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Unpredictable solutions of compartmental quasilinear
differential equations

MARAT AKHMET1, MADINA TLEUBERGENOVA2 and AKYLBEK ZHAMANSHIN1

ABSTRACT. In the present research, quasilinear differential equations with compartmental periodic unpre-
dictable coefficients and perturbations are investigated. The compartmental periodic unpredictable functions
present a new type of recurrency. The problem of existence and uniqueness of unpredictable solutions is stud-
ied for the systems. Numerical simulations which illustrate chaotic and periodic behavior in outputs of the
dynamics are provided.

1. INTRODUCTION

Many scientists have devoted their researches to the study of solutions, which are re-
current in their behavior. The most studied are periodic [9, 12] and almost periodic solu-
tions [10, 13, 14]. The Poisson stable motions, which were introduced by H. Poincaré [15],
represent most difficult for analysis type of recurrence [16, 17]. In our papers, the method
of included intervals has been introduced and developed to approve Poisson stability in
differential equations and neural networks [1, 2].

In paper [3], to make the recurrence a chaotic ingredient, the Poisson stability has been
extended to the unpredictability. Thus, the Poincaré chaos was determined, and one can
say now that the unpredictability implies chaos [3, 4]. The concept of unpredictability has
been applied for various problems of differential equations [5] and neural networks [6]. It
is a powerful instrument for chaos indication. In papers [7, 8], a special method to extend
chaos presence has been developed.

Unlike paper [5], where quasilinear differential equations with constant coefficients
and unpredictable perturbations were investigated, in the present paper, we consider
differential equations with time-varying compartmental coefficients and compartmental
perturbations. The newly introduced functions combine the properties of periodicity and
unpredictability. To prove that the functions are unpredictable, a special condition of syn-
chrony for characteristics, the kappa property, is applied, which has not been considered
in literature at all.

The rest of the paper is organized as follows. In Section 2, the main definitions of
the unpredictable and compartmental periodic unpredictable functions (simply compart-
mental functions, in what follows) are presented and preliminary results concerning the
properties of such functions are provided. The main result of the study is given in Sec-
tion 3. Under certain conditions it is rigorously proven that an unpredictable solution,
which is asymptotically stable, takes place in the quasilinear differential equations with
compartmental perturbations. In Section 4, examples supporting the theoretical results
are given. A compartmental periodic unpredictable function and unpredictable solutions
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of differential equations are demonstrated. Moreover, in Section 4, a quantitative char-
acteristic, the degree of periodicity, that strongly affects periodical and the unpredictable
appearance the dynamics of the solution is defined.

2. PRELIMINARIES

Let us start with the main definitions of the research. Throughout the paper, R and N
will stand for the set of real and natural numbers, respectively, and the Euclidean norm
will be used.

Definition 2.1. [3] A uniformly continuous and bounded function f : R → Rn is unpre-
dictable if there exist positive numbers ϵ0, δ and sequences tk, sk both of which diverge to
infinity such that ∥f(t+ tk)− f(t)∥ → 0 as k → ∞ uniformly on compact subsets of R and
∥f(t+ tk)− f(t)∥ > ϵ0 for each t ∈ [sk − δ, sk + δ] and k ∈ N.

The sequence tk, k = 1, 2, . . . , is said to be the Poisson or convergence sequence of the
function f(t). We call the uniform convergence on compact subsets of R, the convergence
property, and the existence of the sequence sk and positive numbers ϵ0, δ is called the sepa-
ration property.

Definition 2.2. [5] A continuous and bounded function f(t, x) : R × D → Rn, D ⊂ Rn

is an open and bounded set, is unpredictable in t uniformly with respect to x ∈ D, if it is
uniformly continuous in t and there exist positive numbers ϵ0, δ and sequences tk, sk both
of which diverge to infinity such that sup

D
∥f(t+ tk, x)− f(t, x)∥ → 0 as k → ∞ uniformly

on bounded intervals of t and x ∈ D, and ∥f(t+ tk, x)−f(t, x)∥ > ϵ0 for t ∈ [sk−δ, sk+δ],
x ∈ D and k ∈ N.

Definition 2.3. A function f(t) : R → Rn is said to be compartmental periodic unpredictable
(CPU) function, if f(t) = G(t, t),whereG(u, s) is a continuous bounded function, periodic
in u uniformly with respect to s, and unpredictable in s uniformly with respect to u.

The next definition is a particular case of the Definition 2.3.

Definition 2.4. A function f(t) = ϕ(t) + ψ(t) is said to be the modulo periodic unpredictable
(MPU) function, if ϕ(t) is an ω−periodic continuous function and ψ(t) is an unpredictable
function.

Definition 2.5. A function f(t, x) : R × D → Rn, D ⊂ Rn is an open and bounded set,
is said to be compartmental periodic unpredictable in t uniformly for x function, if f(t, x) =
G(t, t, x),whereG(u, s, x) is a continuous bounded function, periodic in u uniformly with
respect to arguments s, x, and unpredictable in s uniformly with respect to u and x.

Consider an unpredictable function ψ(t) with convergence sequence tk. For fixed ω > 0
there exist a subsequence tkl

and a number τω such that tkl
→ τω(mod ω) as l → ∞. In

what follows, we shall call the number τω as the Poisson shift for the function ψ(t) with
respect to the ω. The set of Poisson shifts Tω is not empty, in general case, it can consist of
several or even an infinite number of elements. The number κω = inf Tω, 0 ≤ κω < ω, is
said to be Poisson number for the function ψ(t) with respect to the number ω. We say that the
sequence tk satisfies kappa property with respect to the number ω if κω = 0.

Remark 2.1. A compartmental function is not necessary unpredictable. It is unpredictable
in the sense of the Definition 2.1 under a special condition, for example, if its convergence
sequence satisfies the kappa property.
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Lemma 2.1. Assume that G(u, v, x) : R × R ×D → Rn, D ⊂ Rn is an open and bounded set,
is a continuous ω−periodic in u uniformly with respect to v and x function. Then the function
g(t, x) = G(t, t, x), is unpredictable in t, if the following conditions are valid:

(i) for each ϵ > 0 there exists a positive number η such that ∥G(t+ s, t, x)−G(t, t, x)∥ < ϵ
if |s| < η, t ∈ R, x ∈ D;

there exist sequences tk, sk both of which diverges to infinity as k → ∞, and positive numbers
ϵ0, δ such that

(ii) the sequence tk satisfies the kappa property with respect to the period ω;
(iii) sup

I×D
∥G(t, t+ tk, x)−G(t, t, x)∥ → 0 on each bounded interval I ⊂ R;

(iv) inf
[sk−δ,sk+δ]×D

∥G(t, t+ tk, x)−G(t, t, x)∥ > ϵ0, k ∈ N.

Proof. Let us fix a positive number ϵ, and a bounded interval I ∈ R. Since the sequence tk
satisfies the kappa property, one can write, without loss of generality, that tk → 0(mod ω)
as k → ∞. Therefore, by conditions (i) and (iii), the following inequalities are valid

sup
R×D

∥G(t+ tk, t, x)−G(t, t, x)∥ < ϵ

2
(2.1)

and

sup
I×D

∥G(t, t+ tk, x)−G(t, t, x)∥ < ϵ

2
,(2.2)

for sufficiently large k.
Using inequalities (2.1) and (2.2), we get that

∥g(t+ tk, x)− g(t, x)∥ = ∥G(t+ tk, t+ tk, x)−G(t, t, x)∥ ≤
∥G(t+ tk, t+ tk, x)−G(t, t+ tk, x)∥+ ∥G(t, t+ tk, x)−G(t, t, x)∥ <
ϵ

2
+
ϵ

2
= ϵ,

for all t ∈ I, x ∈ D. That is, g(t + tk, x) converges to g(t, x) on each arbitrary bounded
time interval uniformly for x ∈ D.Moreover, conditions (i) and (ii) imply that sup

R×D
∥G(t+

tk, t, x)−G(t, t, x)∥ <
ϵ0
2

for sufficiently large k.Applying assumption (iv), one can obtain
that

∥g(t+ tk, x)− g(t, x)∥ = ∥G(t+ tk, t+ tk, x)−G(t, t, x)∥ ≥
∥G(t+ tk, t+ tk, x)−G(t+ tk, t, x)∥ − ∥G(t+ tk, t, x)−G(t, t, x)∥ >

ϵ0 −
ϵ0
2

=
ϵ0
2
,

for all t ∈ [sk − δ, sk + δ], x ∈ D, k ∈ N. The lemma is proved. □

Along with Lemma 2.1, in what follows, the next assertion, which can be proved in the
similar way, will be needed.

Lemma 2.2. A compartmental periodic unpredictable in t function g(t, x) is unpredictable in t
provided that its convergence sequence tk admits the kappa property.

3. MAIN RESULTS

3.1. A case of compartmental periodic unpredictable coefficients and perturbations.
The main object of the present section is the system of quasilinear differential equations,

x′(t) = (A(t) +B(t))x+ g(t, x),(3.3)
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where t ∈ R, x ∈ Rn, n is a fixed natural number;A(t) andB(t) are n−dimensional square
matrices; g : R×D → Rn, D = {x ∈ Rn, ∥x∥ < H}, where H is a fixed positive number.

We assume that the following conditions are satisfied.
(C1) A(t) is an ω−periodic matrix for a fixed positive ω;
(C2) B(t) is an unpredictable matrix, and g(t, x) is compartmental function;
(C3) the entries of the matrix B(t) and function g(t, x) are with common convergence

sequence tk;
(C4) the convergence sequence tk satisfies the kappa property with respect to the pe-

riod ω.
Let us consider the homogeneous system, associated with (3.3),

x′(t) = A(t)x(t).(3.4)

Let X(t), t ∈ R, is the fundamental matrix of the system (3.4) such that X(0) = I, and I is
the n×n identical matrix. Moreover, X(t, s) is transition matrix of the system (3.4), which
equal to X(t)X−1(s), and X(t+ ω, s+ ω) = X(t, s) for all t, s ∈ R.

Assume that the following assumption is valid.
(C5) All multipliers of the system (3.4) in modulus are less than one.
It follows from the last condition that there exist positive numbers K and α such that

∥X(t, s)∥ ≤ Ke−α(t−s),(3.5)

for t ≥ s [11].
The next lemma is necessary for further reasoning.

Lemma 3.3. [1] If the inequality (3.5) is satisfied, then the following estimation is correct

∥X(t+ τ, s+ τ)−X(t, s)∥ ≤ max
t∈R

∥A(t+ τ)−A(t)∥2K
2

α2e
e−

α
2 (t−s),(3.6)

for t ≥ s and arbitrary real number τ.

The additional conditions on system (3.3) are required:
(C6) there exists a positive constant L such that ∥g(t, x1)− g(t, x2)∥ ≤ L ∥x1 − x2∥ for

all t ∈ R, x1, x2 ∈ D;

(C7) K(b+
mg

H
) < α;

(C8) K(b+ L) < α,

where b = sup
t∈R

∥B(t)∥ and mg = sup
R×D

∥g(t, x)∥.

According to [11], a bounded on the real axis function y(t) is a solution of (3.3), if and
only if it satisfies the equation

y(t) =

∫ t

−∞
X(t, s)[B(s)y(s) + g(s, y(s))]ds, t ∈ R.(3.7)

Theorem 3.1. If conditions (C1)-(C8) are valid, then the system (3.3) possesses a unique asymp-
totically stable unpredictable solution.

Proof. Let tk is the convergence sequence of the function g(t, x) in the system (3.3). We de-
note by B the set of functions ψ(t) = R → Rn, satisfy convergence property with common
sequence tk, and ∥ψ∥1 < H.

Let us show that the B is a complete space. Consider a Cauchy sequence θm(t) in B,
which converges to a limit function θ(t) on R. We have that

∥θ(t+ tk)− θ(t)∥ < ∥θ(t+ tk)− θm(t+ tk)∥+ ∥θm(t+ tk)− θm(t)∥+
∥θm(t)− θ(t)∥.(3.8)
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for a fixed closed and bounded interval I ⊂ R. Now, one can take sufficiently large m and
k such that each term on the right hand-side of (3.8) is smaller than ϵ

3 for a fixed positive
ϵ and t ∈ I . That is, the sequence θ(t+ tk) uniformly converges to θ(t) on I. Likewise, one
can check that the limit function is uniformly continuous [11]. The completeness of B is
shown.

Define the operator Π on B such that

Πν(t) =

∫ t

−∞
X(t, s)[B(s)ψ(s) + g(s, ψ(s))]ds, t ∈ R.(3.9)

Fix a function ψ(t) that belongs to B. We have that

∥Πψ(t)∥ ≤
∫ t

−∞
∥X(t, s)∥(∥B(s)∥∥ψ(s)∥+ ∥g(s, ψ(s))∥)ds ≤ K(bH +mg)

α

for all t ∈ R. Therefore, by the condition (C7) it is true that ∥Πψ∥1 < H .
Now, applying the method of included intervals [5], we will show that Πψ(t + tk) →

Πψ(t) as k → ∞, uniformly on compact subsets of R. Let us fix a positive number ϵ and
an interval [a, b], −∞ < a < b < ∞. There exist numbers c, ξ such that c < a and ξ > 0,
which satisfy the following inequalities:

(3.10)
4K2ξ

α3e
(bH +mg) <

ϵ

3
,

(3.11)
2K

α
(2bH +mg)e

−α(a−c) <
ϵ

3
,

and

(3.12)
K(H + b+ L)ξ

α
[1− e−α(b−c)] <

ϵ

3
.

By using the condition (C4), for periodic matrixA(t) one can attain that ∥A(t+tk)−A(t)∥ <
ξ, t ∈ R. Moreover, since ψ(t) belongs to the set B, the matrix B(t) is unpredictable and
g(t, x) is unpredictable in t then for sufficiently large k we have that ∥ψ(t+tk)−ψ(t)∥ < ξ,
∥B(t+ tk)−B(t)∥ < ξ, and ∥g(t+ tk, ψ(t))−g(t, ψ(t))∥ < ξ for t ∈ [c, b]. Applying Lemma
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(3.3), we get that

∥Πψ(t+ tk)−Πψ(t)∥ =

∥
∫ t

−∞
X(t+ tk, s+ tk)

(
B(s+ tk)ψ(s+ tk) + g(s+ tk, ψ(s+ tk))

)
ds−∫ t

−∞
X(t, s)

(
B(s)ψ(s) + g(s, ψ(s))

)
ds∥ ≤∫ t

−∞
∥X(t+ tk, s+ tk)−X(t, s)∥

(
∥B(s+ tk)∥∥ψ(s+ tk)∥+ ∥g(s+ tk, ψ(s+ tk))∥

)
ds+∫ t

−∞
∥X(t, s)∥

(
∥B(s+ tk)−B(s)∥∥ψ(s+ tk)∥+ ∥B(s)∥∥ψ(s+ tk)− ψ(s)∥+

∥g(s+ tk, ψ(s+ tk))− g(s, ψ(s))∥
)
ds ≤∫ t

−∞
∥X(t+ tk, s+ tk)−X(t, s)∥

(
∥B(s+ tk)∥∥ψ(s+ tk)∥+ ∥g(s+ tk, ψ(s+ tk))∥

)
ds+∫ c

−∞
∥X(t, s)∥

(
∥B(s+ tk)−B(s)∥∥ψ(s+ tk)∥+ ∥B(s)∥∥ψ(s+ tk)− ψ(s)∥+

∥g(s+ tk, ψ(s+ tk))− g(s, ψ(s))∥
)
ds ≤∫ t

c

∥X(t, s)∥
(
∥B(s+ tk)−B(s)∥∥ψ(s+ tk)∥+ ∥B(s)∥∥ψ(s+ tk)− ψ(s)∥+

∥g(s+ tk, ψ(s+ tk))− g(s, ψ(s))∥
)
ds ≤

∫ t

−∞

2K2ξ

α2e
e−

α
2 (t−s)(bH +mg)ds+∫ c

−∞
Ke−α(t−s)(2bH + 2bH + 2mg)ds+

∫ t

c

Ke−α(t−s)(ξH + bξ + Lξ)ds ≤

4Kξ

α3e
(bH +mg) +

2K

α
(2bH +mg)e

−α(a−c) +
K(H + b+ L)ξ

α
[1− e−α(b−c)],

for all t ∈ [a, b]. From inequalities (3.10) to (3.12) it follows that ∥Πψ(t + tk) − Πψ(t)∥ < ϵ
for t ∈ [a, b]. Therefore, Πψ(t + tk) uniformly converges to Πψ(t) on bounded interval of
R.

It is easy to verify that Πψ(t) is a uniformly continuous function, since its derivative
is a uniformly bounded function on the real axis. Summarizing the above discussion, the
set B is invariant for the operator Π.

We proceed to show that the operator Π : B → B is contractive. Let u(t) and v(t) be
members of B. Then, we obtain that

∥Πu(t)−Πv(t)∥ ≤
∫ t

−∞
∥X(t, s)∥

(
∥B(s)∥∥u(s)− v(s)∥+ g(s, u(s))− g(s, v(s))∥

)
ds ≤∫ t

−∞
Ke−α(t−s)(b+ L)∥u(s)− v(s)∥ds ≤ K(b+ L)

α
∥u(t)− v(t)∥1,

for all t ∈ R. Therefore, the inequality ∥Πu−Πv∥1 ≤ K(b+ L)

α
∥u− v∥1 holds, and ac-

cording to the condition (C8) the operator Π : B → B is contractive.
By the contraction mapping theorem there exists the unique fixed point, z(t) ∈ B, of

the operator Π, which is the unique bounded solution of the system (3.3).



Unpredictable solutions 7

Next, we will show that the solution z(t) is unpredictable. According condition (C2)
and Lemma 2.2, the function g(t, z(t)) is unpredictable in t, and there exists positive num-
bers δ and ϵ0 such that ∥g(t + tk, z(t)) − g(t, z(t))∥ > ϵ0 for t ∈ [sk − δ, sk + δ]. Denote
K0 = inf{∥X(t, s) : t > s}∥. One can find numbers l ∈ N and δ1 > 0 which satisfy the
following inequalities

δ1 < δ,(3.13)

∥X(t+ tk, s+ tk)−X(t, s)∥ ≤ ϵ0
l
, t ∈ R, |s| < δ1,(3.14)

δ1(K0 −
bH +mg

l
) >

1

2l
(3 +

K(H + b+ L)

2α
),(3.15)

∥z(t+ s)− z(t)∥ ≤ ϵ0
4l
, t ∈ R, |s| < δ1,(3.16)

∥B(t+ s)−B(t)∥ ≤ ϵ0
4l
, t ∈ R, |s| < δ1,(3.17)

Assume that the numbers l, δ1 and k ∈ N are fixed. Denote by ∆ the value of ∥z(sk +
tk)− z(sk)∥, and consider two alternative cases: (1) ∆ ≥ ϵ0

l , and (2) ∆ < ϵ0
l .

(1) If ∆ ≥ ϵ0
l , it is easily find, from (3.16), that

∥z(t+ tk)− z(t)∥ ≥ ∥z(sk + tk)− z(sk)∥ − ∥z(sk)− z(t)∥ −

∥z(t+ tk)− z(sk + tk)∥ >
ϵ0
l
− ϵ0

4l
− ϵ0

4l
=
ϵ0
2l
,

for t ∈ [sk − δ1, sk + δ1].
(2) Applying the relation

z(t+ tk)− z(t) = z(sk + tk)− z(sk) +∫ t

sk

X(t+ tk, s+ tk)(B(s+ tk)z(s+ tk) + g(s+ tk, z(s+ tk)))ds−∫ t

sk

X(t, s)(B(s)z(s) + g(s, z(s)))ds = z(sk + tk)− z(sk) +∫ t

sk

X(t+ tk, s+ tk)[(B(s+ tk)−B(s))z(s+ tk)) +B(s)(z(s+ tk)− z(s))]ds+∫ t

sk

[X(t+ tk, s+ tk)−X(t, s)]B(s)z(s)ds+∫ t

sk

X(t+ tk, s+ tk)[g(s+ tk, z(s+ tk))− g(s, z(s+ tk))]ds+∫ t

sk

X(t+ tk, s+ tk)[g(s, z(s+ tk))− g(s, z(s))]ds+∫ t

sk

[X(t+ tk, s+ tk)−X(t, s)]g(s, z(s))ds,
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and inequalities (3.13)-(3.17), one can obtain that

∥z(t+ tk)− z(t)∥ ≥
∫ t

sk

∥X(t+ tk, s+ tk)∥∥g(s+ tk, z(s+ tk))− g(s, z(s+ tk))∥ds−∫ t

sk

∥X(t+ tk, s+ tk)∥[∥B(s+ tk)−B(s)∥∥z(s+ tk)∥+ ∥B(s)∥∥z(s+ tk)− z(s)∥]ds−∫ t

sk

∥X(t+ tk, s+ tk)−X(t, s)∥∥B(s)∥z(s)∥ds− ∥z(sk + tk)− z(sk)∥ −∫ t

sk

∥X(t+ tk, s+ tk)∥∥g(s, z(s+ tk))− g(s, z(s))∥ds−∫ t

sk

∥X(t+ tk, s+ tk)−X(t, s)∥∥g(s, z(s))∥ds ≥
∫ t

sk

K0ϵ0ds−∫ t

sk

Ke−α(t−s)(H + b)
ϵ0
4l
ds−

∫ t

sk

ϵ0
l
bHds− ϵ0

l
−

∫ t

sk

Ke−α(t−s)L
ϵ0
4l
ds−

∫ t

sk

ϵ0
l
mgds ≥

δ1K0ϵ0 −
K(H + b+ L)ϵ0

4αl
− δ1

ϵ0
l
(bH +mg)−

ϵ0
l
>
ϵ0
2l
,

for each t ∈ [sk, sk + δ1]. Thus, the solution z(t) is unpredictable.
Finally, we will study the asymptotic stability of the solution z(t) of the system (3.3). It

is true that

z(t) = X(t, t0)z(t0) +

∫ t

t0

X(t, s)(B(s)z(s) + g(s, z(s)))ds,

for t ≥ t0.
Let x(t) be another solution of system (3.3). One can write

x(t) = X(t, t0)x(t0) +

∫ t

t0

X(t, s)(B(s)x(s) + g(s, x(s)))ds.

Making use of the relation

z(t)− x(t) = X(t, t0)(z(t0)− x(t0)) +∫ t

t0

X(t, s)
(
B(s)(z(s)− x(s)) + g(s, z(s))− g(s, x(s))

)
ds,

we obtain that

∥z(t)− x(t)∥ ≤ ∥X(t, t0)∥∥z(t0)− x(t0)∥+∫ t

t0

∥X(t, s)∥
(
∥B(s)∥∥z(s)− x(s)∥+ ∥g(s, z(s))− g(s, x(s)∥ds ≤

Ke−α(t−t0)∥z(t0)− x(t0)∥+
∫ t

t0

K(b+ L)e−α(t−s)∥z(s)− x(s)∥ds.

Now, applying Gronwall-Bellman Lemma, one can attain that

∥z(t)− x(t)∥ ≤ Ke−(α−K(b+L))(t−t0)∥z(t0)− x(t0)∥, t ≥ t0.(3.18)

The last inequality and condition (C8) confirm that the unpredictable solution z(t) is
asymptotically stable. The theorem is proved. □



Unpredictable solutions 9

3.2. A case of compartmental periodic unpredictable perturbations and periodic coef-
ficients. Let us consider the following quasilinear system,

x′(t) = A(t)x+ g(t, x),(3.19)

where t ∈ R, x ∈ Rn, n is a fixed natural number; the A(t) is a continuous square matrix;
g : R×D → Rn, D = {x ∈ Rn, ∥x∥ < H}, where H is a fixed positive number.

Assume that the conditions (C1), (C5) and (C6) are satisfied, and the following assump-
tions are valid:

(C9) the function g(t, x) is compartmental in t;
(C10) the convergence sequence of the function g(t, x) satisfies the kappa property

with respect to ω;
(C11) KL < α;

(C12)
Kmg

H
< α.

The next theorem is a corollary of the Theorem 3.1.

Theorem 3.2. If conditions (C1),(C5),(C6), (C9)-(C12) are hold, then system (3.19) admits a
unique asymptotically stable unpredictable solution.

4. NUMERICAL EXAMPLES

Let ψi, i ∈ Z, be a solution of the logistic map

(4.20) λi+1 = µλi(1− λi),

where i ∈ Z, and µ ∈ [3 + (2/3)1/2, 4] is a fixed parameter. The section [0, 1] is invariant
with respect to (4.20) for the considered values of µ.

Now, consider the following integral function

(4.21) Θ(t) =

∫ t

−∞
e−3(t−s)Ω(s)ds,

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = ψi for t ∈ [i, i+ 1), i ∈ Z. It is worth noting that Θ(t) is bounded on the whole real

axis such that sup
t∈R

|Θ(t)| ≤ 1

3
. In [3], it was proved that the function Θ(t) is unpredictable.

In what follows, the piecewise constant function, Ω(t), will be defined for t ∈ [hi, h(i+
1)), where i ∈ Z, and h is a positive real number. The number h is said to be the length of
step of the functions Ω(t) and Θ(t). The ratio of the period and the length of step, ∇ = ω/h,
we call the degree of periodicity. The dependence of the dynamics of the compartmental
functions on the degree of periodicity is shown below.

Example 4.1. Before considering samples of unpredictable systems, let us show how the
degree of periodicity can affect shape of graphs trajectory of unpredictable functions.

Consider the following modulo periodic unpredictable function,

f(t) = a sin(
2πt

ω
) + bΘ(t),(4.22)

where a and b are real coefficients, Θ(t) is the unpredictable function with step h, and the
first component is an ω−periodic function. In Figure 1 the graph of function f(t) with
degree of periodicity ∇ = 0.25 < 1 is shown. It is seen that periodicity appears locally on
intervals of 10 units length approximately.

Figure 2 depicts the graph of unpredictable function f(t) with ∇ = 1. In this case, the
unpredictability dominates in the dynamics, and the periodicity is not seen.
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FIGURE 1. The graph of function f(t) with a = 0.5, b = 3, ω = 2.5, and
degree of periodicity ∇ = 0.25.
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FIGURE 2. The graph of function f(t) with a = 0.6, b = 1.5, ω = π, and
degree of periodicity ∇ = 1.

Figure 3 demonstrates the trajectory of the function f(t) with degree of periodicity
∇ = 60 > 1. We obtain the function that admits a periodic shape which is enveloped by
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FIGURE 3. The graph of function f(t) with a = 0.4, b = 0.3, ω = 30, and
degree of periodicity ∇ = 60.
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unpredictability.

Analyzing simulations with different degrees of periodicity, we can say that there is
a loss of global periodicity and irregularity dominates if ∇ is less than or equal to one.
If ∇ is larger than one, we have the opposite effect, when periodicity in the trajectory is
observed and envelopes the irregularity.

Example 4.2. Now, let us consider the following unpredictable system,

x′1 = (−3 + cos(t) + 0.3Θ(t))x1 − 0.4 sin(2t) + 0.25arctg(x2) + 1.2Θ(t)

x′2 = (−2 + sin(2t)− 0.2Θ(t))x2 + 0.2 cos(2t) + 0.3arctg(x1) + 0.9Θ(t),(4.23)

where Θ(t) is the unpredictable function with the step of length h = 8π, described above
in (4.21),

A(t) =

(
−3 + cos(t) 0

0 −2 + sin(2t)

)
, B(t) =

(
0.3Θ(t) 0

0 −0.2Θ(t)

)
,

g(t, x) =

(
−0.4 sin(2t) + 0.25arctg(x2) + 1.2Θ(t)
0.2 cos(2t) + 0.3arctg(x1) + 0.9Θ(t)

)
.

The common period of the matrix and the components of g(t, x) is equal to 2π. The degree
of periodicity, ∇, is equal to 0.25. All conditions of the Theorem 3.2 are satisfied with
L = 0.3, K = 1, α = 4π, b = 0.12, mg = 1.54 and H = 0.5. The coordinates of the solution
x(t), which asymptotically converges to the unpredictable solution are shown in Figure 4.
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FIGURE 4. The coordinates of the solution x(t) of system (4.23), which
asymptotically converge to the coordinates of the unpredictable solution.
The degree of periodicity is equal to ∇ = 0.25.

Figure 5 demonstrates the time series of the coordinates x1(t), x2(t) of the solution
x(t) of the system (4.23) with initial values x1(0) = 0, x2(0) = 0.4, when the degree of
periodicity ∇ = 1.

Now, let us obtain simulation results for the following system,

x′1 = (−3 + cos(t) + 0.3Θ(t))x1 − 0.4 sin(0.2t) + 0.25arctg(x2) + 1.2Θ(t),

x′2 = (−2 + sin(2t)− 0.2Θ(t))x2 + 0.2 cos(0.2t) + 0.3arctg(x1) + 0.9Θ(t).(4.24)
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FIGURE 5. The time series of the coordinates x1(t), x2(t) of the solution of
system (4.23) with ∇ = 1,which asymptotically approach the coordinates
of the unpredictable solution.

All coefficients are the same as in system (4.23), with the only difference that the common
period of the coefficients and perturbations is equal to 10π. The unpredictable function
Θ(t) with the step of length h = 0.1π. Thereby, the degree of periodicity, ∇, is equal to 100.
In this case, the solution admits periodic shape, which envelopes the unpredictability, it
is seen in Figure 6.
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FIGURE 6. The coordinates x1(t), x2(t) of the solution of system (4.24)
with initial values x1(0) = 0, x2(0) = 0.4. The degree of periodicity is
equal to ∇ = 100.

Observation of the Figures 4, 5 and 6 helps to make the conclusion that the degree of
periodicity is useful to decide how large the presence of periodicity and/or irregularity
in the chaotic processes. That is, if the degree is less than one then irregularity dominates
and envelopes a periodicity, while for the degree larger than one periodicity is vividly
seen and it envelopes an irregularity. One can suppose that the interaction of periodicity
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and irregularity can provide rich industrial opportunities as well as can be extended to
interactions of quasiperiodicity and almost periodicity with irregularity in further inves-
tigations.
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