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Asymptotic properties of even-order functional differential
equations with deviating argument

B. BACULÍKOVÁ and J. DŽURINA

ABSTRACT. In this paper, new effective technique for investigation of the higher order differential equation

(E) y(n)(t) = p(t)y(τ(t)).

is established. We offer new criteria for excluding certain types of nonoscillatory solutions which improve all
existing results from the literature. Examples are provided to illustrate the importance of the main results.

1. INTRODUCTION

In this article, we consider the linear differential equation with deviating argument of the
form

(E) y(n)(t) = p(t)y(τ(t)),

where n is even and the following conditions hold
(H1) p(t) ∈ C([t0,∞)), p(t) > 0,
(H2) τ(t) ∈ C1([t0,∞)), τ ′(t) > 0, lim

t→∞
τ(t) = ∞.

By a proper solution of Eq. (E) we mean a function y : [Ty,∞) → R which satisfies (E)
for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We make the standing
hypothesis that (E) does possess proper solutions.

The oscillatory nature of the solutions is understood in the usual way, that is, a proper
solution is termed oscillatory or nonoscillatory according to whether it does or does not
have infinitely many zeros.

In recent years, there has been increasing interest in studying oscillation of solutions
to different classes of differential equations due to the fact that they have numerous ap-
plications in natural sciences and engineering, see, for instance, the papers [16] – [17] for
models from mathematical biology where oscillation and/or delay actions may be formu-
lated by means of cross-diffusion terms. The problem of establishing oscillation criteria
for differential equations with deviating arguments has been a very active research area
over the past decades (see [1]–[14] and [19]–[15] ) and several references and reviews of
known results can be found in the monographs by Agarwal et al. [1], Došly and Řehák
[5] and Ladde et al. [15].

By the well-known result of Kiguradze [7] (Lemma 1), one can easily classify the pos-
sible nonoscillatory solutions of (E). As a matter of fact, the set N of all nonoscillatory
solutions of (E) has the following decomposition

N = N0 ∪N2 ∪ · · · ∪ Nn,
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Corresponding author: Jozef Džurina; jozef.dzurina@tuke.sk

15



16 B. Baculı́ková and J. Džurina

where y(t) ∈ Nℓ means that there exists t0 ≥ Ty such that

y(t)y(i)(t) > 0 on [t0,∞) for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 on [t0,∞) for ℓ ≤ i ≤ n.
(1.1)

Such a y(t) is said to be a solution of degree ℓ.
Following the classical results of Kiguradze [7], we say that equation (E) enjoys prop-

erty (B) if N = N0 ∪Nn. This definition formulates the fact that (E) with τ(t) ≡ t always
possesses solutions of degrees 0 and n, that is N0 ̸= ∅ and Nn ̸= ∅. We recall excellent
criteria of Koplatadze et al. [11]:

Theorem A. If τ(t) ≤ t and

lim sup
t→∞

{
τ(t)

∫ ∞

t

sn−3τ(s)p(s) ds+

∫ t

τ(t)

s(τ(s))n−2p(s) ds

+
1

τ(t)

∫ τ(t)

0

s2(τ(s))n−2p(s) ds

}
> 2(n− 2)!,

(1.2)

then(E) has property (B), i.e., N = N0 ∪Nn.

Theorem B. If τ(t) ≥ t and

lim sup
t→∞

{
τ(t)

∫ ∞

t

sn−3τ(s)p(s) ds+

∫ τ(t)

t

sn−2τ(s)p(s) ds

+
1

τ(t)

∫ t

0

sn−2(τ(s))2p(s) ds

}
> 2(n− 2)!,

(1.3)

then(E) has property (B), i.e., N = N0 ∪Nn.

The situation for (E) with τ(t) ̸≡ t is different. In fact, it may happen that N0 = ∅ or
Nn = ∅ when the deviation |t − τ(t)| is sufficiently large. This remarkable fact was first
observed by Ladas et al. [15]. Later Koplatadze and Chanturia [12] contributed to the
subject and formulated the following results:

Theorem C. If τ(t) ≤ t and

(1.4) lim sup
t→∞

∫ t

τ(t)

(s− τ(t))n−1p(s) ds > (n− 1)!,

then(E) does not allow solutions of degree 0, i.e. N0 = ∅.

Theorem D. If τ(t) ≥ t and

(1.5) lim sup
t→∞

∫ τ(t)

t

(τ(t)− s)n−1p(s) ds > (n− 1)!,

then(E) does not allow solutions of degree n, i.e. Nn = ∅.

So combining Theorem A together with Theorem C we see that N = Nn for (E), while
joining Theorem B together with Theorem D we obtain that N = N0.

Our aim in this work is to significantly improve the above mentioned results and the
progress will be demonstrated via set of illustrative examples in which we shall compare
our results with these presented in Theorems C and D.
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2. MAIN RESULTS

Condition (H2) implies that there exists the inverse function τ−1(t) and we can intro-
duce the auxiliary function ξ(t) ∈ C1([t0,∞)) in this way

(2.6) ξ(ξ(t)) = τ−1(t).

We present some basic properties of ξ(t).

Lemma 2.1. Let τ(t) < t. Then

ξ(t) > t, ξ(ξ(τ(t))) = t, ξ(τ(t)) = τ(ξ(t)) = ξ−1(t).

We are going to establish sufficient conditions for N0 = ∅ of (E). For our next conside-
ration we will use the notation

P1(t) =

∫ ξ(t)

t

p(s)
(s− t)n−1

(n− 1)!
ds,

P2(t) =

∫ τ−1(t)

ξ(t)

p(s)
(s− t)n−1

(n− 1)!
ds,

P3(t) =

∫ τ−1(ξ(t))

τ−1(t)

p(s)
(s− t)n−1

(n− 1)!
ds.

(2.7)

Theorem 2.1. Assume that τ(t) < t and there exists a function ξ(t) ∈ C1([t0,∞)) satisfying
(2.6). If

lim sup
t→∞

[
P1(t)P1(ξ

−1(t)) + P1(t)P3(ξ
−1(t))

(1− P2(t))(1− P2(ξ−1(t)))

+
P3(t)P1(ξ(t))

(1− P2(t))(1− P2(ξ(t)))

]
> 1,

(2.8)

then N0 = ∅.

Proof. Assume on the contrary that y(t) is an eventually positive solution of (E) such that
y(t) ∈ N0. An integration of (E) from t to ∞ yields

−y(n−1)(t) ≥
∫ ∞

t

p(s)y(τ(s)) ds.

Integrating again from t to ∞ and changing the order of integration, we have

y(n−2)(t) ≥
∫ ∞

t

∫ ∞

u

p(s)y(τ(s)) dsdu =

∫ ∞

t

p(s)y(τ(s))(s− t) ds.

Repeating this procedure, we are led to

(2.9) y(t) ≥
∫ ∞

t

p(s)y(τ(s))
(s− t)n−1

(n− 1)!
ds.

Employing function ξ(t) to the above inequality gives

y(t) ≥
∫ ξ(t)

t

p(s)y(τ(s))
(s− t)n−1

(n− 1)!
ds+

∫ τ−1(t)

ξ(t)

p(s)y(τ(s))
(s− t)n−1

(n− 1)!
ds

+

∫ τ−1(ξ(t))

τ−1(t)

p(s)y(τ(s))
(s− t)n−1

(n− 1)!
ds.

(2.10)

Since y(t) is decreasing function, we are led to

y(t) ≥ y(ξ−1(t))P1(t) + y(t)P2(t) + y(ξ(t))P3(t),
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which is

(2.11) y(t) ≥ 1

1− P2(t)

[
y(ξ−1(t))P1(t) + y(ξ(t))P3(t)

]
.

Setting t = ξ−1(t) and t = ξ(t), we obtain

(2.12) y(ξ−1(t)) ≥ 1

1− P2(ξ−1(t))

[
y(τ(t))P1(ξ

−1(t)) + y(t)P3(ξ
−1(t))

]
and

(2.13) y(ξ(t)) ≥ 1

1− P2(ξ(t))

[
y(t)P1(ξ(t)) + y(τ−1(t))P3(ξ(t))

]
≥ P1(ξ(t))

1− P2(ξ(t))
y(t),

respectively. Combining (2.12), (2.13) and (2.11), one gets

y(t) ≥ 1

1− P2(t)

[
P1(t)

1− P2(ξ−1(t))

[
y(τ(t))P1(ξ

−1(t)) + y(t)P3(ξ
−1(t))

]
+

P3(t)

1− P2(ξ(t))
y(t)P1(ξ(t))

]
which in view of y(τ(t)) ≥ y(t), leads to

y(t) ≥ y(t)

[[
P1(t)P1(ξ

−1(t)) + P1(t)P3(ξ
−1(t))

]
(1− P2(t))(1− P2(ξ−1(t)))

+
P3(t)P1(ξ(t))

(1− P2(t))(1− P2(ξ(t)))

]
.

This contradicts (2.8) and we conclude that N0 = ∅. □

The following criteria immediately result from the proof of Theorem 2.1.

Corollary 2.1. If P2(t) > 1, then N0 = ∅.

Corollary 2.2. Let Pi(t) ≥ P ∗
i , for i = 1, 2, 3, where P ∗

i are positive constants. If

(2.14)
1

(1− P ∗
2 )

2

[
(P ∗

1 )
2 + 2P ∗

1 P
∗
3

]
> 1,

then N0 = ∅.

Remark 2.1. The assertion of Theorem 2.1 can be reformulated as every bounded solution
is oscillatory.

Now we provide couple of illustrative examples to show the progress that Theorem 2.1
yields in regard of Theorem C.

Example 2.1. Consider even-order differential equation with delay argument of the form

(Ex1) y(n)(t) = pn0y(t− nτ0),

where p0 > 0, τ0 > 0.
Since τ(t) = t− nτ0, we have τ−1(t) = t+ nτ0 and auxiliary function ξ(t) = t+ n

2 τ0. It
is easy to verify that

P1(t) =

∫ t+n
2 τ0

t

pn0
(s− t)n−1

(n− 1)!
ds =

pn0n
nτn0

2nn!
= P ∗

1 ,

P2(t) =

∫ t+nτ0

t+n
2 τ0

pn0
(s− t)n−1

(n− 1)!
ds =

pn0n
nτn0
n!

(
1−

(
1

2

)n)
= P ∗

2 ,
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P3(t) =

∫ t+ 3n
2 τ0

t+nτ0

pn0
(s− t)n−1

(n− 1)!
ds =

pn0n
nτn0
n!

((
3

2

)n

− 1

)
= P ∗

3 .

Consequently condition (2.14) takes the form(
pn0n

nτn0
2nn!

)2

+ 2
pn0n

nτn0
2nn!

pn0n
nτn0
n!

((
3

2

)n

− 1

)
>

[
1− pn0n

nτn0
n!

(
1−

(
1

2

)n)]2
,

which implies that

(2.15) pn0 τ
n
0 >

2n · n!
(2 · 3n − 22n)nn

(√
2 · 3n − 2n+1 + 1− 2n + 1

)
and by Corollary 2.2 condition (2.15) guarantees that N0 = ∅. On the other hand, condition
(1.2) holds true, therefore we conclude that every nonoscillatory solution is of degree n,
i.e., N = Nn.

To see the progress which our criteria bring, let us consider n = 4 (n = 6). The condition
(2.15) is fulfilled for

p0τ0 > 0.488 (p0τ0 > 0.4636)

while (1.4) requires p0τ0 > 0.5533 (p0τ0 > 0.4990).

Example 2.2. We consider the even-order Euler delayed differential equation

(Ex2) y(n)(t) =
p0
tn

y(λt), p0 > 0, λ ∈ (0, 1).

First we observe that (1.2) reduces to

(2.16) p0
(
λ2 − λn−2 lnλ+ λn−3

)
> 2(n− 2)!.

Since τ(t) = λt, then τ−1(t) = t
λ and ξ(t) = t√

λ
. It is easy to verify that

P1(t) =
p0

(n− 1)!

[
ln

1√
λ
−

n−1∑
i=1

(1−
√
λ)n−i

n− i

]
= P ∗

1 ,

P2(t) =
p0

(n− 1)!

[
ln

1√
λ
−

n−1∑
i=1

(1− λ)n−i − (1−
√
λ)n−i

n− i

]
= P ∗

2 ,

P3(t) =
p0

(n− 1)!

[
ln

1√
λ
−

n−1∑
i=1

(1− λ
√
λ)n−i − (1− λ)n−i

n− i

]
= P ∗

3 .

So condition (2.14) with calculated constants P ∗
1 , P

∗
2 , P

∗
3 together with (2.16) implies that

every nonoscillatory solution of (Ex2) is of degree n. To see quality of our criterion, we
consider (Ex2) with λ = 0.5 and n = 4 (n = 6). The condition (2.14), which guaranties that
N0 = ∅ is fulfilled for

p0 > 143 (p0 > 17200)

while (1.4) requires p0 > 227 (p0 > 26000).

Now we offer sufficient conditions for Nn = ∅. Condition (H2) implies that there exists
the inverse function τ−1(t) and we can introduce the auxiliary function χ(t) ∈ C1([t0,∞))
in this way

(2.17) χ(χ(t)) = τ−1(t).

We present some basic properties of χ(t).
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Lemma 2.2. Let τ(t) > t. Then

χ(t) < t, χ(χ(τ(t))) = t, χ(τ(t)) = τ(χ(t)) = χ−1(t).

We shall use the notation

Q1(t) =

∫ τ−1(t)

τ−1(χ(t))

p(s)
(t− s)n−1

(n− 1)!
ds,

Q2(t) =

∫ χ(t)

τ−1(t)

p(s)
(t− s)n−1

(n− 1)!
ds,

Q3(t) =

∫ t

χ(t)

p(s)
(t− s)n−1

(n− 1)!
ds.

(2.18)

Theorem 2.2. Assume that τ(t) ≥ t and there exists a function χ(t) ∈ C1([t0,∞)) satisfying
(2.17). If

lim sup
t→∞

[
Q3(t)Q1(χ

−1(t)) +Q3(t)Q3(χ
−1(t))

(1−Q2(t))(1−Q2(χ−1(t)))

+
Q1(t)Q3(χ(t))

(1−Q2(t))(1−Q2(χ(t)))

]
> 1,

(2.19)

then Nn = ∅.

Proof. Assume on the contrary that (E) possesses an eventually positive solution y(t) ∈
Nn. An integration of (E) from t1 to t yields

y(n−1)(t) ≥
∫ t

t1

p(s)y(τ(s)) ds.

Integrating the above inequality from t1 to t and swapping order of integration, we obtain

y(n−2)(t) ≥
∫ t

t1

p(s)y(τ(s))(t− s) ds.

Repeating this approach n− 3 times, we finally obtain

y(t) ≥
∫ t

t1

p(s)y(τ(s))
(t− s)n−1

(n− 1)!
ds.

Employing auxiliary function χ(t), we get

y(t) ≥
∫ τ−1(t)

τ−1(χ(t))

p(s)y(τ(s))
(t− s)n−1

(n− 1)!
ds+

∫ χ(t)

τ−1(t)

p(s)y(τ(s))
(t− s)n−1

(n− 1)!
ds

+

∫ t

χ(t)

p(s)y(τ(s))
(t− s)n−1

(n− 1)!
ds.

(2.20)

Taking into account that y(t) is an increasing function, we have

(2.21) y(t) ≥ Q1(t)y(χ(t)) +Q2(t)y(t) +Q3(t)y(χ
−1(t)).

Substituting in the last inequality t = χ(t) and thereafter t = χ−1(t) and assuming that
1−Q2(t) is eventually positive, we obtain

y(χ(t)) ≥ 1

1−Q2(χ(t))

[
Q1(χ(t))y(τ

−1(t)) +Q3(χ(t))y(t)
]

≥ Q3(χ(t))

1−Q2(χ(t))
y(t)

(2.22)
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and

(2.23) y(χ−1(t)) ≥ 1

1−Q2(χ−1(t))

[
Q1(χ

−1(t))y(t) +Q3(χ
−1(t))y(τ(t))

]
,

respectively. Setting (2.22) and (2.23) into (2.21) and using that y(t) is an increasing func-
tion, we get

y(t) ≥ 1

1−Q2(t)

[
Q1(t)Q3(χ(t))

1−Q2(χ(t))
y(t)

+
Q3(t)

1−Q2(χ−1(t))

[
y(t)Q1(χ

−1(t)) + y(t)Q3(χ
−1(t))

]]
,

which contradicts to (2.19) and we conclude that Nn = ∅. □

The following criteria ensue immediately from the proof of Theorem 2.2.

Corollary 2.3. If Q2(t) > 1, then Nn = ∅.

Corollary 2.4. Let Qi(t) > Q∗
i , for i = 1, 2, 3, where Q∗

i are positive constants. Assume that

(2.24)
1

(1−Q∗
2)

2

[
(Q∗

3)
2 + 2Q∗

1Q
∗
3

]
> 1.

Then Nn = ∅.

Theorem 2.3. Assume that τ(t) ≥ t and there exists a function χ(t) ∈ C1([t0,∞)) satisfying
(2.17) . If (2.19) and (1.3) hold, then every unbounded solution is oscillatory.

Example 2.3. Consider even-order differential equation with advanced argument of the
form

(Ex3) y(n)(t) = pn0y(t+ nτ0),

where p0 > 0, τ0 > 0.
For equation (Ex3) we have τ(t) = t + nτ0, and thus τ−1(t) = t − nτ0, χ(t) = t − n

2 τ0.

χ−1(t) = t+ n
2 τ0. Some computation yields

Q1(t) =

∫ t−nτ0

t− 3
2nτ0

pn0
(t− s)n−1

(n− 1)!
ds =

pn0n
nτn0
n!

((
3

2

)n

− 1

)
= Q∗

1,

Q2(t) =

∫ t−n
2 τ0

t−nτ0

pn0
(t− s)n−1

(n− 1)!
ds =

pn0n
nτn0
n!

(
1−

(
1

2

)n)
= Q∗

2,

Q3(t) =

∫ t

t−n
2 τ0

pn0
(t− s)n−1

(n− 1)!
ds =

pn0n
nτn0

n!2n
= Q∗

3.

Settings Q∗
1, Q

∗
2, Q

∗
3 into condition (2.24), we get(

pn0n
nτn0

2nn!

)2

+ 2
pn0n

nτn0
2nn!

pn0n
nτn0
n!

((
3

2

)n

− 1

)
>

[
1− pn0n

nτn0
n!

(
1−

(
1

2

)n)]2
,

which implies that

(2.25) pn0 τ
n
0 >

2n · n!
(2 · 3n − 22n)nn

(√
2 · 3n − 2n+1 + 1− 2n + 1

)
.

By Corollary 2.4 condition (2.25) guarantees that Nn = ∅ and moreover it is easy see
that (1.3) holds true and we conclude that every nonoscillatory solution of (Ex3) is of
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degree n, i.e., N = Nn. To see the improvement which our criteria brings, let us consider
n = 4 (n = 6). The condition (2.25) is fulfilled for

p0τ0 > 0.4880 (p0τ0 > 0.4636)

while (1.5) requires p0τ0 > 0.5533 (p0τ0 > 0.4990).

Example 2.4. We consider the even-order advanced Euler differential equation

(Ex4) y(n)(t) =
p0
tn

y(λt), p0 > 0, λ > 1.

It is easy to see that (1.3) reduces to

(2.26) p0λ (2 + lnλ) > 2(n− 2)!.

Now τ(t) = λt, so that τ−1(t) = t
λ , χ(t) = t√

λ
and χ−1(t) =

√
λ t. Consequently,

Q1(t) =
p0

(n− 1)!

[
ln

1√
λ
+

n−1∑
i=1

(−1)i(λ− 1)n−i − (λ
√
λ− 1)n−i

n− i

]
= Q∗

1,

Q2(t) =
p0

(n− 1)!

[
ln

1√
λ
+

n−1∑
i=1

(−1)i(
√
λ− 1)n−i − (λ− 1)n−i

n− i

]
= Q∗

2,

Q3(t) =
p0

(n− 1)!

[
ln

1√
λ
+

n−1∑
i=1

(−1)i+1(
√
λ− 1)n−i

n− i

]
= Q∗

3.

By Theorem 3 condition (2.24) together with (2.26) implies that every nonoscillatory so-
lution of (Ex4) is of degree 0 (every unbounded solution is oscillatory). To show the im-
provement of our criterion, we consider (Ex4) with λ = 1.5 and n = 4 (n = 6). The
condition (2.24), which guaranties Nn = ∅ is fulfilled for

p0 > 317 (p0 > 41750)

while (1.5) requires p0 > 536 (p0 > 65700).
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KOŠICE, SLOVAKIA

Email address: blanka.baculikova@tuke.sk
Email address: jozef.dzurina@tuke.sk


