighters to protect our bodies
from an uncountable number of pathogenic invaders (microbes), such as bacteria, viruses,
parasites and fungi [5]. While these minuscule invaders are invisible to the naked eye,
they can have a tremendous impact on the organisms they enter, with consequences vary-
ing from mild flu-like discomfort to permanent dysfunctionalities of some organs and
death.

The main fighters of the immune system with the pathogenic intruders are the white
blood cells, which move through blood and tissues throughout body to find evil invaders.
The cells are created in bone marrow and are part of the lymphatic system. There are
five classes of white blood cells, namely: neutrophils 62%, eosinophils (acidophiles) 2.3%,
basophils 0.4%, lymphocytes 30%, and monocytes 5.3%. Two classes of them, neutrophils
[17] and lymphocytes [14], are by far the most numerous and together constitute about 92%
of the total white blood cells. The typical lifetime of white blood cells varies from hours
to days [7], [20].

In this work we aim to propose a mathematical model to study the interactions be-
tween a pathogenic virus and the human immune system represented by white blood
cells. The approach we use is based on a modified predator-prey methodology [1], [2],
[4], [15] used in population dynamics. We need to change some initial hypotheses used
in classical predator-prey models to take into account the types of interactions occurring
between the virus and white blood cells. While typically in classical predator-prey models
[3], [12], known also as Lotka–Volterra models, a prey does not attack and kill a predator,
and preys increase indefinitely in the absence of predators, we need to change these two
premises to correspond to the reality of the interactions we want to model. More exactly,
in our case, the two antagonist combatants are at the same time predators and preys, and,
in addition, the preys do not increase indefinitely in the absence of predators but stabilize
around a threshold. Several predator-prey models have been discussed in [11] to study
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interactions between host immunity and parasite growth. A model based on four dif-
ferential equations to describe interactions between an invading pathogen an the innate
immune system characterized by plasma cells, antibody concentrations and a health fac-
tor, was presented in [22]. The potential use of viruses in treating cancer has been studied
in [23]. A bio-mathematical model to describe the interactions between influenza A virus
and local tissues such as respiratory tract, has been recently considered in [21].

Compartmental models in epidemiology represent other techniques of mathematical
modeling of infectious diseases [18]. Such models divide in more compartments the pop-
ulation to be studied, such that all individuals from the same compartment have the same
characteristics. Typically, the models are based on a system of differential equations (of-
ten of predator-prey type) describing the evolution of the number of individuals in each
compartment. A model with three compartments, susceptible, infectious and recovered
individuals, is known as SIR model. There are many SIR models used in epidemiology
such as [6], [8], [9], [10], [16] among others.

The paper is organized as follows. In the section two following the Introduction, we
propose and study a three-dimensional (3D) model, with two friendly species fighting
the same combatant enemy, a pathogenic virus. Since neutrophils and lymphocytes are
the most abundant among the white blood cells, the two friendly species may represent
these cells. In the next section we take into account all five types of immune cells and
present a six-dimensional (6D) model. In section four we propose a control function to
the 3D system and study the new model. Section five presents a model for the case when
the immune system is affected by autoimmune diseases. Some conclusions arising from
the studied models are presented at the end of the work.

2. THE 3D MODEL

Denote by x (t) and y (t) the number of cells at time t of specie 1, respectively, 2 at-
tacking jointly a virus. For example, x (t) represents neutrophils while y (t) lymphocytes.
Denote by z (t) the number of viruses of the same type which exist in a body at time t.
Consider the time as being continuous, t ≥ 0. Thus, ẋ (t) , ẏ (t) and ż (t) are the rates of
changes of these three quantities in a short unity of time; ẋ (t) = dx

dt . Our model is based
on the following hypotheses.

H1. In the absence of virus, the two quantities of cells x (t) and y (t) increase up to a
threshold value. This hypothesis is based on the fact that the total white cells in a healthy
blood is between 4 × 109/L and 1.1 × 1010/L. Thus, in the first stage, we consider the
evolution laws of x (t) and y (t) of the form ẋ = a1x − b1x

2 and ẏ = a2y − b2y
2, with

a1,2 > 0 and b1,2 > 0. One can check that, the general solution x (t) of the equation in ẋ
with x (0) = x0 satisfies x (t) → a1

b1
for t → ∞ and all x0 > 0. Notice that in the absence

of the term −b1x
2, x (t) would increase exponentially. Similarly, y (t) → a2

b2
for t → ∞ and

y0 > 0. Thus, a1

b1
is the threshold value for x (t) while a2

b2
for y (t) .

H2. Typically, in a healthy body (without autoimmune diseases), the two classes of
white blood cells do not attack each other. Thus, they are destroyed only due to viruses
and, as such, a term −c1xz should be added to the first equation in ẋ, respectively, −c2yz
to the equation in ẏ.

H3. In the absence of the immune system the virus would multiplicate indefinitely and
exponentially, z satisfying the law ż = p3z. What diminishes the number of viruses are
the two classes of white cells, thus, a term of the form −p1xz − p2yz should be added to
the law of ż.
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These three hypotheses lead us to the following three-dimensional differential system
with nine parameters, given by

(2.1) ẋ = a1x− b1x
2 − c1xz, ẏ = a2y − b2y

2 − c2yz, ż = p3z − p1xz − p2yz,

where the coefficients a1, b1, c1, ..., p3 are all positive. The model has medical relevance
when x ≥ 0, y ≥ 0 and z ≥ 0, that is, when the system’s solutions lie in the set Σ0

+ ={
(x, y, z) ∈ R3, x ≥ 0, y ≥ 0, z ≥ 0

}
. An important observation on the behavior of the so-

lutions with respect to Σ0
+ is given in the next remark.

Remark 2.1. The planes of coordinates {x = 0} , {y = 0} and {z = 0} are invariant with
respect to the flow of (2.1), thus, any orbit starting in the positive octant

Σ+ =
{
(x, y, z) ∈ R3, x > 0, y > 0, z > 0

}
remains in Σ+ in forward time. The orbits cannot cross any of the three invariant planes.
Therefore, the study of the system where it has medical relevance is well-defined, in the
sense that, any orbit starting in the zone with medical relevance does not enter the zone
of medical irrelevance and vice versa.

2.1. Local analysis. The system has seven equilibrium points as it follows: h1 = (0, 0, 0) ,

h2 =
(
0, a2

b2
, 0
)
, h3 =

(
a1

b1
, 0, 0

)
, h4 =

(
a1

b1
, a2

b2
, 0
)
, h5 =

(
0, p3

p2
, 1
c2

(
a2 − b2

p2
p3

))
,

h6 =
(

p3

p1
, 0, 1

c1

(
a1 − b1

p1
p3

))
, respectively, h7 = (x7, y7, z7) , where x7 = 1

b1
(a1 − c1z7) ,

y7 = 1
b2

(a2 − c2z7) and z7 = b1b2
b2c1p1+b1c2p2

(
a1

b1
p1 +

a2

b2
p2 − p3

)
.

The point h5 ∈ Σ0
+ if a2p2 − b2p3 ≥ 0, h6 if a1p1 − b1p3 ≥ 0, respectively, h7 ∈ Σ0

+ if
x7 ≥ 0, y7 ≥ 0 and z7 ≥ 0. We notice that, with the exception of z7, all the points lie on
one or more of the invariant planes of coordinates. Denote further by
∆5 = p3

(
p3b

2
2 + 4a2p

2
2 − 4p3b2p2

)
and ∆6 = p3

(
p3b

2
1 + 4a1p

2
1 − 4b1p1p3

)
.

h1 h2 h3 h4 h5 h6

λhi
1 a1 a1 −a1 −a1 a1 − a2

c1
c2

+ b2
c1

c2p2
p3 a2 − a1

c1
c2 +

b1
c1

c2
p1
p3

λhi
2 a2 −a2 a2 −a2

1
2p2

(√
∆5 − b2p3

)
1

2p1

(√
∆6 − b1p3

)
λhi
3 p3 p3 − a2

b2
p2 p3 − a1

b1
p1 k1

1
2p2

(
−
√
∆5 − b2p3

)
1

2p1

(
−
√
∆6 − b1p3

)
type r s s a, s s s

TABLE 1. The eigenvalues and types of the first six equilibrium points of system
(2.1); the abbreviations r, s and a stand for repeller, saddle and attractor, respec-
tively, i = 1, .., 6.; k1 = p3 − a1

b1
p1 − a2

b2
p2.

Remark 2.2. The equilibria h5 and h6 are saddles on Σ0
+, since λh5

2 λh5
3 = −p3

p2
(a2p2 − b2p3) <

0 and λh6
2 λh6

3 = −p3

p1
(a1p1 − b1p3) < 0.

For the local behavior of the system around the seventh equilibrium h7, we have the
next theorem.

Theorem 2.1. The following assertions are true.
1) The equilibrium point h7 is a saddle whenever it lies on Σ+.
2) The system does not undergo a fold-Hopf or Hopf bifurcation at h7 on Σ+.

3) The equilibrium h7 bifurcates from h4 along the surface S =
{
(p1, p2, p3) , p3 = a1

b1
p1 +

a2

b2
p2

}
by a transcritical bifurcation.
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Proof. The characteristic polynomial at (x7, y7, z7) is

(2.2) P (λ) = λ3 +m2λ
2 +m1λ+m0,

where m2 = m20 +m10, m1 = m20m10 − z7

(
c1p1

b1
m20 +

c2p2

b2
m10

)
,

(2.3) m0 = −z7
b2c1p1 + b1c2p2

b1b2
m20m10,

m20 = b1(p2(a1c2−a2c1)+b2c1p3)
b2c1p1+b1c2p2

and m10 = b2(−p1(a1c2−a2c1)+b1c2p3)
b2c1p1+b1c2p2

.

1) Assume h7 ∈ Σ+ is an attractor, thus, the polynomial P (λ) has all roots with negative
real part. But, from Routh-Hurwitz conditions, this is equivalent to m2 > 0, m0 > 0 and
m2m1 > m0. It follows from (2.3) that, on Σ+, m0 > 0 iff m20m10 < 0. On the other hand,

(2.4) m2m1 −m0 = −b1c2p2m
2
10 + b2c1p1m

2
20

b1b2
z7 +m10m20 (m10 +m20) .

Thus m2m1 −m0 < 0 since m10 +m20 > 0 from m2 > 0, which is a contradiction.
Assume further that h7 ∈ Σ+ is a repeller with λh7

i > 0, i = 1, 2, 3. Then λh7
1 λh7

2 λh7
3 =

−m0 > 0, thus, m20m10 > 0 by (2.3). When a1c2−a2c1 ≥ 0 then m20 > 0, thus, m10 > 0. It
follows that λh7

1 + λh7
2 + λh7

3 = − (m20 +m10) < 0, which contradicts λh7
i > 0. Similarly, if

a1c2 − a2c1 < 0 then m10 > 0, which, by m20m10 > 0, yields m20 > 0, leading to the same
contradiction. Thus, h7 is not a repeller. From 1) and 2) we conclude that h7 is a saddle
whenever h7 ∈ Σ+.

2) If λ = 0 is a root of P (λ) then, by (2.3), z7 = 0 or m20m10 = 0. In the first case, this
occurs on the invariant manifold S when h7 collides to h4, having the eigenvalues −a1,
−a2 and 0, thus, a fold-Hopf bifurcation cannot occur. In the definition of S we assume
the two thresholds a1/b1 and a2/b2 are fixed.

In the second case, m20m10 = 0, we assume first a1c2 − a2c1 > 0. Then m10 = 0, which
yields p3 = a1c2−a2c1

b1c2
p1, thus, h7 = h6 and ∆6 > 0. In the second case a1c2 − a2c1 < 0, we

get m20 = 0, p3 = −a1c2−a2c1
b2c1

p2 and h7 = h5 with ∆5 > 0. Thus, iω is not a root of P (λ)

for ω ̸= 0 in either of the two cases, which confirms that a fold-Hopf bifurcation cannot
arise. Notice that m20m10 ̸= 0 if a1c2 − a2c1 = 0.

Assume further λh7
1 < 0 and ±iω, ω > 0, are the eigenvalues of h7 ∈ Σ+ for some

values of the parameters. Then λh7
1 ω2 = −m0 < 0, which, by (2.3), leads to m20m10 < 0.

On the other hand, the complex value iω is a root of the polynomial P (λ) if and only
if ω2 = m1 > 0 and m2m1 − m0 = 0, that is, λh7

1 = −m2 < 0. Thus, m20 + m10 > 0
and, by (2.4), m2m1 −m0 < 0, which is a contradiction to m2m1 −m0 = 0. Thus, a Hopf
bifurcation cannot occur at h7 ∈ Σ+. The proof for λh7

1 > 0 is similar, since m20m10 > 0
and m20 +m10 < 0 in this case.

3) It is clear that h7 coincides to h4 on S; notice that p1,2 > 0. In order to show that a
transcritical bifurcation takes place on S, we apply Sotomayor’s theorem from [19]. To this
end, assume a1

b1
, a2

b2
, p1, p2 are fixed (constants) while p3 vary, and denote by µ = p3 − k,

where k = a1

b1
p1 +

a2

b2
p2. Denote by u =

(
x y z

)T and F =
(
f g h

)T
, and write

the system (2.1) in the form

(2.5) u̇ = F (u, µ) ,
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where f = a1x−b1x
2−c1xz, g = a2y−b2y

2−c2yz and h = (µ+ k) z−p1xz−p2yz; T stands

for the transpose, that is,
(
x y z

)T
=

 x
y
z

 . Denote by u0 = h4 and µ0 = 0, re-

spectively, Fµ =
(

∂f
∂µ

∂g
∂µ

∂h
∂µ

)T

and D (u, µ) the Jacobian matrix of (2.5). Then 0 is an

eigenvalue both for D (u0, µ0) and DT (u0, µ0) , with the corresponding eigenvectors v =(
− 1

b1
c1 − 1

b2
c2 1

)T
for D (u0, µ0) , respectively, w =

(
0 0 1

)T for DT (u0, µ0) .

The first condition wTFµ (u0, µ0) = 0 of the transcritical bifurcation is readily satisfied.
Denoting by DFµ the Jacobian matrix of the vector field Fµ =

(
0 0 z

)T
, it follows

that wT [DFµ (u0, µ0) v] = 1 ̸= 0. To prove the last condition, denote by D2F (v, v) =(
d2f (v, v) d2g (v, v) d2h (v, v)

)T
; d2f (v, v) is the differential of second order applied

at the pair (v, v) , that is, d2f (v, v) = −2b1v
2
1 − 2c1v1v3, where v =

(
v1 v2 v3

)T
. At

(u0, µ0) , we obtain

wT
[
D2F (x0, µ0) (v, v)

]
= 2

c1
b1
p1 + 2

c2
b2
p2 ̸= 0,

which completes the proof. □

Remark 2.3. Two more transcritical bifurcations arise in the system (2.1) on the surfaces
S1=

{
p3 = a1c2−a2c1

b1c2
p1, a1c2>a2c1

}
, respectively, S2=

{
p3 = −a1c2−a2c1

b2c1
p2, a1c2<a2c1

}
.

More exactly, h7 collides to h6 on S1, respectively, h5 on S2.

From the above analysis of the model, the following conclusions can be drawn, in terms
of the relevance of the results for the fight between the immune system and a pathogenic
virus.

1). Since h1 = (0, 0, 0) is a repeller (unstable node) with its eigenvalues a1,2 > 0 and
p3 > 0, any orbit γ (t) = (x (t) , y (t) , z (t)) starting at a point u0 = (x0, y0, z0) ∈ Σ+ close
to h1 will depart from it in forward time, which implies that z (t) may escape to infinity.
Moreover, since a Hopf bifurcation is not possible at h1 (its eigenvalues are real), a stable
limit cycle surrounding h1 does not arise by such a bifurcation. Therefore, if the immune
system is sufficiently weak when the virus starts to proliferate, the virus has a big chance to win.

2). Let us look at h2 =
(
0, a2

b2
, 0
)
. Its eigenvalues are a1, −a2 and p3 − a2

b2
p2, thus, it

is a saddle for either p3 − a2

b2
p2 > 0 or p3 − a2

b2
p2 < 0. Any orbit γ (t) starting at a point

u0 ∈ Σ+ close to h2, u0 /∈ W s
h2
, will depart from h2 in forward time, that is, z (t) may

escape to infinity. A stable limit cycle around h2 cannot arise through a Hopf bifurcation
since all eigenvalues are real. Therefore, if the white cells of type 1 (neutrophils in our
model) are not in a normal quantity in the blood when the virus invades the body, the
virus may win even though the quantity of white cells of type 2 (lymphocytes) is normal.
Thus, a deficiency in the quantity of a single type of white blood cells may lead to the virus victory.
For h3 =

(
a1

b1
, 0, 0

)
the results are similar.

3). Consider further h4 =
(

a1

b1
, a2

b2
, 0
)

with p3 < a1

b1
p1 +

a2

b2
p2, that is, h4 is an attractor,

Fig.1 (left). In this case, any orbit γ (t) starting at a point u0 ∈ Σ+ close to h4 will converge
to h4 for t large, that is, z (t) → 0 for t → ∞. Therefore, the model predicts that, if the two
types of white blood cells (neutrophils and lymphocytes) are in a sufficient number (i.e. normal
concentrations) from the first moment they meet the virus, and if their joint actions kill the virus
at a high rate, then the immune system wins.
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FIGURE 1. When b1 = b2 = 1, a1 = 2b1, a2 = 3b2, c1 = 1, c2 = 2,
p1 = 1, p2 = 2, the steady state h4 attracts nearby orbits for p3 = 3 (left),
respectively, repels for p3 = 10 (right).

On the other hand, if the joint destruction rate a1

b1
p1+

a2

b2
p2 of the virus by the two white

blood cells is not sufficiently strong to overcome the rate p3 of the virus proliferation, that
is, h4 is a saddle with p3 > a1

b1
p1 + a2

b2
p2, the virus may win since z (t) may escape to

infinity, Fig.1 (right). A Hopf bifurcation leading to a stable limit cycle around h2 cannot
arise since all eigenvalues are real.

4). Consider h5 with a2p2 > b2p3. The three eigenvalues of h5 are real, λh5
i ∈ R, i =

1, 2, 3, since ∆5 = p3
(
p3b

2
2 + 4a2p

2
2 − 4p3b2p2

)
> b22p

2
3 > 0. Thus, a Hopf bifurcation is not

possible at h5. Since h5 is a saddle, z (t) may escape to infinity, thus, the virus may win.
For h6 the scenario is similar.

5). The model at the saddle h7 ∈ Σ+ offers an interesting perspective. Notice first
that x7 < a1

b1
, y7 < a2

b2
and a1

b1
p1 + a2

b2
p2 > p3 if h7 ∈ Σ+. Since h7 is a saddle, z (t) of an

orbit γ (t) starting close to h7 may escape to infinity. Thus, if the normal levels of the two
types of white blood cells become at a moment considerably smaller than their normal
concentrations, the virus may win even though the immune system kills the virus at a rate higher
than the rate of virus proliferation. This case captures the possibility that the virus and the
white blood cells increase in number at the same time, but the immune system does not
have the ability to limitate the virus proliferation, which may win in the end.

Remark 2.4. From the analysis of the all seven equilibrium points, we notice that in a sin-
gle case there are sufficient conditions to constraint and destroy the virus, namely, when
h4 ∈ Σ0

+ is an attractor with p3 < a1

b1
p1 +

a2

b2
p2.

3. THE 6D MODEL

In the same way we can model the interactions between the virus and the five types of
white blood cells. The model in this case becomes

(3.6)
{

ẋi = aix1 − bix
2
1 − cixiv, i = 1, 5,

v̇ = p6v − (p1x1 + p2x2 + p3x3 + p4x4 + p5x5) v
.

A first class of equilibrium points of the 6D model (3.6) which can be studied analyti-
cally are those with v = 0. They are the followings.

h1 = 0 ∈ R6 with eigenvalues ai and p6, i = 1, ..., 5. Thus, it is an unstable node.
h2 =

(
a1

b1
, 0, 0, 0, 0, 0

)
with eigenvalues −a1, a2, a3, a4, a5, p6− a1

b1
p1. Thus, h2 is a saddle.

There are five equilibria of type h2, all saddles, having v = 0 and a single value xi =
ai

bi
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non-zero on the position i, where i = 1, ..., 5. For example, h21 =
(
0, a2

b2
, 0, 0, 0, 0

)
and so

on.
h3 =

(
a1

b1
, a2

b2
, 0, 0, 0, 0

)
with eigenvalues −a1,−a2, a3, a4, a5, p6−

∑2
k=1

ak

bk
pk. There are

more equilibria of this type, all saddles, having v = 0 and two values xi = ai

bi
non-zero

while the other values xi = 0. For example, h31 =
(

a1

b1
, 0, a3

b3
, 0, 0, 0

)
and so on.

h4 =
(

a1

b1
, a2

b2
, a3

b3
, 0, 0, 0

)
with eigenvalues −a1,−a2,−a3, a4, a5, p6 −

∑3
k=1

ak

bk
pk. There

are more equilibria of this type, all saddles. For example, h41 =
(

a1

b1
, a2

b2
, 0, a4

b4
, 0, 0

)
.

h5 =
(

a1

b1
, a2

b2
, a3

b3
, a4

b4
, 0, 0

)
with eigenvalues −a1,−a2,−a3,−a4, a5, p6 −

∑4
k=1

ak

bk
pk.

Thus, h5 is a saddle along with other four equilibria of this type.
h6 =

(
a1

b1
, a2

b2
, a3

b3
, a4

b4
, a5

b5
, 0
)

with eigenvalues −a1,−a2,−a3,−a4,−a5,

λh6
6 = p6 −

∑5
k=1

ak

bk
pk. This equilibrium is unique of this type and can be an attractor or

a saddle, depending on the sign of λh6
6 .

A second class of equilibrium points which still can be studied analytically are those
with v ̸= 0 and a single xi =

p6

pi
̸= 0, i = 1, ..., 5. The first one is h7 =

(
p6

p1
, 0, 0, 0, 0, v1

)
,

v1 = 1
c1

(
a1 − b1

p1
p6

)
, which has the eigenvalues a2 − a1

c1
c2 +

b1
c1

c2
p1
p6, a3 − a1

c1
c3 +

b1
c1

c3
p1
p6,

a4 − a1

c1
c4 + b1

c1
c4
p1
p6, a5 − a1

c1
c5 + b1

c1
c5
p1
p6 and λh7

5,6 = 1
2p1

(
−b1p6 ±

√
∆1

)
, where ∆1 =

b21p
2
6+4a1p

2
1p6−4b1p1p

2
6. We notice that ∆1 > 0 and λh7

5 λh7
6 = −p6

a1p1−b1p6

p1
< 0 whenever

v1 > 0, thus, h7 is a saddle on a1p1 − b1p6 > 0. There are four more saddles of this type,
for example, h71 =

(
0, p6

p2
, 0, 0, 0, v2

)
, with v2 = 1

c2

(
a2 − b2

p2
p6

)
.

The system has four more classes of equilibrium points but their analytical study is
intractable. They have the following forms.

h8 = (x1, x2, 0, 0, 0, v8) , where x1 = 1
b1

(a1 − v8c1) , x2 = 1
b2

(a2 − v8c2) ,

v8 = 1
d8

(
a1

b1
p1 +

a2

b2
p2 − p6

)
with d8 = c1

b1
p1 +

c2
b2
p2.

h9 = (x1, x2, x3, 0, 0, v9) , where x1 = 1
b1

(a1 − v9c1) , x2 = 1
b2

(a2 − v9c2) ,

x3 = 1
b3

(a3 − v9c3) , v9 = 1
d9

(
a1

b1
p1 +

a2

b2
p2 +

a3

b3
p3 − p6

)
with d9 = d8 +

c3
b3
p3.

h10 = (x1, x2, x3, x4, 0, v10) , where x1 = 1
b1

(a1 − v10c1) , x2 = 1
b2

(a2 − v10c2) , x3 =

1
b3

(a3 − v10c3) , x4 = 1
b4

(a4 − v10c4) , v10 = 1
d10

(
a1

b1
p1 +

a2

b2
p2 +

a3

b3
p3 +

a4

b4
p4 − p6

)
with

d10 = d9 +
c4
b4
p4.

Finally, there is a single equilibrium of the form h11 = (x1, x2, x3, x4, x5, v11) , where
x1 = 1

b1
(a1 − v11c1) , x2 = 1

b2
(a2 − v11c2) , x3 = 1

b3
(a3 − v11c3) , x4 = 1

b4
(a4 − v11c4) ,

x5 = 1
b5

(a5 − v11c5) , v11 = 1
d11

(
a1

b1
p1 +

a2

b2
p2 +

a3

b3
p3 +

a4

b4
p4 +

a5

b5
p5 − p6

)
and d11 = d10 +

c5
b5
p5.

Remark 3.5. Of the equilibrium points of the first two classes described above for the 6D
system, only the attractor h6 predicts that the immune system may win. The conclusion
in this case is similar to the one for the 3D system described at 3).

We expect the equilibrium points of the remaining classes for the 6D system to be all
unstable (saddles or repellers), whenever their coordinates are positive, thus, they do not
reveal different scenarios. We base our hypothesis on the existing similarities between
the 3D and 6D systems. However, since the analytical analysis in the remaining cases is
difficult, this remains an open problem.
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4. THE 3D MODEL WITH CONTROL

In the 3D and 6D models presented above, we modeled the interactions between virus
and immune system by considering their natural developments, without external inter-
ventions as, for example, drug administration or additional means for increasing the pro-
duction of white blood cells.

We aim to model in this section the case when the interactions depend also on external
factors. To this end, a control function u (t) to one of the first two equations related to the
immune system is proposed, having linear terms in u and nonlinear terms in xy, in the
form of a 4D differential system given by:

(4.7) ẋ = a1x+u−b1x
2−c1xz, ẏ = a2y−b2y

2−c2yz, ż = p3z−p1xz−p2yz, u̇ = βu−αxy,

where α and β are real numbers. The system has seven equilibrium points: q1 = (0, 0, 0, 0) ,

q2 =
(

a1

b1
, 0, 0, 0

)
, q3 =

(
0, a2

b2
, 0, 0

)
, q4 =

(
0, p3

p2
, 1
c2

(
a2 − b2

p3

p2

)
, 0
)
,

q5 =
(

p3

p1
, 0, 1

c1

(
a1 − b1

p3

p1

)
, 0
)
, q6 = (x6, y6, 0, u6) , where y6 = a2

b2
, x6 = 1

b1

(
a1 +

α
β y6

)
,

u6 = α
βx6y6, respectively, q7 = (x7, y7, z7, u7) , with x7 = 1

p1
(p3 − y7p2) , y7 = 1

b2
(a2 − z7c2) ,

z7 = 1
n7

(αa2p1 + βa1b2p1 + βa2b1p2 − βb1b2p3) and u7 = α
βx7y7, with n7 = αc2p1 +

βb2c1p1 + βb1c2p2.

The eigenvalues of the first six points qi can be determined analytically and are given
in the next table. The equilibria q1, q2, q4 and q5 are unstable (repellers or saddles), while
q3 and q6 can be attractors; λq4

1 λq4
2 = −

(
a2 − b2

p3

p2

)
p3 < 0 since z4 = 1

c2

(
a2 − b2

p3

p2

)
> 0,

while λq5
3 λq5

4 = −p3

(
a1 − b1

p3

p1

)
< 0 since z5 > 0.

Remark 4.6. Numerical simulations show that q7 is a saddle for a large spectrum of the pa-
rameters. In particular, if n7 < 0 and α > 0, one can show λq7

1 λq7
2 λq7

3 λq7
4 < −2y27z7αc2p2 <

0, thus, q7 is a saddle. It remains an open problem to determine the type and stability of q
7 in all cases.

The equilibrium q3 is an attractor if p3 < a2

b2
p2, λ

q3
3 λq3

4 = 1
b2

(αa2 + βa1b2) > 0 and
λq3
3 + λq3

4 = a1 + β < 0, while q6 is an attractor if λq6
2 < 0, λq6

3 λq6
4 = − 1

b2
(αa2 + βa1b2) > 0

and λq6
3 + λq6

4 = − 1
βb2

(
2αa2 − β2b2 + βa1b2

)
< 0.

λqi
1 λqi

2 λqi
3 λqi

4

q1 β a1 a2 p3
q2 β −a1 a2 p3 − a1

b1
p1

q3 −a2 p3 − a2

b2
p2

1
2

(
a1 + β +

√
l1
)

1
2

(
a1 + β −

√
l1
)

q4
1

2p2

(
−b2p3 +

√
l2
)

1
2p2

(
−b2p3 −

√
l2
)

1
2c2p2

(
l3 +

√
l4
)

1
2c2p2

(
l3 −

√
l4
)

q5 β a2 − a1

c1
c2 +

b1
c1

c2
p1
p3

1
2p1

(
−b1p3 +

√
l5
)

1
2p1

(
−b1p3 −

√
l5
)

q6 −a2 k2
1

2βb2

(
l6 +

√
l7
)

1
2βb2

(
l6 −

√
l7
)

TABLE 2. The eigenvalues of the first six equilibrium points of the controled
system (4.7); k2 = p3 − a1

b1
p1 − a2

b2
p2 − α

β
a2

b1b2
p1.

where l1 = (β − a1)
2 − 4αa2

b2
, l2 = p3

(
4a2p

2
2 + b22p3 − 4b2p2p3

)
,

l3 = b2c1p3 + p2 (βc2 + a1c2 − a2c1) ,

l4 = (βc2 − a1c2 + a2c1)
2
p22 − 2p3

(
2αc22 + a2b2c

2
1 + βb2c1c2 − a1b2c1c2

)
+ b22c

2
1p

2
3,
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l5 = p3
(
4a1p

2
1 + b21p3 − 4b1p1p3

)
, l6 = −2αa2+β2b2−βa1b2 and l7 = (2αa2 + βa1b2)

2
+

β3b22 (β + 2a1) .
The control function u proposed in this section changes the local behavior of the 3D

uncontrolled system (2.1) around the saddle h2 =
(
0, a2

b2
, 0
)
, by transforming h2 in the

attractor q3 =
(
0, a2

b2
, 0, 0

)
in the new 4D system (4.7) with control, for some values of the

parameters.

Remark 4.7. 1) The existence of the attractors q3 and q6 supports the idea that the virus
can be better destroyed by external interventions on the immune system.

2) The attractor q3 shows that, if the second threshold a2

b2
is sufficiently high, then the

immune system may win even though the initial level of immune cells of type 1 is very
low when meeting the virus.

3) Since x6 = a1

b1
+ α

b1β
a2

b2
in the attractor q6, it follows that the control u stabilizes the

long term behavior of (4.7) to various values around the two thresholds a1

b1
and a2

b2
.

5. A MODEL WITH AUTOIMMUNE DISEASE

Assume in this section that the immune system is affected by autoimmune diseases. In
other words, the white blood cells attack each other. Therefore, the cells x (t) perish at a
rate of −xzc1 − xyd1, while y (t) at a rate of −yzc2 − xyd2. These hypotheses lead to the
system

(5.8)
ẋ = x (a1 − xb1 − zc1 − yd1) , ẏ = y (a2 − yb2 − zc2 − xd2) , ż = z (p3 − xp1 − yp2) ,

which will be analyzed in what follows. The equilibrium points of the new system (5.8)
are:

P1 (0, 0, 0) , P2

(
0, a2

b2
, 0
)
, P3

(
a1

b1
, 0, 0

)
, P4

(
0, p3

p2
, 1
c2

(
a2 − p3

p2
b2

))
,

P5

(
p3

p1
, 0, 1

c1

(
a1 − p3

p1
b1

))
, P6

(
a1b2−a2d1

b1b2−d1d2
, a2b1−a1d2

b1b2−d1d2
, 0
)

and P7 (x7, y7, z7) , where x7 =

N1

N2
, y7 = p3−x7p1

p2
and z7 = 1

c2

(
x7b2

p1

p2
− x7d2 + a2 − b2

p2
p3

)
, respectively, N1 = a1c2p2 −

a2c1p2 + b2c1p3 − c2d1p3 and N2 = b2c1p1 + b1c2p2 − c2d1p1 − c1d2p2.
P1 is a repeller with eigenvalues a1,2 and p3, while, P2 can be a saddle or an attractor,

with eigenvalues −a2, a1 − a2

b2
d1 and p3 − a2

b2
p2. If p3 < a2

b2
p2 and d1 > a1

a2
b2, P2 is an at-

tractor, thus, an immune disease may not affect the ability of the immune system to defeat
the virus; an orbit starting close to P2 converges to P2, that is, z (t) → 0 as t increases. A
similar scenario occurs for P3, whose eigenvalues are −a1, a2 − a1

b1
d2 and p3 − a1

b1
p1.

Not the same scenarios arise around P4 and P5, since they are both saddles while lying
in the first quadrant Q1. Indeed, the eigenvalues of P4 are λP4

2,3 = − 1
2p2

(
b2p3 ±

√
∆1

)
and

λP4
1 = 1

c2p2
(a1c2p2 − a2c1p2 + b2c1p3 − c2d1p3) , where ∆1 = p3

(
4a2p

2
2 + b22p3 − 4b2p2p3

)
.

Since z4 = a2 − p3

p2
b2 > 0, it follows that

λP4
2 λP4

3 = −p3
p2

(a2p2 − b2p3) < 0,

that is, P4 is a saddle. Similarly, the eigenvalues of P5 are λP5
2,3 = − 1

2p1

(
b1p3 ±

√
∆2

)
and

λP5
1 = 1

c1p1
(a2c1p1 + b1c2p3 − a1c2p1 − c1d2p3) , where ∆2 = p3

(
4a1p

2
1 + b21p3 − 4b1p1p3

)
,

such that, λP5
2 λP5

3 = −p3

p1
(a1p1 − b1p3) < 0.
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The eigenvalues of P6 are λP6
1 = p3 − x6p1 − y6p2 and λP6

2,3 = − 1
2 (x6b1 + y6b2)± 1

2

√
∆3,

where ∆3 = (b1x6 − b2y6)
2
+ 4d1d2x6y6, respectively, x6 = a1b2−a2d1

b1b2−d1d2
> 0 and y6 =

a2b1−a1d2

b1b2−d1d2
> 0. Notice that

λP6
2 λP6

3 = x6y6 (b1b2 − d1d2)

and λP6
2 + λP6

3 = −x6b1 − y6b2 < 0, thus, P6 is an attractor if b1b2 < d1d2, respectively, a
saddle if b1b2 > d1d2, whenever P6 lies in the first quadrant Q1. An orbit starting close to
P6 attractor satisfies z (t) → 0 as t increases, thus, the immune system may win despite
the autoimmune disease.

In order to study P7 when it lies in the first quadrant Q1, we use its characteristic
polynomial

P (λ) = λ3 +m2λ
2 +m1λ+m0,

where m2 = x7b1+y7b2, m1 = x7y7 (b1b2 − d1d2)−z7 (x7c1p1 + y7c2p2) and m0 = −x7y7z7N2.

Denote by λP7
i its roots, with i = 1, 2, 3.

Notice that m2 > 0 whenever P7 ∈ Q1. Since S1 = λP7
1 + λP7

2 + λP7
3 = −m2 < 0, P7

cannot be a repeller but a saddle or an attractor on Q1.

Remark 5.8. P7 is a saddle in Q1, if 1) m0 < 0 or 2) m0 > 0 and b1b2 < d1d2.

Indeed, the proof for m0 < 0 follows from S3 = λP7
1 λP7

2 λP7
3 = −m0 > 0 and S1 < 0. To

prove 2), we assume by contrary that P7 is an attractor. By Routh-Hurwitz conditions, P7

is an attractor if and only if m0 > 0 and m2m1 > m0, which, by m2 > 0, yield m1 > 0. But
m1 < 0 if P7 ∈ Q1 and b1b2 < d1d2, thus, a contradiction, and 2) follows.

If m0 > 0 and b1b2 > d1d2, numerical simulations show that P7 ∈ Q1 is also a saddle.
However, a full analytical proof remains open. It needs to determine the signs of m1 and
M = m2m1 −m0, which can be written in the form

M = −c1x7z7 (x7b1p1 + y7d2p2)−c2y7z7 (x7d1p1 + y7b2p2)+y7x7 (b1b2 − d1d2) (x7b1 + y7b2) .

Remark 5.9. One can show that P7 is born from P4, P5 or P6 by a transcritical bifurcation.

From the above analysis of this section, it follows that, our model predicts that the
immune system may win even though it is affected by autoimmune diseases.

6. CONCLUSIONS

We presented in this work a study on interactions between the white blood cells of
immune system and a pathogenic virus, such as Covid-2019. We used a mathematical
approach based on differential equations for modeling the interactions, and tools from
dynamical systems theory to analyze the models. The study reveals the importance of the
white blood cells in the fight against the virus. Several conclusions arising from our study
are the followings:

1. If the immune system is sufficiently weak when the virus starts to proliferate, then
the virus has a big chance to win.

2. A deficiency in the normal concentration of a single type of white blood cells in the
early stages of virus proliferation, may lead to the virus victory.

3. If the levels of white blood cells become at a moment during the battle with the virus
considerably smaller than their normal concentrations, the virus may win even though
the immune system kills the virus at a rate higher than the rate of virus proliferation.

4. If the white blood cells are within their normal concentrations from the first moment
they discover the virus and if the immune system is in a healthy condition to kill the virus
at a high rate, then the immune system can win.
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5. If the concentration of at least one type of white blood cells can be significantly
increased beyond its normal threshold by medical interventions in the early stages of virus
infection, then the immune system has a better chance to win. This conclusion reveals the
possibility of winning against a virus by increasing the number of a single category of
fighters.

6. The immune system may win even though it is affected by autoimmune diseases.
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