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A Family of Sequences which Converge to the
Euler-Mascheroni Constant

IAN R. HARRIS

ABSTRACT. This article considers the Euler-Mascheroni constant (γ) as the limit of a continuous function.
Graphs of the function shed light on some familiar approximations to γ, and lead to a family of sequences
which converge to γ. It is shown that this family is an extension of convergent sequences suggested by Mortici.

1. INTRODUCTION

The Euler-Mascheroni constant γ is typically presented as

lim
n→∞

(H(n)− log(n)),

where

H(n) =

n∑
k=1

1

k
.

This representation then naturally leads to an infinite sequence {γn} of approximations to
γ, given by

γn = H(n)− log(n)

for n = 1, 2, .... The γn converge slowly to γ, and in fact, Euler showed that

γn = γ +
1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+O(n−8),

and thus {γn} is a first-order convergent sequence. Two well-known simple improve-
ments to γn are

γn,a = γn − 1

2n
= H(n)− 1

2n
− log(n),

due to Vernescu [14], and often cited, and

γn,b = H(n)− log(n+
1

2
),

due to DeTemple [5]. It is not difficult to show that these converge to γ with error O(n−2),
and so {γn,a} and {γn,b} are second-order convergent sequences.

The last 12 years has seen an explosion in the literature of alternative convergent se-
quences, with notable contributions by Mortici [9, 10, 11, 12], Cao et. al. [1], Chen and
Mortici [2], Chen [3], Feng et. al. [6], Lu [7], Lu et. al. [8], Mortici and Chen [13], Yang
[15], and You and Chen [16]. We do not have space to consider all of these, but Mortici’s
work is of particular relevance to this paper. Mortici [9] discusses

µn(a, b, c) =

n−2∑
k=0

1

a+ k
+

b

a+ n− 1
− log(

a+ n− 1

a
+ c),
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and shows that for a = 1 this converges to γ.
In this work, we investigate one of the many continuous function representations of

γ. We show graphically that the familiar second-order convergent sequences of Vernescu
and DeTemple are members of a family of second-order convergent sequences described
by Mortici [9], and, interestingly, are locally the least optimal members of this family. We
consider other members of the family, and derive the two most optimal members, which
are shown to be sequences suggested by Mortici [9]. We then extend the Mortici sequences
to a family of higher-order convergent sequences, obtaining some novel approximations
to γ.

2. THE FAMILY OF CONVERGENT SEQUENCES.

Consider Figure 1, with the familiar steps of the harmonic series and the reciprocal
function 1/x superimposed on top of the steps. We ”shift” the steps slightly to the left, so
that the step of height 1/1 is centered on 1.

Figure 1: The reciprocal function and the shifted harmonic series
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Now define the function

J(x) =

∫ x

1/2

1

⌊t+ 1/2⌋
dt− log x,

which for x ≥ 1 represents the integral from 1/2 to x of the step function Figure 1, minus
the integral from 1 to x of 1/x. Note we can also easily show that

J(x) = H(n− 1) +
x− n+ 1/2

n
− log x,

for x ∈ (n− 1/2, n+ 1/2], n = 2, 3, .... The graph of J is shown in Figure 2.

Figure 2: The function J(x)



Convergent sequences to the Euler-Mascheroni Constant 39

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

x

y

𝛾𝛾

J(x)

Clearly J oscillates around γ. It is convenient to focus attention on a single cycle of J
by defining

Jn(x) = J(n+ x) = H(n− 1) +
x+ 1/2

n
− log(n+ x),

where n = 2, 3, ... and x ∈ (−1/2, 1/2]. We can now use Jn to define a family of approxi-
mations to γ.

Definition 2.1. Let X be the set of all real functions x(n) where n ∈ {2, 3, ...} and −1/2 <
x(n) ≤ 1/2.

Definition 2.2. For any x ∈ X we can define a sequence {Jn(x(n))}. Let J be the set of
such sequences.

Note that if we let x(n) = k for a fixed k the resulting sequences are special cases of
Mortici’s [9] suggested family of approximations to γ, with a = 1, given by

µn(1, b, c) = H(n− 1) +
b

n
− log(n+ c),

where we have c = x, b = x + 1/2. A key difference between Mortici’s formulation and
ours is that we insist that the convergent sequences must be on the line J(x), so this forces
b = c− 1/2.

We can now show some simple results concerning J , and J .

Theorem 2.1. The two simple approximations γn,a, γn,b are members of J .

Proof. Let x(n) = 0, ∀n, then we have Jn(0) = γn,a = H(n) − 1
2n − log(n). Similarly,

choosing x(n) = 1/2, ∀n, Jn(1/2) = γn,b = H(n)− log(n+ 1
2 ). □

(Note that this theorem is implied by Mortici [9] in the definition of his µn.)

Theorem 2.2. The local maxima of J(x) are located at x = 1.5, 2.5, 3.5, ... and the local minima
of J(x) are located at x = 2, 3, ....



40 Ian R. Harris

Proof. First, note that the theorem is equivalent to stating that the local maxima of Jn(x),
occur at x = 1/2, and that the local minima of Jn(x) occur at x = 0. Note that Jn(x) is
differentiable ∀x ∈ (−1/2, 1/2), with

J
′

n(x) =
1

⌊n+ x+ 1/2⌋
− 1

n+ x
=

1

n
− 1

n+ x
.

So for x ∈ (−1/2, 0), J
′

n(x) < 0, and for x ∈ (0, 1/2), J
′

n(x) > 0. This establishes the result
for the local minima. Also limx→1/2− J

′

n(x) > 0, and limx→1/2+ J
′

n(x) < 0, and thus the
local maxima result is established. ‘ □

Note that the above theorem justifies the remark in the introduction that the well
known second-order convergent sequences are locally least optimal.

Now define γn,t = Jn(t), where t ∈ (−1/2, 1/2], that is we are choosing x(n) = t.

Theorem 2.3. All sequences {γn,t} are second-order convergent sequences apart from t = ±6−1/2,
which are third-order convergent sequences.

Proof. This theorem is a special case of Theorem 2.1 of Mortici [9], specifically parts (ii)
and (iii) of Mortici’s theorem. □

The third-order convergent sequences from above are

γn,t1 = H(n− 1) +
1/2− 6−1/2

n
− log(n− 6−1/2),

and

γn,t2 = H(n− 1) +
1/2 + 6−1/2

n
− log(n+ 6−1/2).

These are of course precisely the same sequences as the ones proposed by Mortici [9].
Since these have opposite signs on the third-order term, and the same magnitude, their
average

γn,A = H(n)− 1

2n
− 1

2
log(n2 − 1

6
)

satisfies

γn,A = γ +O(n−4),

and thus is fourth-order. The sequence {γn,A} was also proposed by Mortici [9]. This last
sequence is not however a member of the family J .

Figure 3 below shows J3 together with marked values showing γ3,a, γ3,b, γ3,t1 , γ3,t2
and γ3,A. The superiority of the third- and fourth-order convergent sequences is visu-
ally demonstrated in the plot.

Figure 3: The second, third and fourth-order convergent sequences for n = 3
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3. AN EXTENSION OF THE FAMILY.

In this section we investigate members of the family J where the function x(n) is not
constant. Specifically, we choose

x(n) = fM (n, t) =

M∑
m=0

tm
nm

,

where t = (t0, t1, ..., tM ) and thus we can define a convergent sequence with members

γn,M (t) = Jn(n+ fM (n, t)) = H(n− 1) +
fM (n, t) + 1/2

n
− log(n+ fM (n, t)).

We can view the convergent sequences produced by this approach as an extension of
the third-order convergent sequences of Mortici to higher orders. Now one can choose
the number of terms M and the particular values of t in order to remove different orders
in the approximation. This is best seen by writing

γn,M (t) = γn − 1

2n
+

M∑
m=0

tm
nm+1

− log(1 +

M∑
k=0

tm
nm+1

).

Now use

γn − 1

2n
= γ −

∞∑
k=1

B2k

2k

1

n2k
,

where B2k are the Bernoulli numbers (e.g., Dence and Dence, [4]), and expand the log
terms to get

γn,M (t)− γ = −
∞∑
k=1

B2k

2k

1

n2k
+

∞∑
r=2

(−1)r
(
∑M

m=0
tm

nm+1 )
r

r
.
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Now we can write

γn,M (t)− γ =

∞∑
r=1

gr,M (t)

nr
,

where the gr,M (t) are polynomials in t = (t0, ..., tM ). Some conventional algebra can be
used to derive the gr,M (t). For M ≥ 3, the first few of these are

g2,M (t) =
t20
2
− 1

12
,

g3,M (t) = t0t1 −
t30
3
,

g4,M (t) =
t40
4
− t20t1 + t2t0 +

t21
2
+

1

120
,

g5,M (t) = t30t1 −
t50
5
− t2t

2
0 − t0t

2
1 + t3t0 + t2t1.

For a given M we can choose the t so as to make the gr,M (t) = 0, for r = 2, ...M−2, solving
the equations sequentially and so produce a convergent sequence of order n−(M+3). The
solutions come in pairs. As an example, for M = 3 the two solutions for t = (t0, t1, t2, t3)

are t = ( 1√
6
, 1
18 ,−

49
√
6

6480 ,−
11

1944 ) and t = (− 1√
6
, 1
18 ,

49
√
6

6480 ,−
11

1944 ).
For a given M , we denote the fM (n, t) with these substituted values for t by fM,1 and

fM,2. For 0 ≤ M ≤ 3, the functions are

f0,1(n) =
1√
6
,

f0,2(n) = − 1√
6
,

f1,1(n) =
1√
6
+

1

18n
,

f1,2(n) = − 1√
6
+

1

18n
,

f2,1(n) =
1√
6
+

1

18n
− 49

√
6

6480n2
,

f2,2(n) = − 1√
6
+

1

18n
+

49
√
6

6480n2
,

f3,1(n) =
1√
6
+

1

18n
− 49

√
6

6480n2
− 11

1944n3
,

and

f3,2(n) = − 1√
6
+

1

18n
+

49
√
6

6480n2
− 11

1944n3
.

Now we can substitute these into γn,M to give convergent sequences,

γ∗
n,M,i = H(n− 1) +

fM,i(n) + 1/2

n
− log(n+ fM,i(n)),

where i = 1, 2. For M = 0 the two sequences are Mortici’s third-order convergent se-
quences, γn,t1 , γn,t2 . For M > 0 these are novel sequences, and can be viewed as exten-
sions of Mortici’s third-order convergent sequences.
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It is straightforward to find the leading coefficient in the error expansion for these se-
quences, and to show that

lim
n→∞

n3(γ − γ∗
n,0,1) = −

√
6

108
,

lim
n→∞

n3(γ − γ∗
n,0,2) =

√
6

108
,

(both of the above are shown by Mortici [9])

lim
n→∞

n4(γ − γ∗
n,1,1) = lim

n→∞
n4(γ − γ∗

n,1,2) =
49

6480
,

lim
n→∞

n5(γ − γ∗
n,2,1) =

11
√
6

11664
,

lim
n→∞

n5(γ − γ∗
n,2,2) = − 11

√
6

11664
,

and

lim
n→∞

n6(γ − γ∗
n,3,1) = lim

n→∞
n6(γ − γ∗

n,3,2) = −(

√
6

1296
+

144251

32659200
).

Figure 4 shows, for n = 3, third, fourth, fifth, and sixth order coefficients, plotted on the
line y = J3(x). Note the sixth-order coefficient (γ∗

3,3,1) is almost indistinguishable from
the fifth-order coefficient (γ∗

3,2,1).

Figure 4: Third, fourth, fifth and sixth-order coefficients for n = 3
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For the cases with even M , the leading error terms are of opposite sign, so that the aver-
age of the two convergent sequences produces a convergent sequence of O(n−(M+4)). The
case of M = 0 leads to the coefficient γn,A proposed by Mortici, and discussed in the pre-
vious section. The averages of the other even M cases can then be viewed as extension of
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Mortici’s γn,A. The first of these is

γn,B = H(n− 1) +
1
2 + 1

18n

n
− 1

2
log(n2 +

59

3240n2
− 2401

6998400n4
− 1

18
),

which is sixth-order.
As an illustration of the numerical results, consider the case for n = 3, shown in table 1.

Table 1: Convergent sequence values for the case n = 3

Convergent sequence order value error ×106

γ3 (Euler) 1st 0.734 721 158000
γ3,a (Vernescu, [14]) 2nd 0.568 054 −9160
γ3,b (DeTemple, [5]) 2nd 0.580 570 3350
γ3,t1 , γ3,t2 (Mortici, [9]) 3rd 0.576 551, 0.578 250 −665, 1030
γ3,A (Mortici, [9]) 4th 0.577 400 185
γ∗
3,1,1, γ

∗
3,1,2 4th 0.577 305, 0.577 303 89, 87

γ∗
3,2,1, γ

∗
3,2,2 5th 0.577 201, 0.577 219 819 −14.9, 4.2

γ∗
3,3,1, γ

∗
3,3,2 6th 0.577 211 15, 0.577 211 24 −4.5,−4.4

γ3,B 6th 0.577 210 −5.3

The basic 1st order convergent sequence gives 0.734, not even correct to one decimal
place. The two second order convergent sequences give values of 0.568 and 0.5806, each
correct in the first decimal place. The two third order convergent sequences, due to Mor-
tici, give 0.57825 and 0.57655, both correct to two decimal places. The 4th order conver-
gent sequence, the average of the two above is 0.577400, correct to three decimal places.
The 5th order convergent sequences give 0.577200875, and 0.577219819,, correct to 4 and
5 decimal places respectively, and finally the 6th order convergent sequence values are all
correct to the 5th decimal place.

4. CONCLUDING REMARKS.

This paper gives a graphical demonstration of how the familiar second-order conver-
gent sequences of Vernescu [14] and DeTemple [5], and the third-order convergent se-
quence of Mortici [9] belong to a family of convergent sequences for γ. In addition, it is
shown in the paper how the convergent sequences of Mortici can be extended to a family
of higher-order convergent sequences for γ.
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