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A strongly convergent simultaneous cutter method for
finding the minimal norm solution to common fixed point
problem

NIMIT NIMANA1 and NATTHAPHON ARTSAWANG2,3

ABSTRACT. In this paper, we propose a strongly convergent simultaneous cutter method for finding the min-
imal norm solution over the intersection of fixed point sets of cutters. The proposed method is the combination
of the simultaneous cutter method and the strongly variance of Krasnosel’skiı̆-Mann method. We show a strong
convergence result of the sequence generated by the proposed method to the unique minimal norm solution. We
finally present the numerical experiments on the minimal norm solution over a finite number of linear feasibility
problem.

1. INTRODUCTION

Let H a real Hilbert space with inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. Let Ti :

H → H, i = 1, 2, . . . ,m, be cutters with
m⋂
i=1

FixTi ̸= ∅, where FixTi := {x ∈ H : Tix = x}

denotes the set of fixed points of Ti. In this work, we focus on the finding of the minimal
norm solution to the common fixed points of cutters of the following form:

minimize
1

2
∥x∥2

subject to x ∈
m⋂
i=1

FixTi,
(1.1)

This considered problem (1.1) is basically seen as a norm minimizing problem over the set
of common fixed points of cutters. Note that the minimal norm solution over the solution
sets of nonlinear problems has been studied in many aspects, for instance, in finding a
minimal norm solution of convex optimization problems [7, 24], and in finding a minimal
norm solution (in a general setting of variational inequalities) over the set of common
fixed points of cutters [21, 22, 23]. It is worth noting that some practical applications, for
instance, the classification problems via the support vector machine learning [21, Section
4], linear inverse problems [24, Section 5] and Markowitz portfolio optimization problem
[7, Section 5.1], can be written as the problem (1.1) by transforming their constrained sets
in the corresponding minimization problems to the (common) fixed point sets.

Focusing on the common fixed point problem (in short, CFP) linked to the constrained
set of the considered problem (1.1), the powerful iterative methods for solving the CFP is
known as the so-called simultaneous cutter method (in short, SCM), see [11, Sections 4.4,
4.8 and 4.9]. The formal form of SCM is given by the recurrence:

xk+1 := xk + λk

(
m∑
i=1

ωi(xk)Ti(xk)− xk

)
,(1.2)
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where x1 ∈ H is arbitrarily chosen, (λk)k≥1 ⊂ [0, 2] is a sequence of relaxation parameters
and w : H → ∆m is a weight function of the form w(x) = (ω1(x), ω2(x), . . . , ωm(x)) for
all x ∈ H. The weak convergence result of the sequence generated by (1.2) to a solution
of the CFP was given in [11, Section 5.8.2] and [12, Section 9.5]. A bit history: The most
classical simultaneous type method in the setting of finite dimensional space Rn is due to
the simultaneous projection method, which was introduced by Cimmino [14] for solving
systems of linear equations by setting λk = 2 for all k ≥ 1. Some particular situations of
(1.2) were considered by many authors. For instance, Auslender [2] considered SCM for
finding the common point in the intersection of nonempty closed and convex sets, where
λk = 1 for all k ≥ 1. De Pierro and Iusem [17] studied SCM for solving systems of linear
inequalities, where λk = λ for all k ≥ 1 with a fixed parameter λ ∈ (0, 2). Iusem and De
Pierro [18] also investigated an extrapolated variance scheme of SCM, where λk = 1 for
all k ≥ 1. Combettes [15] proved the weak convergence result of SCM to the common
point in the intersection of nonempty closed and convex sets, where λk ∈ [ε, 2− ε] for all
k ≥ 1 for some ε ∈ (0, 1). See [11, Sections 5.4 and 5.8] for more convergence results and
some literature reviews.

Even if the weak convergence results of simultaneous type methods have been studied
by many authors, it should be noted that there is a constructive counterexample showing
that the sequence generated by SCM may not converge strongly in general, see Bauschke,
Matouskova and Reich [6] for more details. Moreover, the weak convergence results
of SCM appear to be inadequate when dealing with applications that involve infinite-
dimensional functional spaces. To achieve strong convergence results, it is usually neces-
sary to impose more restrictive conditions, such as bounded regular properties of opera-
tors (see [13, 4, 16, 19, 3]). Furthermore, since the intersection of fixed point sets is a closed
and convex set, it may be a singleton set; otherwise it must contain infinitely many points.
In this situation, it is natural to find a common fixed point which is better than any other
common fixed points. A typical strategy is to consider the minimal norm solution of the
CFP as in the considered problem (1.1).

On the other hand, for a certain nonexpansive operator T : H → H with FixT ̸= ∅, the
celebrated Krasnosel’skiı̆-Mann method [10, Theorem 2.2] for finding a point in FixT has
the following form:

xk+1 := xk + λk (T (xk)− xk) ,

where x1 ∈ H is arbitrarily chosen, (λk)k≥1 ⊂ (0, 1) is a real sequence. It is well known
that the sequence generated by Krasnosel’skiı̆-Mann method converges weakly to a point
in FixT . In order to deal with strong convergence result of Krasnosel’skiı̆-Mann type
method, Boţ, Csetnek and Meier [8] proposed a modified Krasnosel’skiı̆-Mann method [8,
Scheme (2)] of the following form:

xk+1 := δkxk + λk (T (δkxk)− δkxk) ,(1.3)

where x1 ∈ H is arbitrary and (λk)k≥1, (δk)k≥1 ⊂ (0, 1] are sequences of real numbers
which are suitably chosen. They proved that the generated sequence converges strongly
to a point x∗ ∈ FixT . It is worth noting that such a point x∗ has a special feature in the
sense that it captures the minimal norm value compared to other fixed points of T . The
modified Krasnosel’skiı̆-Mann method (1.3) has been studied and generalized extensively
in some aspects, see for example [1, 9, 26]. Recently, many researchers have proposed
iterative methods to solve fixed point problems; see, e.g., [27, 28, 29] and the references
therein.

The main contribution of this work is to propose an iterative method for finding the
minimal norm solution to the common fixed point set as in the problem (1.1). The based
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ideas of the constructed method are the simultaneous cutter method (1.2) and the modi-
fied Krasnosel’skiı̆-Mann method (1.3). Under some appropriate conditions on the control
sequences, we establish strong convergence of the proposed algorithm to the considered
problem (1.1). To demonstrate the performance of the proposed method, we present some
numerical experiments on the minimal norm solution to the linear feasibility problem.

The remaining of this work is organized as follows. In Section 2, we recall and collect
some useful definitions and properties required in the work. In Section 3, we present
an iterative method and subsequently prove its convergence results. In Section 4, we
provide some important particular situations of the problem (1.1). After that, we examine
the performance of the proposed method by numerical experiments in Section 5. Finally,
we close this work by some concluding remarks in Section 6.

2. PRELIMINARIES

In this section, we recall some elements of cutters along with their properties and some
convergence tools. More comprehensive details can be found in, for instance, [5, 11, 25].

For a sequence (xk)k≥1, the strong convergence and the weak convergence to some
element x ∈ H are written by the expressions xk → x and xk ⇀ x, respectively. We
denote by I the identity operator on H. .

For an operator T : H → H, FixT := {x ∈ H : Tx = x} denotes the set of fixed points
of T . We recall further that an operator T : H → H with FixT ̸= ∅ is said to be a cutter if,

⟨x− Tx, z − Tx⟩ ≤ 0, for all x ∈ H, z ∈ FixT.

We collect some important properties of a cutter in the following proposition.

Proposition 2.1. Let T : H → H be a cutter with FixT ̸= ∅. Then

(i) FixT is closed and convex,
(ii) T is quasi-nonexpansive, i.e., ∥Tx− z∥ ≤ ∥x− z∥ for all x ∈ H and z ∈ FixT .

(iii) It holds that ⟨Tx− x, z − x⟩ ≥ ∥Tx− x∥2 for all x ∈ H and z ∈ FixT .

The following definition is also a key tool for obtaining the convergence result.

Definition 2.1. An operator S : H → H is said to be demi-closed at 0 if for any sequence
(xk)k≥1 in H and x ∈ H such that xk ⇀ x and Sxk → 0, we have Sx = 0.

For dealing with the finite family of nonlinear operators, we denote the standard sim-
plex by the set

∆m :=

{
v ∈ Rm : vi ≥ 0, i = 1, 2, . . . ,m, and

m∑
i=1

vi = 1

}
.

Next, we recall an important definition of a weight function w : H → ∆m which is defined
by w(x) = (ω1(x), ω2(x), . . . , ωm(x)) for each x ∈ H.

Definition 2.2. For a finite family of nonlinear operators Ti : H → H, i = 1, 2, . . . ,m, and
a constant ρ > 0, we call the dynamic weight function w : H → ∆m is ρ-regular with
respect to {Ti}mi=1 if, for any x ∈ H there exists j ∈ {1, 2, . . . ,m} in which

ωj(x)∥Tjx− x∥2 ≥ ρ max
1≤i≤m

∥Tix− x∥2.

Next, we recall some important examples of regular weight functions with respect to
{Ti}mi=1:



158 N. Nimana and N. Artsawang

(i) The positive constant weights

ωi(x) := ωi,

where ωi > 0 for all i = 1, 2, . . . ,m, and
m∑
i=1

ωi = 1.

(ii) The weight functions w : H → ∆m, which is defined by

(2.4) ωi(x) :=


∥Tix− x∥

m∑
i=1

∥Tix− x∥
, for x /∈

m⋂
i=1

FixTi,

0, otherwise.

For more examples of regular weight functions, the readers can consult [11, Example
5.8.3].

Next, we recall a useful fact used for proving the main result. The proof can be found
in [30, Lemma 2.5].

Proposition 2.2. Let (ak)k≥1 be a sequence of nonnegative real numbers such that

ak+1 ≤ (1− βk)ak + βkξk,

where (βk)k≥1 and (ξk)k≥1 are sequences satisfying the conditions:

(i) (βk)k≥1 ⊂ [0, 1] and
∞∑
k=1

βk = ∞;

(ii) (ξk)k≥1 ⊂ R and lim sup
k→∞

ξk ≤ 0.

Then lim
k→∞

ak = 0.

We close this section by the important fact in proving the convergence of the generated
sequence, where its proof can be found in [20, Lemma 3.1].

Proposition 2.3. Let (ak)k≥1 be a sequence of nonnegative real numbers such that there exists a
subsequence (akj

)j≥1 of (ak)k≥1 with akj
< akj+1 for all j ∈ N. If, for all k ≥ k0, we define

ν(k) = max
{
k̄ ∈ N : k0 ≤ k̄ ≤ k, ak̄ < ak̄+1

}
,

then the sequence (ν(k))k≥k0
is nondecreasing, lim

k→∞
ν(k) = ∞, aν(k) ≤ aν(k)+1 and ak ≤

aν(k)+1 for every k ≥ k0.

3. ALGORITHM AND ITS CONVERGENCE

In this section, we will state the proposed iterative method for solving the problem
(1.1) and subsequently discuss some important convergence properties of the proposed
algorithm.

Proposition 3.4. The existence and uniqueness of the optimal solution to the problem (1.1) is
guaranteed.

Proof. Since all of the operators Ti, i = 1, 2, . . . ,m, is cutter, we note from Proposition 2.1

that the intersection
m⋂
i=1

FixTi is closed and convex. Hence, by applying [11, Theorem

1.3.1], the strictly convexity of the objective function 1
2∥ · ∥2 and the closedness and the

convexity of
m⋂
i=1

FixTi, we can conclude that the problem (1.1) has the unique optimal

solution. □
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Next, we present an iterative method for solving the problem (1.1) as the following
algorithm.

Algorithm 1 A strongly convergent simultaneous cutter method

Initialization: Given two real sequences (λk)k≥1 ⊆ (0,+∞) and (δk)k≥1 ⊆ [0, 1). Given
a dynamic weight function w : H → ∆m in which w(x) = (ω1(x), ω2(x), . . . , ωm(x)) for
all x ∈ H. Choose an arbitrary initial point x1 ∈ H.
Iterative Steps: For an iterate xk ∈ H, define xk+1 ∈ H as

xk+1 := δkxk + λk

(
m∑
i=1

ωi(δkxk)Ti(δkxk)− δkxk

)
.

Update k := k + 1.

To prove the convergence of Algorithm 1, we assume the following assumption through-
out this work.

Assumption 3.1. The sequences (λk)k≥1 and (δk)k≥1 satisfy the following conditions:
(i) (λk)k≥1 ⊆ (ε, 2− ε) for some ε ∈ (0, 1);

(ii) lim
k→+∞

δk = 1 and
∑

k≥1(1− δk) = +∞.

Remark 3.1. Some remarks relating to Algorithm 1 and Assumption 3.1 are in order:
(i) In the case of m = 1, Algorithm 1 is reduced to the modified Krasnosel’skiı̆-Mann

iterative method studied in [8, Scheme (2)]. It is worth noting that if the sequence
(λk)k≥1 considered in this work can be extended to (0, 2), which is wider than the
interval (0, 1) which is considered in [8, Theorem 3].

(ii) We note that the sequence (δk)k≥1 considered in this work need to be less than 1
due to the proving lines, whereas the one considered in [8] can include 1. Even if
the length of the sequence (δk)k≥1 is short, in this work, we remove the assump-
tion

∑
k≥2 |δk − δk−1| < +∞ which was supposed in [8].

(iii) An example of the sequence (δk)k≥1 satisfying Assumption 3.1 is δk = 1− a
k+1 for

all k ≥ 1, where a ∈ (0, 1].

We prove the boundedness of a sequence (xk)k≥1 generated by Algorithm 1 as the
following lemma.

Lemma 3.1. Let (xk)k≥1 be a sequence generated by Algorithm 1. Then, (xk)k≥1 is a bounded
sequence.

Proof. Let x ∈
m⋂
i=1

FixTi be given. We firstly note that from the definition of xk+1, the

property of the dynamic weight, the convexity of ∥ · ∥ and Proposition 2.1 (ii) that for
every k ≥ 1

∥xk+1 − x∥ =

∥∥∥∥∥δkxk + λk

(
m∑
i=1

ωi(δkxk)Ti(δkxk)− δkxk

)
− x

∥∥∥∥∥
≤ (1− λk) ∥δkxk − x∥+ λk

∥∥∥∥∥
m∑
i=1

ωi(δkxk) (Ti(δkxk)− x)

∥∥∥∥∥
≤ (1− λk) ∥δkxk − x∥+ λk

m∑
i=1

ωi(δkxk) ∥Ti(δkxk)− x∥
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≤ (1− λk) ∥δkxk − x∥+ λk

m∑
i=1

ωi(δkxk) ∥δkxk − x∥

≤ ∥δkxk − x∥ ≤ δk∥xk − x∥+ (1− δk)∥x∥.

To deduce the boundedness of the sequence (xk)k≥1, let us notice that for every k ≥ 1

∥xk+1 − x∥ ≤ δk∥xk − x∥+ (1− δk)∥x∥
≤ max {∥xk − x∥, ∥x∥} ≤ · · · ≤ max {∥x0 − x∥, ∥x∥} .

By applying the induction argument, we obtain that the sequence (xk)k≥1 is bounded as
required. □

Now, we are in a position to address the strong convergence of the sequence (xk)k≥1

generated by Algorithm 1 as the following theorem.

Theorem 3.2. Let (xk)k≥1 be a sequence generated by Algorithm 1. Assume that Assumption
3.1 holds, the dynamic weight function w : H → ∆m is ρ-regular with respect to {Ti}mi=1 and the
operator Ti − I is demi-colsed at 0, for all i = 1, . . . ,m. Then, the sequence (xk)k≥1 converges
strongly to x∗, the unique solution of the problem (1.1).

Proof. Let x∗ be the unique solution of the problem (1.1). By the definition of xk+1 together
with the convexity of the function ∥ · ∥2 and Proposition 2.1 (iii), we note that for every
k ≥ 1

∥xk+1 − x∗∥2 =

∥∥∥∥∥δkxk + λk

(
m∑
i=1

ωi(δkxk)Ti(δkxk)− δkxk

)
− x∗

∥∥∥∥∥
2

= ∥δkxk − x∗∥2 + λ2
k

∥∥∥∥∥
m∑
i=1

ωi(δkxk)(Ti(δkxk)− δkxk)

∥∥∥∥∥
2

−2λk

m∑
i=1

ωi(δkxk)⟨x∗ − δkxk, Ti(δkxk)− δkxk⟩

≤ ∥δkxk − x∗∥2 + λ2
k

m∑
i=1

ωi(δkxk)∥Ti(δkxk)− δkxk∥2

−2λk

m∑
i=1

ωi(δkxk)∥Ti(δkxk)− δkxk∥2

= ∥δkxk − x∗∥2 − λk(2− λk)

m∑
i=1

ωi(δkxk)∥Ti(δkxk)− δkxk∥2.(3.5)

We will consider the first term in the right-hand side of (3.5) as follows. For every k ≥ 1,
we note that

∥δkxk − x∗∥2 = ∥δk(xk − x∗) + (δk − 1)x∗∥2

= δ2k∥xk − x∗∥2 + 2δk(1− δk)⟨−x∗, xk − x∗⟩+ (1− δk)
2∥x∗∥2

≤ δk∥xk − x∗∥2 + (1− δk)(2δk⟨−x∗, xk − x∗⟩+ (1− δk)∥x∗∥2).

Invoking this obtained relation in the inequality (3.5), we obtain that for every k ≥ 1

∥xk+1 − x∗∥2 ≤ δk∥xk − x∗∥2 + (1− δk)(2δk⟨−x∗, xk − x∗⟩+ (1− δk)∥x∗∥2),(3.6)

and

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + (1− δk)(2δk⟨−x∗, xk − x∗⟩+ (1− δk)∥x∗∥2)
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−λk(2− λk)

m∑
i=1

ωi(δkxk)∥Ti(δkxk)− δkxk∥2.(3.7)

For simplicity, we denote

ak := ∥xk − x∗∥2 and ξk := 2δk⟨−x∗, xk − x∗⟩+ (1− δk)∥x∗∥2, for all k ≥ 1.

By using the boundedness of (xk)k≥1 obtained in Lemma 3.1 and the assumption that
lim

k→+∞
δk = 1, we have that (ξk)k≥1 is a bounded sequence, subsequently,

(3.8) lim
k→+∞

(1− δk)ξk = 0.

To obtain the strong convergence of (xk)k≥1 to the unique solution x∗, we will divide
the proof into two cases related to the behavior of the sequence (ak)k≥1.

Case 1. Suppose that there exists k0 ∈ N such that (ak)k≥k0
is nonincreasing. In this

case, we immediately note that lim
k→+∞

ak exists.

Since the sequence (xk)k≥1 is bounded by Lemma 3.1, there are a subsequence (xkj )j≥1

of (xk)k≥1 and a point z ∈ H such that xkj ⇀ z and

lim sup
k→+∞

⟨−x∗, xk − x∗⟩ = lim
j→+∞

⟨−x∗, xkj − x∗⟩ = lim
j→+∞

⟨−x∗, δkjxkj − x∗⟩.(3.9)

On the other hand, the relation (3.7) yields that

0 ≤ lim sup
j→+∞

λkj
(2− λkj

)

m∑
i=1

ωi(δkj
xkj

)∥Ti(δkj
xkj

)− δkj
xkj

∥2

≤ lim sup
j→+∞

(
akj

− akj+1 + (1− δkj
)ξkj

)
= lim

j→+∞
akj

− lim
j→+∞

akj+1 + lim
j→+∞

(1− δkj
)ξkj

= 0,

which implies that

lim
j→+∞

λkj (2− λkj )

m∑
i=1

ωi(δkjxkj )∥Ti(δkjxkj )− δkjxkj∥2 = 0.

Since λk ∈ (ε, 2 − ε) for an arbitrary constant ε ∈ (0, 1), we have ε2 < λkj
(2 − λkj

).
Consequently, the above relation leads to

(3.10) lim
j→+∞

m∑
i=1

ωi(δkjxkj )∥Ti(δkjxkj )− δkjxkj∥2 = 0.

The ρ-regularity of the dynamic weight function w implies that
m∑
i=1

ωi(δkj
xkj

)∥Ti(δkj
xkj

)− δkj
xkj

∥2 ≥ ρ max
1≤i≤m

∥Ti(δkj
xkj

)− δkj
xkj

∥2.

By using this inequality and the relation (3.10), we have

0 = lim
j→+∞

m∑
i=1

ωi(δkj
xkj

)∥Ti(δkj
xkj

)−δkj
xkj

∥2 ≥ ρ lim
j→+∞

max
1≤i≤m

∥Ti(δkj
xkj

)−δkj
xkj

∥2 ≥ 0,

which leads to

(3.11) lim
j→+∞

∥Ti(δkjxkj )− δkjxkj∥ = 0, for all i = 1, 2, . . . ,m.

We note that δkjxkj ⇀ z, together with the relation (3.11) and the assumption that each
Ti − I is demi-closed at 0 yield that z ∈ FixTi, for all i = 1, 2, . . . ,m, and hence z ∈⋂m

i=1 FixTi.
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Furthermore, we obtain from the relation (3.9) that

lim sup
k→+∞

⟨−x∗, xk − x∗⟩ = lim
j→+∞

⟨−x∗, δkjxkj − x∗⟩ = ⟨−x∗, z − x∗⟩ ≤ 0.(3.12)

Now, by the boundedness of the sequences (xk)k≥1 and the inequality (3.12), we have

lim sup
k→+∞

ξk = lim sup
k→+∞

(2δk⟨−x∗, xk − x∗⟩+ (1− δk)∥x∗∥2) ≤ 0.(3.13)

Notice that the relation (3.6) can be written the form of

ak+1 ≤ (1− (1− δk))ak + (1− δk)ξk.

By applying this relation together with (3.13), Assumption 3.1 (ii) and Proposition 2.2, we
obtain that

lim
k→+∞

∥xk − x∗∥ = 0.

Case 2. Suppose that there exists a subsequence (akr )r≥1 of (ak)k≥1 such that akr <
akr+1 for all r ∈ N.

By considering the sequence (ν(k))k≥k0
defined in Proposition 2.3, we have

(3.14) aν(k) ≤ aν(k)+1

and

(3.15) ak ≤ aν(k)+1

for all k ≥ k0. Now, let (xν(kj))j≥1 be a subsequence of (xν(k))k≥1 and z ∈ H such that
xν(kj) ⇀ z. It follows that δν(kj)xν(kj) ⇀ z and

lim sup
k→+∞

⟨−x∗, xν(k) − x∗⟩ = lim
k→∞

⟨−x∗, xν(kj) − x∗⟩

= lim
j→+∞

⟨−x∗, δν(kj)xν(kj) − x∗⟩.

By using the inequalities (3.7) and (3.14), we obtain that, for all kj ≥ k0,

0 ≤ aν(kj)+1 − aν(kj)

≤ −λν(kj)(2− λν(kj))

m∑
i=1

ωi(δν(kj)xν(kj))∥Ti(δν(kj)xν(kj))− δν(kj)xν(kj)∥
2 + ξν(kj),

and hence

λν(kj)(2− λν(kj))

m∑
i=1

ωi(δν(kj)xν(kj))∥Ti(δν(kj)xν(kj))− δν(kj)xν(kj)∥
2 ≤ ξν(kj).

By using the relation (3.8), we obtain that

lim
j→+∞

m∑
i=1

ωi(δν(kj)xν(kj))∥Ti(δν(kj)xν(kj))− δν(kj)xν(kj)∥
2 = 0.

By carrying on the similar context to those used in Case 1, we have

lim
j→+∞

∥Ti(δν(kj)xν(kj))− δν(kj)xν(kj)∥ = 0, for all i = 1, 2, . . . ,m.

This implies that z ∈
⋂m

i=1 FixTi. Moreover, we also have that

(3.16) lim sup
k→+∞

ξν(k) = lim sup
k→+∞

(2δν(k)⟨−x∗, xν(k) − x∗⟩+ (1− δν(k))∥x∗∥2) ≤ 0.

In the view of the inequality (3.6), we have

0 ≤ aν(k)+1 ≤ δν(k)aν(k) + (1− δν(k))ξν(k),(3.17)



A strongly convergent simultaneous cutter method 163

and hence

0 ≤ aν(k)+1 − aν(k) ≤ (1− δν(k))
(
ξν(k) − aν(k)

)
.

According to (1− δν(k)) > 0, we have

0 ≤ aν(k) ≤ ξν(k),

and by (3.17), we also have

0 ≤ aν(k)+1 ≤ ξν(k).

In virtue of (3.16), we obtain that

lim
k→+∞

aν(k)+1 = 0,

and hence, by combining this together with inequality (3.15), we have

0 ≤ lim sup
k→+∞

ak ≤ lim sup
k→+∞

aν(k)+1 = 0.

Therefore, we conclude that lim
k→+∞

∥xk − x∗∥ = 0.

□

4. MINIMAL NORM SOLUTION TO CONVEX FEASIBILITY PROBLEMS

In this section, we discuss the minimal norm solution to convex feasibility problems
which includes solving methods, convergence results, and the convergence behavior of
the proposed method.

Firstly, let us consider the problem of the form:

minimize
1

2
∥x∥2

subject to x ∈
m⋂
i=1

Ci,
(4.18)

where the subset Ci is given in the form Ci = {x ∈ H : fi(x) ≤ 0}, the sublevel set of con-
tinuous convex functions fi : H → R, i = 1, 2, ...,m, and we assume that the intersection
m⋂
i=1

Ci is a nonempty set. Now, we recall the subgradient projection relative to fi as the

operator Pfi : H → H defined by

Pfi(x) :=

 x− max{fi(x), 0}
∥sfi(x)∥2

sfi(x) if sfi(x) ̸= 0,

x if sfi(x) = 0,

where sfi(x) ∈ ∂fi(x) := {u ∈ H : ⟨u, y − x⟩ ≤ fi(y) − fi(x),∀y ∈ H} is a subgradient
of the function fi at x see [11, Definition 4.2.4]. Note that the nonemptiness of ∂fi(x)
is quaranteed by the continuity and convexity of fi, see [11, Theorem 1.1.56]. It is worth
noting that the subgradient projection Pfi is a cutter with FixPfi = Ci for all i = 1, 2, ...,m,
see [11, Lemma 4.2.5 and Corollary 4.2.6]. Thus, the problem (4.18) is a particular situation
of the problem (1.1).

The iterative method for solving the problem (4.18) can be stated as the following algo-
rithm.
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Algorithm 2 A strongly convergent simultaneous subgradient projection method

Initialization: Given two real sequences (λk)k≥1 ⊆ (0,+∞) and (δk)k≥1 ⊆ [0, 1). Given
a dynamic weight function w : H → ∆m in which w(x) = (ω1(x), ω2(x), . . . , ωm(x)) for
all x ∈ H. Choose an arbitrary initial point x1 ∈ H.
Iterative Steps: For an iterate xk ∈ H, define xk+1 ∈ H as

xk+1 := δkxk + λk

(
m∑
i=1

ωi(δkxk)Pfi(δkxk)− δkxk

)
.

Update k := k + 1.

The following corollary is directly obtained from Theorem 3.2.

Corollary 4.1. Let (xk)k≥1 be a sequence generated by Algorithm 2. Assume that Assumption
3.1 holds, the dynamic weight function w : H → ∆m is ρ-regular with respect to {Pfi}mi=1 and
the functions fi, i = 1, 2, ...,m, are Lipschitz continuous relative to every bounded subset of H.
Then, the sequence (xk)k≥1 converges strongly to x∗, the unique solution of the problem (4.18).

Proof. Accoding to [11, Theorem 4.2.7], we note that the assumption that each function fi
is Lipschitz continuous relative to every bouned subset of H implies that Pfi − I is demi-
closed at 0. Hence, the assumptions of Theorem 3.2 are satisfied, and we conclude that
the sequence (xk)k≥1 converges strongly to the unique solution of the problem (4.18). □

Remark 4.2. Note that the Lipschitz continuity of each fi holds true when H is a finite-
dimensional space, see [5, Proposition 16.20].

5. NUMERICAL EXPERIMENTS

In this section, we provide a numerical illustration for solving the minimal norm so-
lution to the linear feasibility problem which is written in the form of a finite number of
half-space constraints. Let ai ∈ Rn and bi ∈ R be given for all i = 1, 2, ...,m. We consider
the following the minimal norm solution:

minimize
1

2
∥x∥2

subject to ⟨ai, x⟩ ≤ bi, i = 1, 2, ...,m.

(5.19)

Certainly, this minimum norm solution (5.19) can be expressed in the form of the problem
(1.1) as:

minimize
1

2
∥x∥2

subject to x ∈
m⋂
i=1

Fix (PCi
),

where the constrained sets Ci := {x ∈ Rn : ⟨ai, x⟩ ≤ bi}, i = 1, 2, ...,m, are half spaces and
PCi

is a metric projection on Ci , which is defined by

PCi
(x) =

 x− ⟨ai, x⟩ − bi
∥ai∥2

ai if ⟨ai, x⟩ > bi,

x if ⟨ai, x⟩ ≤ bi,

for all i = 1, 2, ...,m. Note that the metric projection PCi is a cutter with FixPCi = Ci,
and the operator PCi − I is demi-closed at 0, for all i = 1, 2, ...,m.
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We generate each component of ai ∈ Rn by uniformly distributed random generating
between (0, 1), and we generate each component bi ∈ Rm by normally distributed ran-
domly chosen in (–1, 1) for all i = 1, 2, ...,m. Moreover, the initial point x1 is a vector
whose all coordinates are 1.

All experiments were conducted by using MATLAB 9.19 (R2022b). All computations
were performed on a MacBook Pro 14-inch 2021 with an Apple M1 Pro processor and
16 GB memory. Moreover, all computational running times are given in seconds. In this
numerical experiment, we terminate the algorithm based on the stopping criterion that
the computational running time exceeds 5000 seconds or

∥xk − xk−1∥
∥xk∥+ 1

≤ t,

where t is an error tolerance.
We start the numerical investigation in solving problem (5.19) with different sizes of

m and n. We present the numerical comparison of Algorithm 1 to the modified Kras-
nosel’skiı̆-Mann method (1.3). To perform Algorithm 1, we set the operator Ti = PCi

for
all i = 1, 2, ...,m, and put the dynamic weight function defined by (2.4). For the modi-
fied Krasnosel’skiı̆-Mann method (1.3), we set the operator T in [8, The equation (2)] to

be T := 1
m

∑m
i=1 PCi , which is a nonexpansive operator with FixT =

m⋂
i=1

Ci and [8, The-

orem 3] can also be applied when solving problem (5.19). We choose the possibly best
parameters of these two methods as:

- Algorithm 1: δk = 1− 1.6
k+1 and λk = 1.8.

- The modified Krasnosel’skiı̆-Mann method (1.3): δk = 1− 1.0
k+1 and λk = 1.9.

The involved parameters’ combinations are given in Appendices 1 and 2.
In Table 1, we compare Algorithm 1 and the modified Krasnosel’skiı̆-Mann method

(1.3) for solving problem (5.19) with different sizes of m and n. We set the error tolerance
t = 10−6. We conducted 10 independent tests for each parameter combination (m,n). The
table presents the average number of iterations and average computational running time
for each parameter set. The results showed that Algorithm 1 consistently outperformed
the modified Krasnosel’skiı̆-Mann method (1.3) for all dimensions. In every case, the av-
erage number of iterations and computational time for Algorithm 1 were 4-24 times lower
than those of the modified Krasnosel’skiı̆-Mann method (1.3). The best performance of Al-
gorithm 1 compared to the modified Krasnosel’skiı̆-Mann method (1.3) was observed for
the case (m,n) = (500, 50000). In the case where (m,n) = (1000, 100000), we observe that
Algorithm 1 had a computational running time of only 515.36 seconds, while the modi-
fied Krasnosel’skiı̆-Mann method (1.3) required more than 5000 seconds. This significant
difference in computational running time further emphasizes the superior performance
of Algorithm 1 compared to the modified Krasnosel’skiı̆-Mann method (1.3).
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TABLE 1. Comparisons between Algorithm 1 and the modified Kras-
nosel’skiı̆-Mann method (1.3) for different sizes of m and n.

m n
Algorithm 1 Method (1.3)

#(iters) Time #(iters) Time

50 100 476 0.26 2561 1.09
200 420 0.20 2487 1.14
500 368 0.24 2314 1.48
1000 344 0.29 2485 2.12
5000 308 1.18 3621 13.05

100 200 457 0.46 3328 2.94
400 416 0.46 3457 3.79
1000 362 0.58 2743 4.37
2000 311 0.83 2871 7.62

10000 297 3.82 3983 49.42
200 400 434 0.96 4614 9.65

800 379 1.10 3592 10.28
2000 306 1.60 3378 17.61
4000 301 3.08 3327 33.57

20000 282 15.72 4643 246.04
500 1000 402 3.29 6270 50.64

2000 344 4.86 5042 71.69
5000 287 10.68 4151 150.77

10000 260 16.24 4170 253.45
50000 275 126.18 6397 2887.57

1000 2000 347 9.98 6840 193.14
4000 353 19.17 5523 295.04

10000 275 35.34 4651 571.91
20000 248 72.33 4856 1352.70
100000 261 515.36 − > 5000.00

For each optimal tolerance t, we notice that the case (m,n) = (500, 1000) required
computational running time less than the case (m,n) = (1000, 2000) approximately at
least 3 times. In a similar fashion, the case (m,n) = (1000, 2000) reached the tolerance
faster than the case (m,n) = (2000, 4000) at least 2 times. Notice that the case (m,n) =
(500, 1000) required computational running time less than the case (m,n) = (1000, 2000)
approximately at least 3 times.

Next, we investigate the behavior of Algorithm 1 for different sizes of (m,n) with vari-
ous error tolerances t. We put the size (m,n) as (500, 1000), (1000, 2000), and (2000, 4000).
The results are given in Figure 1.

6. CONCLUSION

We proposed in this paper the so-called a strongly convergent simutaneous cutter
method for finding the minimal norm solution to the common fixed point problem. We
proved that the proposed method converged strongly to the solution of the considered
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FIGURE 1. Behaviors of Algorithm 1 for three different sizes of (m,n) and
various error tolerances t.

problem under some suitable conditions on control sequence (δk)k≥1 and the sequence of
relaxation parameters (λk)k≥1. We showed in the numerical examples that the proposed
method with a suitably selected weight function achieved a superiority than the existing
method for both number of the iterations and the computational running times.
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APPENDIX 1 PARAMETER COMBINATIONS OF ALGORITHM 1

We start by investigating several parameter combinations, chosen as in Algorithm 1 by
setting (m,n) = (500, 1000) and utilizing the stopping criterion that either the number of
iterations exceeds 10000 or ∥xk−xk−1∥

∥xk∥+1 ≤ 10−5. We present the average number of itera-
tions and the average computational running time for different choices of parameters λk

and δk in Table 2.

TABLE 2. The average number of iterations and average computational
running time of Algorithm 1 for several choices of parameters λk ∈ (1, 2)

and δk = 1− δ
k+1 where δ ∈ (0, 1).

δ 0.1 0.5 1.0 1.5 1.6 1.7 1.8 1.9

λk = 0.1 2704 1192 569 629 643 657 673 688
(22.99) (10.36) (5.32) (5.37) (5.47) (5.56) (5.62) (5.82)

λk = 0.2 2703 1173 417 429 440 453 464 476
(22.17) (9.85) (3.62) (3.65) (3.68) (3.81) (3.85) (4.05)

λk = 0.3 2703 1167 357 340 348 358 367 376
(22.11) (9.69) (3.08) (2.87) (2.94) (3.10) (3.03) (3.10)

λk = 0.4 2703 1164 325 288 294 301 308 317
(22.06) (9.58) (2.81) (92.43) (2.44) (2.51) (2.53) (2.63)

λk = 0.5 2703 1162 307 251 257 263 269 275
(22.03) (9.51) (2.77) (2.11) (2.17) (2.16) (2.25) (2.29)

λk = 0.6 2703 1161 296 225 229 235 240 246
(22.04) (9.50) (2.50) (1.90) (1.94) (1.92) (1.98) (2.06)

λk = 0.7 2703 1160 289 204 208 212 218 222
(21.90) (9.46) (2.42) (1.75) (1.77) (1.74) (1.79) (1.86)

λk = 0.8 2703 1159 283 188 191 194 199 204
(22.24) (9.47) (2.37) (1.60) (1.61) (1.60) (1.64) (1.70)

λk = 0.9 2704 1159 280 175 177 180 184 189
(21.91) (9.48) (2.37) (1.49) (1.50) (1.49) (1.52) (1.56)

λk = 1.0 2704 1158 277 165 166 169 172 176
(21.92) (9.47) (2.31) (1.39) (1.40) (1.39) (1.42) (1.47)

λk = 1.1 2273 1158 275 156 157 160 163 166
(18.66) (9.41) (2.28) (1.31) (1.32) (1.32) (1.33) (1.37)

λk = 1.2 >10000 1158 273 149 150 152 155 158
- (9.43) (2.26) (1.25) (1.26) (1.25) (1.26) (1.31)

λk = 1.3 >10000 1158 271 143 144 146 148 152
- (9.37) (2.25) (1.20) (1.20) (1.19) (1.21) (1.24)

λk = 1.4 >10000 638 193 137 138 140 143 146
- (5.16) (1.59) (1.14) (1.16) (1.14) (1.17) (1.20)

λk = 1.5 >10000 737 205 134 135 137 139 142
- (5.99) (1.68) (1.13) (1.14) (1.12) (1.13) (1.16)

λk = 1.6 >10000 1543 217 131 132 134 137 139
- (14.69) (1.77) (1.09) (1.15) (1.10) (1.12) (1.13)

λk = 1.7 >10000 735 209 129 130 132 134 137
- (6.00) (1.74) (1.07) (1.08) (1.09) (1.10) (1.12)

λk = 1.8 >10000 3523 230 130 128 130 133 135
- (37.04) (1.88) (1.09) (1.07) (1.07) (1.08) (1.11)

λk = 1.9 >10000 4531 1221 131 129 129 132 135
- (47.11) (12.36) (1.12) (1.07) (1.05) (1.07) (1.11)

From Table 2, we observe that the combination of δk = 1 − 1.6
k+1 with the relaxation

parameter λk = 1.8 led to the fewest number of iterations (128 iterations) and the shortest
computational running time (1.07 seconds).
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APPENDIX 2 PARAMETER COMBINATIONS OF THE MODIFIED KRASNOSEL’SKIĬ-MANN
METHOD (1.3)

In this section, we present some parameter combinations of the modified Krasnosel’skiı̆-
Mann method (1.3). All experimental settings are the same as mentioned above.

TABLE 3. The average number of iterations and average computational
running time of the modified Krasnosel’skiı̆-Mann method (1.3) for sev-
eral choices of parameters λk ∈ (1, 2) and δk = 1− δ

k+1 where δ ∈ (0, 1)

δ 0.1 0.5 1.0 1.5 1.6 1.7 1.8 1.9

λk = 0.1 3009 2019 1950 1951 1949 1956 1965 1970
(26.31) (18.06) (17.87 ) (17.97 ) (17.75 ) (18.02 ) (18.13 ) (18.57 )

λk = 0.2 2870 1951 1858 1885 1903 1908 1911 1927
(24.29) (16.65) (16.24) (16.49) (17.11) (17.22) (16.78) (17.12)

λk = 0.3 2824 1853 1805 1866 1875 1879 1874 1871
(23.48) (15.59) (15.60) (16.24) (16.25) (16.68) (16.10) (16.49)

λk = 0.4 2797 1796 1753 1820 1833 1837 1842 1857
(23.00) (15.09) (15.15) (15.32) (15.53) (15.38) (15.76) (15.88)

λk = 0.5 2778 1742 1698 1806 1819 1827 1835 1832
(22.99) (14.55) (14.62) (15.48) (15.48) (15.49) (15.65) (15.91)

λk = 0.6 2764 1699 1682 1765 1781 1794 1811 1823
(22.70) (14.11) (14.19) (14.82) (14.99) (14.86) (15.35) (15.90)

λk = 0.7 2753 1663 1685 1731 1750 1761 1776 1786
(22.50) (14.24) (14.11) (14.45) (14.73) (14.83) (14.94) (15.06)

λk = 0.8 2745 1638 1669 1716 1726 1735 1749 1763
(22.39) (13.51) (14.06) (14.46) (14.68) (14.34) (15.03) (14.85)

λk = 0.9 2738 1617 1643 1714 1713 1723 1731 1739
(22.41) (13.54) (13.78) (14.34) (14.35) (14.23) (14.79) (14.59)

λk = 1.0 2734 1596 1618 1713 1718 1721 1721 1728
(22.19) (13.12) (13.56) (14.31) (14.36) (14.10) (14.40) (14.43)

λk = 1.1 2731 1579 1598 1707 1711 1721 1723 1724
(22.22) (12.99) (13.50) (14.18) (14.21) (14.17) (14.33) (14.68)

λk = 1.2 2728 1562 1580 1684 1702 1714 1719 1728
(22.11) (12.82) (13.20) (14.18) (14.16) (14.32) (14.37) (14.62)

λk = 1.3 2727 1544 1562 1661 1681 1698 1711 1717
(22.19) (12.82) (13.03) (13.76) (13.93) (13.86) (14.49) (14.22)

λk = 1.4 4464 1577 1542 1640 1658 1676 1693 1708
(36.00) (12.74) (12.72) (13.90) (13.82) (13.62) (14.13) (14.19)

λk = 1.5 6373 1969 1522 1620 1638 1654 1673 1688
(51.82) (15.86) (12.93) (13.37) (13.81) (13.47) (14.03) (14.01)

λk = 1.6 7321 2618 1507 1604 1619 1635 1651 1669
(58.70) (21.20) (12.25) (13.54) (13.34) (13.33) (13.71) (13.82)

λk = 1.7 7878 3696 1491 1588 1603 1617 1633 1648
(63.70) (29.78) (12.17) (13.07) (13.59) (13.26) (13.52) (13.62)

λk = 1.8 8243 5316 1475 1570 1587 1601 1615 1630
(66.90) (42.92) (12.26) (12.88) (13.13) (13.33) (13.34) (13.53)

λk = 1.9 8501 7021 1460 1555 1570 1587 1599 1613
(68.69) (57.09) (11.95) (12.57) (12.74) (12.89) (13.26) (13.58)

Table 3 displays the average number of iterations and average computational running
time for various choices of parameters λk and δk. The combination of δk = 1 − 1.0

k+1 and
λk = 1.6 achieved the best number of iterations and the shortest computational running
time of 12.25 seconds.
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