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Approximating solutions of a split fixed point problem of
demicontractive operators

LI-JUN ZHU1 , JEN-CHIH YAO2 and YONGHONG YAO3

ABSTRACT. The concept of demicontractive operators introduced by Ştefan Măruşter is widely used in ap-
plication and has been investigated by many scholars. The purpose of this paper is to continue to survey iter-
ative methods for solving the split problem relevant to demicontractive operators. With the help of fixed point
techniques, we construct an iterative sequence for solving the split fixed point problem in which three demi-
contractive operators are involved. Strong convergence result is obtained under several additional conditions.
Finally, two numerical examples are given to illustrate the performance of the algorithm.

1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces with inner ⟨·, ·⟩ and norm ∥ · ∥. Let A : H1 →
H2 be a nonzero bounded linear operator and A∗ be the adjoint operator of A. Recall that
the split feasibility problem is to find a point u such that

u ∈ C and Au ∈ Q,(1.1)

where C ⊂ H1 and Q ⊂ H2 are two nonempty closed convex sets.
The split feasibility problem (1.1) was introduced by Censor and Elfving [4] for model-

ing inverse problems which arise from phase retrievals and in medical image reconstruc-
tion ([2]). A special case of the split feasibility problem (1.1) is the convexly constrained
linear inverse problem

u ∈ C and Au = b

which has extensively been investigated in the literature using the projected Landweber
iterative method [10].

To solve (1.1), a popular technique is to use projection method which generates a se-
quence {un+1} by

un+1 = PC(un − µA∗(I − PQ)Aun), n ≥ 1.(1.2)

Censor et. al [5] noted that the intensity-modulated radiation therapy can mathematically
be formulated as a multiple-sets split feasibility problem which is to find a point u with
the property

u ∈ ∩s
i=1Ci and Au ∈ ∩t

j=1Qj ,(1.3)

where Ci ⊂ H1, i = 1, · · · , s and Qj ⊂ H2, j = 1, · · · , t are closed convex sets.
The multiple-sets split feasibility problem (1.3) extends the well-known convex feasi-

bility problem as well as the split feasibility problem. A nature idea is to use algorithm
(1.2) to solve the multiple-sets split feasibility problem (1.3) by setting C = ∩s

i=1Ci and
Q = ∩t

j=1Qj . However, the computation of P∩s
i=1Ci

may be very difficult due to the
complexity of ∩s

i=1Ci. Note that calculating PCi , i = 1, · · · , s are easier than calculating
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P∩s
i=1Ci

. With the help of this fact, several valuable projection algorithms were proposed
for solving the multiple-sets split feasibility problem (1.3), see [11, 22–24].

Observe that all projection algorithms have to compute the orthogonal projection PC

which is a special case of directed operators. Afterwards, Censor and Segal [6] proposed
a general split fixed point problem of finding a point u ∈ H1 such that

(1.4) u ∈ Fix(f) and Au ∈ Fix(g),

where Fix(f) := {x ∈ H1 : f(x) = x} and Fix(g) := {y ∈ H2 : g(y) = y} are the fixed
point sets of two directed operators f : H1 → H1 and g : H2 → H2, respectively.

In algorithm (1.2), by replacing PC and PQ by f and g, respectively, Censor and Segal
[6] obtained the following algorithm for solving the split fixed point problem (1.4):

(1.5) un+1 = f(un − µA∗(I − g)Aun), n ≥ 1,

where f and g are two directed operators.
Moudafi [14] further extended f and g from directed operators to demicontractive op-

erators and proposed the following iterate for finding a solution of (1.4): for an initial
guess u0 ∈ H1,

(1.6)

{
vn = un − µA∗(I − g)Aun,

un+1 = (1− βn)vn + βnf(vn), n ≥ 0,

where f and g are κ-demicontractive operators, {βn} is a sequence in (0, 1) and µ ∈
(0, 1−κ

∥A∥2 ) is a constant.
In [20], Wang investigated the following iterate for solving (1.4): let u0 ∈ H1 be an

initial point, for given un, if ∥(un − f(un)) +A∗(I − g)Aun∥ ≠ 0, compute{
µn = ∥∥un−f(un)∥2+∥(I−g)Aun∥2

∥(un−f(un))+A∗(I−g)Aun∥2 ,

un+1 = un − µn[(un − f(un)) +A∗(I − g)Aun],
(1.7)

if ∥(un−f(un))+A∗(I−g)Aun∥ = 0, then stop; where f and g are two directed operators.

Remark 1.1. There are some fixed point techniques applied in the iterates (1.5)-(1.7). In
fact, solving (1.4) can be translated to solve the fixed point equation x = f(x − µA∗(I −
g)Ax) for all µ > 0. Applying this fixed point equation, one can generate an iterate via the
forms of (1.5) and (1.6) to solve the split problem (1.4).

On the other hand, finding a solution of (1.4) means to find a fixed point of the operator
I−µ[(I− f)+A∗(I− g)A] for all µ > 0. By using this relation, we can construct an iterate
(1.7) for solving (1.4).

Further, according to the fixed point equation x = f(x)− µA∗(I − g)Ax(µ > 0), Zheng
et. al. [25] proposed the following iterate for finding a solution of (1.4): for an initial guess
u0 ∈ H1,

(1.8) un+1 = (1− σ)un + σ[f(un)− µA∗(I − g)Aun], n ≥ 0,

where f and g are demicontractive operators.
Note that the directed operator is a special case of the demicontractive operator which

was initially introduced by Ştefan Măruşter. The class of demicontractive operators is
fundamental because many common types of operators arising in optimization belong to
this class, see for example [13] and references therein. There are many iterative methods
and widely applications relevant to the demicontractive operators, see for example [1, 3,
7–9, 12, 15–19].
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Motivated by the related work of the multiple-sets split feasibility problem and the split
fixed point problem, in this paper, we consider the following split fixed point problem of
finding a point u ∈ H1 such that

(1.9) u ∈ Fix(f) ∩ Fix(S) and Au ∈ Fix(g),

where f, S : H1 → H1 and g : H2 → H2 are three demicontractive operators. Here, the
solution set of (1.9) is denoted by Γ, namely, Γ := {x ∈ H1 : x ∈ Fix(f)∩Fix(S) and Ax ∈
Fix(g)}.

The main purpose of this paper is to construct an iterative algorithm for finding a solu-
tion of the split fixed point problem (1.9). By utilizing fixed point technique, we suggest
an iterative sequence for approximating a solution of (1.9). Strong convergence analysis
of the proposed iterate is given provided some additional conditions are satisfied.

2. PRELIMINARIES

In this section, we give some useful notation and lemmas. Let H be a real Hilbert space.
Let {un} be a sequence in H . Throughout, we use the following symbols: (i) un ⇀ u
indicates that un converges weakly to u as n → ∞; (ii) un → u indicates that un converges
strongly to u as n → ∞; (iii) ωw(un) means the weak ω-limit set of the sequence {un},
namely, ωw(un) := {z : there exists a subsequence {uni

} of {un} such that uni
⇀ z(i →

∞)}.
Let φ : H → H be an operator. Recall that

• φ is said to be directed if

(2.10) ∥φ(x)− p∥2 ≤ ∥x− p∥2 − ∥x− φ(x)∥2,

∀x ∈ H and ∀p ∈ Fix(φ).
• φ is said to be κ-demicontractive if there exists a constant κ ∈ [0, 1) such that

(2.11) ∥φ(x)− p∥2 ≤ ∥x− p∥2 + κ∥x− φ(x)∥2,

∀x ∈ H and ∀p ∈ Fix(φ).
• φ is said to be demiclosed if un ⇀ u and φ(un) → v implies that φ(u) = v.

Note that (2.10)⇒(2.11) implies that a directed operator must be a demicontractive op-
erator. It is easy to verify that the inequality (2.11) is equivalent the following inequality

(2.12) ⟨x− φ(x), x− p⟩ ≥ 1− κ

2
∥x− φ(x)∥2, κ ∈ [0, 1),

∀x ∈ H and ∀p ∈ Fix(φ).
Let Γ be a nonempty closed convex subset of H . Let PΓ be the orthogonal projection

from H onto Γ, namely,

PΓ(u) := argmin
x∈Γ

∥x− u∥, u ∈ H.

It is well known that PΓ satisfies the following characteristic inequality, for u ∈ H ,

(2.13) ⟨u− PΓ(u), x− PΓ(u)⟩ ≤ 0, ∀x ∈ Γ.

The following conclusion is well-known.

Lemma 2.1. In a real Hilbert space H , we have

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2, ∀x, y ∈ H,(2.14)

and

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.(2.15)
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Lemma 2.2 ([8]). Let H be a real Hilbert space. Let φ : H1 → H1 be a κ-demicontractive
operator. Let δ ∈ (0, 1 − κ) be a constant. For all x ∈ H and p ∈ Fix(φ), the following result
holds

∥(1− δ)x+ δφ(x)− p∥2 ≤ ∥x− p∥2 − δ(1− κ− δ)∥φ(x)− x∥2.

Lemma 2.3 ([21]). Let {bn}, {γn} and {tn} be three real number sequences. Suppose the follow-
ing conditions are satisfied:

(i) bn ≥ 0 and γn ∈ [0, 1] for all n ≥ 0;
(ii)

∑∞
n=0 γn = +∞ and lim supn→∞ tn ≤ 0;

(iii) bn+1 ≤ (1− γn)bn + γntn for all n ≥ 0.
Then, limn→∞ bn = 0.

3. MAIN RESULTS

In this section, we state our main results.
Let H1 and H2 be two real Hilbert spaces. Let f, S : H1 → H1 be two demicon-

tractive operators with coefficients κ1 and κ2, respectively. Let g : H2 → H2 be a κ3-
demicontractive operator. Let A : H1 → H2 be a nonzero bounded linear operator and A∗

be the adjoint operator of A. Throughout, suppose Γ ̸= ∅.
Let µ, τ and δ be three constants satisfying τ ∈ (0, 1−κ1

2 ), µ ∈ (0, 1−κ3

2τ∥A∥2 ) and δ ∈
(0, 1− κ2). Let {γn} be a sequence in [0, 1] satisfying limn→∞ γn = 0 and

∑
n γn = ∞.

Next, we first present an iterative algorithm for solving the split fixed point problem
(1.9).
Algorithm 3.1. Let u ∈ H1 be a fixed point and u0 be an initial point in H1. Let the
sequence {un} be defined by the following way

wn = f(un)− µA∗(I − g)Aun,(3.16)
vn = (1− τ)un + τwn,(3.17)
zn = (1− δ)vn + δSvn,(3.18)
un+1 = γnu+ (1− γn)zn, n ≥ 0.(3.19)

To demonstrate the convergence of Algorithm 3.1, we need the following lemma which
can be found in [25].

Lemma 3.4 ([25]). x ∈ Fix(f) and Ax ∈ Fix(g) if and only if x ∈ Fix(f − µA∗(I − g)A) for
all µ > 0.

Lemma 3.5. The sequence {un} generated by Algorithm 3.1 is bounded.

Proof. Let p ∈ Γ. Then, p = f(p) = Sp and Ap = g(Ap). Utilizing Lemma 3.4, we have
p = f(p)− µA∗(I − g)Ap for all µ > 0. From (2.14) and (3.5), we have

∥vn − p∥2 = ∥un − p− τ(un − wn)∥2

= ∥un − p∥2 − 2τ⟨un − p, un − wn⟩+ τ2∥un − wn∥2.
(3.20)

Next, we estimate ∥un − wn∥2 and ⟨un − p, un − wn⟩. By (3.16), we obtain

∥un − wn∥2 = ∥un − f(un) + µA∗(I − g)Aun∥2

≤ (∥un − f(un)∥+ µ∥A∗(I − g)Aun∥)2

≤ 2∥un − f(un)∥2 + 2µ2∥A∥2∥(I − g)Aun∥2.
(3.21)

Since f is κ1-demicontractive, from (2.12), we derive

⟨un − p, un − f(un)⟩ ≥
1− κ1

2
∥un − f(un)∥2.(3.22)
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Similarly, using the demicontraction of g, we receive

⟨Aun −Ap, (I − g)Aun⟩ ≥
1− κ3

2
∥(I − g)Aun∥2.(3.23)

Taking into account (3.16), (3.22) and (3.23), we have

⟨un − p, un − wn⟩ = ⟨un − p, un − f(un)⟩+ ⟨un − p, µA∗(I − g)Aun⟩
= ⟨un − p, un − f(un)⟩+ µ⟨Aun −Ap, (I − g)Aun⟩

≥ 1− κ1

2
∥un − f(un)∥2 +

µ(1− κ3)

2
∥(I − g)Aun∥2.

(3.24)

Substituting (3.21) and (3.24) into (3.20), we deduce

∥vn − p∥2 ≤ ∥un − p∥2 − τ(1− κ1)∥un − f(un)∥2 − τµ(1− κ3)∥(I − g)Aun∥2

+ 2τ2∥un − f(un)∥2 + 2τ2µ2∥A∥2∥(I − g)Aun∥2

= ∥un − p∥2 − τ(1− κ1 − 2τ)∥un − f(un)∥2

− τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aun∥2

≤ ∥un − p∥2.

(3.25)

Applying Lemma 2.2 to (3.18) to derive

∥zn − p∥2 = ∥(1− δ)vn + δSvn − p∥2

≤ ∥vn − p∥2 − δ(1− δ − κ2)∥Svn − vn∥2

≤ ∥vn − p∥2.
(3.26)

By virtue of (3.19), (3.25) and (3.26), we have

∥un+1 − p∥ = ∥γn(u− p) + (1− γn)(zn − p)∥
≤ γn∥u− p∥+ (1− γn)∥zn − p∥
≤ γn∥u− p∥+ (1− γn)∥un − p∥
≤ · · ·
≤ max{∥u− p∥, ∥u0 − p∥}.

Thus, the sequences {un}, {vn}, {zn} are bounded. □

Lemma 3.6. Suppose that I − f , I − S and I − g are all demiclosed at zero. Then, ωw(un) ⊂ Γ.

Proof. By (2.15) and (3.19), we obtain

∥un+1 − p∥2 = ∥γn(u− p) + (1− γn)(zn − p)∥2

≤ (1− γn)∥zn − p∥2 + 2γn⟨u− p, un+1 − p⟩.
(3.27)

Combining (3.25) and (3.26), we attain

∥zn − p∥2 ≤ ∥un − p∥2 − τ(1− κ1 − 2τ)∥un − f(un)∥2

− τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aun∥2

− δ(1− δ − κ2)∥Svn − vn∥2.
(3.28)
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Substituting (3.28) into (3.27), we have

∥un+1 − p∥2 ≤ (1− γn)∥un − p∥2 − (1− γn)τ(1− κ1 − 2τ)∥un − f(un)∥2

− (1− γn)τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aun∥2

− (1− γn)δ(1− δ − κ2)∥Svn − vn∥2 + 2γn⟨u− p, un+1 − p⟩

= (1− γn)∥un − p∥2 + γn

{
− (1− γn)τ(1− κ1 − 2τ)

∥un − f(un)∥2

γn

− (1− γn)τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aun∥2

γn

− (1− γn)δ(1− δ − κ2)
∥Svn − vn∥2

γn
+ 2⟨u− p, un+1 − p⟩

}
.

(3.29)

For all n ≥ 0, write bn = ∥un − p∥2 and

tn = 2⟨u− p, un+1 − p⟩ − (1− γn)τ(1− κ1 − 2τ)
∥un − f(un)∥2

γn

− (1− γn)τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aun∥2

γn

− (1− γn)δ(1− δ − κ2)
∥Svn − vn∥2

γn
.

(3.30)

According to (3.29), we have

bn+1 ≤ (1− γn)bn + γntn.(3.31)

Now, we show that lim supn→∞ tn is bounded. First, we note that

tn ≤ 2⟨u− p, un+1 − p⟩ ≤ 2∥u− p∥∥un+1 − p∥

which implies that lim supn→∞ tn < +∞. Next, we prove lim supn→∞ tn ≥ −1. If not so,
there is a positive integer n0 such that tn < −1 for all n ≥ n0. Take into account of (3.31),
we have bn+1 ≤ bn − γn when n ≥ n0. If follows that bn+1 ≤ bn0

−
∑n

i=n0
γi. So,

lim sup
n→∞

bn+1 ≤ bn0
− lim sup

n→∞

n∑
i=n0

γi = −∞,

which is impossible. Thus, lim supn→∞ tn is bounded. At the same time, the sequence
{un} is bounded. Then, we can select a common subsequence {nk} ⊂ {n} such that
unk

⇀ u∗ and

lim sup
n→∞

tn = lim
k→∞

tnk

= lim
k→∞

{
2⟨u− p, unk+1 − p⟩ − (1− γnk

)τ(1− κ1 − 2τ)
∥unk

− f(unk
)∥2

γnk

− (1− γnk
)τµ(1− κ3 − 2τµ∥A∥2)∥(I − g)Aunk

∥2

γnk

− (1− γnk
)δ(1− δ − κ2)

∥Svnk
− vnk

∥2

γnk

}
.

(3.32)
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Since the sequence {unk+1} is bounded, without loss of generality, suppose limk→∞⟨u −
p, unk+1 − p⟩ exists. This together with (3.32) implies that

lim
k→∞

{
− (1− γnk

)τ(1− κ1 − 2τ)
∥unk

− f(unk
)∥2

γnk

− (1− γnk
)τµ(1− κ3 − 2τµ∥A∥2)

× ∥(I − g)Aunk
∥2

γnk

− (1− γnk
)δ(1− δ − κ2)

∥Svnk
− vnk

∥2

γnk

}
exists.

Therefore, 
lim
k→∞

∥unk
− f(unk

)∥ = 0,(3.33)

lim
k→∞

∥(I − g)Aunk
∥ = 0,(3.34)

lim
k→∞

∥Svnk
− vnk

∥ = 0.(3.35)

Owing to ∥f(unk
) − wnk

∥ = ∥µA∗(I − g)Aunk
∥, by (3.33) and (3.34), we deduce ∥unk

−
wnk

∥ → 0 as k → ∞. This together with (3.5) implies that ∥vnk
− unk

∥ → 0 as k → ∞.
Since I − f , I − S and I − g are all demiclosed at zero, u∗ ∈ Fix(f) (by (3.33)), u∗ ∈

Fix(S) (by (3.35)) and Au∗ ∈ Fix(g) (by (3.34)). Hence, u∗ ∈ Γ and ωw(un) ⊂ Γ. □

Theorem 3.1. Suppose that I − f , I −S and I − g are all demiclosed at zero. Then, the sequence
{un} generated by Algorithm 3.1 converges strongly to PΓ(u).

Proof. First, note that ∥unk+1 − unk
∥ → 0 as k → ∞. Then, unk+1 ⇀ u∗ ∈ Γ. It follows

from (2.13) and (3.32) that

lim sup
n→∞

tn ≤ lim
k→∞

2⟨u− PΓ(u), unk+1 − PΓ(u)⟩ = 2⟨u− PΓ(u), u
∗ − PΓ(u)⟩ ≤ 0.

Taking into account (3.29), we acquire

(3.36) ∥un+1 − PΓ(u)∥2 ≤ (1− γn)∥un − PΓ(u)∥2 + 2γn⟨u− PΓ(u), un+1 − PΓ(u)⟩.

Combining (3.36) with Lemma 2.3, we conclude that un → PΓ(u) as n → ∞. □

Algorithm 3.2. Let u ∈ H1 be a fixed point and u0 be an initial point in H1. Let the
sequence {un} be defined by the following way

wn = f(un)− µA∗(I − g)Aun,

vn = (1− τ)un + τwn,

un+1 = γnu+ (1− γn)vn, n ≥ 0.

Corollary 3.1. Suppose that I − f and I − g are all demiclosed at zero. Then, the sequence {un}
generated by Algorithm 3.2 converges strongly to PΓ1(u) where Γ1 is the solution set of the split
problem (1.4).

Algorithm 3.3. Let u ∈ H1 be a fixed point and u0 be an initial point in H1. Let the
sequence {un} be defined by the following way

wn = un − µA∗(I − g)Aun,

vn = (1− τ)un + τwn,

zn = (1− δ)vn + δSvn,

un+1 = γnu+ (1− γn)zn, n ≥ 0.

Corollary 3.2. Suppose that I − S and I − g are all demiclosed at zero. Then, the sequence
{un} generated by Algorithm 3.3 converges strongly to PΓ2

(u) where Γ2 := {x ∈ H1 : x ∈
Fix(S) and Ax ∈ Fix(g)}.
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4. NUMERICAL EXAMPLES

In this section, we give three numerical examples to illustrate the performance of our
Algorithm 3.1. In all Example 4.1, Example 4.2 and Example 4.3, we take τ = 0.25, µ =
0.005, δ = 1/3 and γn = 1

n+3 , n ≥ 0.

Example 4.1. Let H1 = H2 = R5 and f, g, S : R5 → R5 be three mappings. For every
u = (u1, u2, u3, u4, u5)

T ∈ R5, set

fu =
1

2
u, gu =

1

4
u, Su = (0, u1, u2, u3, u4)

T .

Clearly, those mappings f, g, S are 0-demicontractive. Suppose that

A =


7 −3 −5 2 1
−2 4 2 4 2
6 3 2 5 4
2 1 3 1 2
5 −3 2 1 2

 .

In this case, we see that x = (0, 0, 0, 0, 0)T is a solution to the problem (1.9). Let κ(A)
be the condition number of matrix A, then we have κ(A) = 49.028. For an initial point
x0 = (−5, 1, 3, 2, 0)T , we take anchor u = (0, 2, 5, 1, 4)T and u = (7, 4, 1, 3, 6)T respectively.
Now, we illustrate the results in TABLE 1 and FIGURE 1, FIGURE 2.

FIGURE 1. u = (0, 2, 5, 1, 4)T
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FIGURE 2. u = (7, 4, 1, 3, 6)T
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TABLE 1. Results of Example 4.1

error u = (0, 2, 5, 1, 4)T u = (7, 4, 1, 3, 6)T

10−3 CPU(s) iter. CPU(s) iter.

10−3 3.439 323 5.312 528
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Example 4.2. In Example 4.1, let A be a fifth-order Hilbert matrix, i.e.,

A =


1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

 .

In this case, our algorithm is still executable. Note that x = (0, 0, 0, 0, 0)T is a solution to
the problem (1.9) and κ(A) = 4.766 × 105. For an initial point x0 = (−5, 1, 3, 2, 0)T , we
take anchor u = (0, 2, 5, 1, 4)T and u = (7, 4, 1, 3, 6)T respectively. Next, we illustrate the
results in TABLE 2 and FIGURE 3, FIGURE 4.

FIGURE 3. u = (0, 2, 5, 1, 4)T
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FIGURE 4. u = (7, 4, 1, 3, 6)T
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TABLE 2. Results of Example 4.2

error u = (0, 2, 5, 1, 4)T u = (7, 4, 1, 3, 6)T

10−3 CPU(s) iter. CPU(s) iter.

10−3 1.983 166 2.469 215

Example 4.3. Let H1 = H2 = [−2, 1]5 and f, g, S : [−2, 1]5 → [−2, 1]5 be three mappings.
For every u = (u1, u2, u3, u4, u5)

T ∈ [−2, 1]5, set

fu = (−u2
1 − u1,−u2

2 − u2,−u2
3 − u3,−u2

4 − u4,−u2
5 − u5)

T ,

gu =
1

4
u, Su = (0, u1, u2, u3, u4)

T .

We can check that the mapping f is 1
3 -demicontractive and the mappings g, S are 0-

demicontractive. Suppose that

A =


7 −3 −5 2 1
−2 4 2 4 2
6 3 2 5 4
2 1 3 1 2
5 −3 2 1 2

 .
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In this case, we see that u = (0, 0, 0, 0, 0)T is a solution to the problem (1.9). Let κ(A)
be the condition number of matrix A, then we have κ(A) = 49.028. For the initial point
x0 = (− 1

2 , 1,
3
10 ,

1
5 , 0)

T , we take the anchor point u = (0, 2, 5, 1, 4)T and u = (7, 4, 1, 3, 6)T ,
respectively. Now, we illustrate the result in TABLE 3 and FIGURE 5, FIGURE 6.

FIGURE 5. u = (0, 2, 5, 1, 4)T
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FIGURE 6. u = (7, 4, 1, 3, 6)T
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TABLE 3. Result of Example 4.3

error u = (0, 2, 5, 1, 4)T u = (7, 4, 1, 3, 6)T

10−3 CPU(s) iter. CPU(s) iter.

10−3 1.625 130 1.713 163
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