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Equilibrium problems and proximal algorithm using
tangent space products

ADAMU YUSUF INUWA1,2 , PARIN CHAIPUNYA1 , POOM KUMAM1,3 and SANI SALISU1,4

ABSTRACT. This paper presents equilibrium problems and their regularized problems in the framework of
Hadamard spaces. Using the concept of tangent space products, we introduce a resolvent operator and deduce
essential properties in relation to equilibrium problem. Furthermore, we analyze the regularized problems
involving resolvent operators. Finally, we establish two convergence results concerning proximal algorithms.

1. INTRODUCTION

A substantial generalization of convex optimization and variational inequality prob-
lems is known as equilibrium problem. This problem can be traced to [3] and is to find a
point

(1.1) x̃ ∈ K such that F (x̃, y) ≥ 0 for every y ∈ K,

where F is a bifunction F : K×K → R. In the sequel we shall, denote the problem in (1.1)
by EP (K,F ) and its solution set E(K,F ). Several researchers have considered EP (K,F )
in various setting, mostly Hilbert and Banach spaces.

One of the fundamental approaches of approximating the solution of (1.1) is the proxi-
mal algorithm, which is triggered from convex optimization problem ranging from finite
dimentional spaces to infinite spaces. The proximal algorithm mainly regularizes (or per-
turbs) the objective function to generate another version that is consistent under some
desired assumption. This type of algorithm can be traced to Martinet [21] and Rockafellar
[28] mainly in the setting of linear spaces. However, it is known that Hadamard spaces are
suitable in handling most optimization problems since many non-convex and non-smooth
problems can be viewed as convex and smooth problems [30].

In [1], Bačák introduced proximal algorithm for approximating a minimizer of a con-
vex functional in the setting of Hadamard spaces. Later on in [13], the proximal algorithm
has been extended to estimating solution of problems of variational inequalities. There-
after the method is considered for monotone operators in [14, 20] in the same setting. Al-
though equilibrium problems have been studied in Hadamard manifolds in [10] and later
on extended to equilibrium problems for bifunctions defined on proximal pairs in [8], the
results in [10] and [8] rely on different variants of the KKM lemma (see [18]). Relevant
tools used in establishing such results can be found in [24, 25, 26, 12].

In [16, 17], Kimura and Kishi studied the equilibrium problem using KKM principle
together with certain conditions. The authors established that the resolvent operator as-
sociated to a bifunction is well-defined and firmly non-spreading. Furthermore, they es-
tablished fixed points characterization of the resolvent operator to the equilibrium point
and obtained some convergence results. Later on, existence and approximation algorithm
for equilibrium problems in Hadamard spaces has been analysed using quasilinearization
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with standard assumptions in [9] and the KKM principle has been obtain with weaker as-
sumptions incomparison with the existing one.

On the other hands, the concept of monotone vector fields and generalized gradient
flows was considered in the framework of Hadamard spaces for better geometric and
linear description of the spaces [7]. This concept is substantial and its resulted to further
studies up to optimization problems of finite mappings (see, e.g., [29] and the references
therein).

The main purpose of this work is to incorporate the notion of monotone vector fields,
developed in [7], into the results of Chaipunya et. al. [9]. This directly yield that the results
hold in all Hadamard spaces whether from geometrical point of view or from the geodesic
linearity properties. In addition to that, we establish strong convergence of a sequence
generated by shrinking projection to a solution of (1.1). The algorithm is fashioned after
that of [19] for a common fixed point of a finite family of quasi-nonexpansive mappings
in an Hadamard spaces whose half spaces are convex.

The paper is organized as follows: the next section contains basic knowledge that will
be essential throughout the rest of this work and auxiliary results, followed by the main
results.

2. PRELIMINARIES

The following definitions and lemmas will be needed in the proof of our main theorem.

A metric space (X, d) is said to be geodesic if for every pair of points, say, x, y ∈ X ,
there exists a mapping γ : [0, l] → X (with l ≥ 0) and a constant K ≥ 0 such that γ(0) = x,
γ(l) = y, and d(γ(t), γ(t′)) = K |t− t′| for all t, t′ ∈ [0, l]. The curve γ is called a geodesic
joining x, y. The notations γx,x, γx,y will be used to denote zero normalized geodesic at x
and the nonzero geodesic joining x and y with x ̸= y respectively. In this paper we will
use γx,y(t) to denote the point (1− t)x⊕ ty on the geodesic γx,y where t ∈ [0, 1]. Also we
used [x, y] to denote the image of γx,y over the interval [0, 1]. A subset C ⊂ X is said to be
convex if [x, y] ⊂ C for all x, y ∈ C.

If we let (E2, ⟨·, ·⟩) to be the Euclidean plane with usual inner product ⟨u, v⟩ := u⊤v
and the Euclidean norm ∥u∥2 := ⟨u, u⟩, for u, v ∈ E2. Then, for p, q, r ∈ X , the geodesic
triangle ∆ ⊂ X is defined by ∆(p, q, r) := [p, q] ∪ [q, r] ∪ [r, p]., The triangle defined by
∆̄(p̄, q̄, r̄) := ∆(p̄, q̄, r̄) with p̄, q̄, r̄ ∈ E2 is said to be a Euclidean comparison (or simply
comparison ) triangle of ∆, if ∥p̄− q̄∥ = d(p, q), ∥q̄ − r̄∥ = d(q, r), and ∥r̄ − p̄∥ = d(r, p). If
∆̄(p̄, q̄, r̄) is the comparison triangle of ∆(p, q, r), the point ū ∈ [p̄, q̄] is called the compari-
son point of u ∈ [p, q] if ∥p̄− ū∥ = d(p, u).

Definition 2.1. A geodesic metric space (X, d) is said to be a CAT (0) if for each geodesic
triangle ∆ ⊂ X , and two points u, v ∈ ∆ the following CAT (0) inequality holds.

(2.2) d(u, v) ≤ ∥ū− v̄∥,
where ū, v̄ ∈ ∆̄ are the comparison points of u and v respectively, and ∆̄ ∈ E2 is a com-
parison triangle of ∆. A complete CAT (0) space is called an Hadamard Space.

Definition 2.2. A function F : X → (−∞,∞] is called convex if

(2.3) F ((1− t)x⊕ ty) ≤ (1− t)F (x) + tF (y)

for any x, y ∈ X and t ∈ (0, 1).

The following propositon gives us an important characterisation of CAT (0) spaces

Proposition 2.1. Suppose that (X, d) is a geodesic metric space. Then the following conditions
are equivalent:
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(1) X is a CAT (0) space.
(2) For all v ∈ X and a normalized geodesic γ : [0, 1] → X , the following (CN) inequality

holds for any t ∈ [0, 1]:

d2(γ(t), v) ≤ (1− t)d2(γ(0), v) + td2(γ(1), v)− t(1− 1)d2(γ(0), γ(1)).(2.4)

(3) for all x, y, u, v ∈ X , the following inequality holds;

d2(x, v) + d2(y, u) ≥ d2(x, u) + d2(y, v) + 2d(x, y)d(u, v).(2.5)

In the sequel, we will always assume that (X, d) is an Hadamard space and recall that X
is uniquely geodesic. Although tangent spaces to a given CAT (0) space were introduced
in [27] (see also [5, 4]), in [7] some slight modifications were made on their representations
for technical conveniences.

Let p, q, r ∈ X , then the comparison angle between q and r at p, denoted by ∡̄p(q, r), is
given for q, r ∈ X \ {p} by, set

(2.6) cos ∡̄p(q, r) :=
⟨q̄ − p̄, r̄ − p̄⟩
∥q̄ − p̄∥∥r̄ − p̄∥

,

where ∆̄(p̄, q̄, r̄) is the comparison triangle of ∆(p, q, r), we let ∡̄p(p, q) := 0, and ∡̄p(p, r) =
∡̄p(r, p) :=

π
2 for r ∈ X \ {p}.

Let γ1, γ2 be two geodesics directing from a common point p ∈ X , then the Alexandrov
angle between the goedesics γ1 and γ2 is given by

(2.7) αp(γ1, γ2) := lim
s,t→0+

cos ∡̄p(γ1(s), γ2(t)).

Alternatively, one can compute the Alexandrov angle by using the First Variation For-
mula. which is given in the following proposition

Lemma 2.1. (First Variation Formula). Suppose that p ∈ H,u ∈ H \ {p}, and γ is a nonzero
unit-speed geodesic issuing from p. Then the following identity holds:

(2.8) lim
s→0+

d(u, p)− d(u, γ(s))

s
= cosαp(γp,u, γ).

Recall that, if (M̃, ρ̃) is a pseudometric space, then its metric identification is the metric
space (M,ρ) where M consist of equivalence classes [u] := {v ∈ M̃ | ρ̃(u, v) = 0} of
u ∈ M̃ and ρ([u], [v]) := ρ̃(u, v)∀[u], [v] ∈ M . Let S̃p be the set of all geodesic issuing from
a point p ∈ X , then (S̃p, ∡̃p) where ∡̃p := αp is a pseudometric metric space, the metric
identification of (S̃p, ∡̃p) which is denoted by (Sp,∡p) is called the space of directions. For
the remainder of this paper we will denote the elements of Sp by γ := [γ].

Now, let us define an equivalence relation ∼ on [0,∞)× Sp by (t1, γ1) ∼ (t2, γ2) if and
only if one of the followings is satisfied:

(T1): t1ζ(γ1) = t2ζ(γ2) = 0 or
(T2): t1ζ(γ1) = t2ζ(γ2) > 0 and γ1 = γ2.

Let TpX := ([0,∞)× Sp)/ ∼ and the elements of TpX be denoted by γ̇ ≡ [(t, γ)]. Then the
function dp defined by

dp(γ̇1, γ̇2) =
√

t21ζ(γ1) + t22ζ(γ2)− 2t1t2ζ(γ1)ζ(γ2) cos∡p(γ1, γ2)
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is a metric on TpX (Proposition 2.12 [7]). Also let TpX := ([0,∞) × S′
p)/ ≈, where S′

p =
{γ ∈ Sp | ζ(γ) = 1} and ≈:=∼↾ TpX . Now, let

X+ := {[(t, γ)]∼ | t > 0, ζ(γ) = 1};
X0 := {[(0, γ)]∼} = {{(t, γ) | t = 0 ∨ ζ(γ) = 0}};
X ′

0 := {[(0, γ)]≈} = {{(t, γ) | t = 0, ζ(γ) = 1}}.
Then TpX and TpX can be represented as

TpX = X+ ∪X0 and TpX = X+ ∪X ′
0(2.9)

It was shown in [5] and [4] that TpX is a metric space with respect to the metric Dp given
by

Dp([t1, γ1]≈, [t2, γ2]≈) =
√
t21 + t22 − 2t1t2 cos∡p(γ1, γ2)

for all [t1, γ1]≈, [t2, γ2]≈ ∈ TpX. The metric space TpX is shown to be isometric to TpX in
[7] (Proposition 2.13). In fact if X is a Hilbert space (Hadamard manifold and TanpX is
the Riemannian tangent space) then TpX is isometric to X (TanpX) ( see [7] Proposition
2.14 and Corollary 2.15).

The metric space (TpX, dp) is called the tangent space of X at p. The tangent bundle of
X is defined by TX :=

⋃
p∈X TpX . On TpX we write 0p := γ̇p,p and ∥γ̇∥p := dp(0p, γ̇) =

tζ(γ). We will use 0 := {0p | p ∈ X} to denote the zero section of TX . Moreover, we let

Gp[γ̇1, γ̇2] :=
1

2

[
∥γ̇1∥2p + ∥γ̇2∥2p − d2p(γ̇1, γ̇2)

]
for any γ̇1, γ̇2 ∈ TpX . An analogue of Cauchy Schwarz inequality can be deduce from Gp

by direct calculation. That is,

Gp[γ̇1, γ̇2] = t1t2ζ(γ1)ζ(γ2) cos∡p(γ1, γ2) ≤ ∥γ̇1∥p∥γ̇2∥p.
Next, we consider two types of convergence that we will use in this paper. the first one
is ∆-convergence. Let {xn} be a bounded sequence in X . For x ∈ X , let the function
r(·; {xn}) : X → [0,∞]

r(x, {xn}) = lim sup
n→∞

d(x, xn)

The functional r(·, {xn}) is shown to have a unique minimizer (see [11]). The unique
minimizer here is called the asymptotic center of {xn}. Moreover, a point x̄ ∈ X is called
the ∆-limit of {xn}, written xn ∆−→ x̄, if it is the asymptotic center of {xn} as well as
of all its subsequences. Likewise, a point x̄ is called a ∆-accumulation point of {xn} if
{xn} contains a subsequence which is ∆-convergent to x̄. A functional h : X → R is
said to be ∆-upper semicontinuous (briefly, ∆-usc) if lim supn→∞ h(xn) ≤ h(x̄) whenever
the sequence {xn} in X satisfies xn ∆−→ x̄. The following fundamental results regarding
∆-convergent sequences are required for our main results.

Theorem 2.1 ([11]). Let K be a closed convex subset of an Hadamard space X and {xn} be a
bounded sequence in K. Then, the asymptotic center of {xn} is contained in K.

Definition 2.3. A sequence {xn} in X is said to be Fejér monotone with respect to a
nonempty set K ⊂ X if for each x ∈ K , we have d(xn+1, x) ≤ d(xn, x) for all k ∈ N.

Proposition 2.2 ([9]). Suppose that {xn} in X is a Fejér monotone with respect to a nonempty
set K ⊂ X . Then the following conditions are equivalent:

(1) {xn} is bounded.
(2) {d(x, xn)} converges for any x ∈ K.
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(3) If every ∆−accumulation point of {xn} lie within K, then {xn} is ∆−convergent to an
element in K.

Given a nonempty closed convex subset K of an Hadamard space X , the metric projec-
tion onto K, denoted by Pn, is defined by Pnx := argminy∈Kd(x, y). This projection map
is a nonexpensive mapping (see [4]).

Another type of convergence that we will use is the ∆−Mosco convergence introduced
by Kimura [15]. Let {Kn} be a sequence of closed convex subsets of an Hadamard space
X . Then we define d− LinKn and ∆− LsnKn by

• x ∈ d− LinKn if and only if there exists {xn} ⊂ X such that {d(xn, x)} converges
to 0 and that xn ∈ Kn for all n ∈ N;

• y ∈ ∆− LsnKn if and only if there exist a sequence {yi} ⊂ X and a sub-sequence
{ni} of N such that {yi} has an asymptotic center {y} and that yi ∈ Kni

for all
i ∈ N.

If K0 = d − LinKn = ∆ − LsnKn we say that {Kn} converges to K0 in the sense of
∆−Mosco, and we write K0 = ∆M − limn→∞ Kn.

It is shown in ([15]) that if {Kn} is a sequence of closed and convex subsets of X , then
the set ∆M − limn→∞ Kn is also closed and convex. If {Kn} is a decreasing sequence of
nonempty closed convex subsets with respect to set inclusion then ∆M − limn→∞ Kn =⋂∞

n=1 Kn.

Theorem 2.2 (see [15], Theorem 3.2). Let X be an Hadamard space and K∗ be a nonempty
closed convex subset of X . Then, for a sequence {Kn} of nonempty closed convex subsets in X ,
the following statements are equivalent:

(1) {Kn} converges to K∗ in the sense of ∆−Mosco;
(2) {PKn

x} converges to PK∗x ∈ X for every x ∈ X .

We say that the Hadamard space X has property (∗) ([19]), if, the half space {z ∈ X :
d(z, x) ≤ d(z, y)} is convex for any given x, y ∈ X . A metric space X is called an R-tree if
the following conditions hold:

• for each x, y ∈ X there is a unique metric segment [x, y];
• if [x, y] ∩ [y, z] = {y}, then [x, z] = [x, y] ∪ [y, z].

These R-trees are examples of spaces that possesses property (∗) and are neither a Hilbert
spaces nor a real Hilbert balls.

3. MAIN RESULTS

Let us begin this section with the following fundamental inequality. Here we use the
following notation

⟨tp⃗q, sp⃗z⟩ =
ts

2

[
d2(p, q) + d2(p, z)− d2(q, z)

]
for every p, x, y ∈ X and t, s ≥ 0.

Proposition 3.3. [6] For each s, t ≥ 0 and p, q, z ∈ H , the following inequality holds:

Gp[γ̇p,q, γ̇p,z] ≥ ⟨tp⃗q, sp⃗z⟩

Lemma 3.2. Let p, q, z ∈ X such that s, t ≥ 0, then

Gp[γ̇p,q, γ̇p,z] +Gq[γ̇q,p, γ̇q,z] ≥ 0
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Proof. Let p, q, z ∈ X s, t ≥ 0, then using proposition 3.3 we have

Gp[γ̇p,q, γ̇p,z] +Gq[γ̇q,p, γ̇q,z] ≥ ⟨tp⃗q, sp⃗z⟩+ ⟨tq⃗p, sq⃗z⟩

=
ts

2

[
d2(p, q) + d2(p, z)− d2(q, z)

]
+

ts

2

[
d2(q, p) + d2(q, z)− d2(p, z)

]
=

ts

2

[
2d2(p, q)

]
= tsd2(p, q)

≥ 0

□

Let us define the perturbation F̃x̄ : K × K → R of a bifunction F : K × K → R, at a
point x̄ by

F̃x̄(x, y) := F (x, y)−Gx[γ̇x,x̄, γ̇x,y]

Definition 3.4. Suppose that K ⊂ X is closed convex, and F : K ×K → R. The resolvent
of F is the mapping JF : X ⇒ K defined by

JF (x) := E(K, F̃x) = {z ∈ K|F (z, y)−Gz[γ̇z,x, γ̇z,y] ≥ 0,∀y ∈ K} ∀x ∈ X.

The following Proposition is central to the proof of our main theorems.

Proposition 3.4. Suppose that F is monotone and dom(JF ) ̸= ∅. Then, the following properties
hold.

(1) JF is single-valued.
(2) If dom(JF ) ⊃ K, then JF is non-expansive restricted to K.
(3) If dom(Jµf ) ⊃ K for any µ > 0, then Fix(JF ) = E(K,F ).

Proof. (1) Let x ∈ dom(JF ) and let that z, z′ ∈ JF (x). So, we get{
F (z, z′) ≥ Gz[γ̇z,x, γ̇z,z′ ];

F (z′, z) ≥ Gz′ [γ̇z′,x, γ̇z′,z].

Summing the above equation and using the monotonicity of F give us that,

0 ≥ F (z, z′) + F (z′, z)

≥ Gz[γ̇z,x, γ̇z,z′ ] +Gz′ [γ̇z′,x, γ̇z′,z]

= tsd2(z, z′).

This implies that,
z = z′.

(2) Let x, y ∈ K, let u = JF (x), v = JF (y), By the definition of JF , we have{
F (u, v)−Gu[γ̇u,x, γ̇u,v] ≥ 0;

F (v, u)−Gv[γ̇v,y, γ̇v,u] ≥ 0.

Adding the above two inequalities gives us

0 ≥ 2(Gu[γ̇u,x, γ̇u,v] +Gv[γ̇v,y, γ̇v,u])

≥ 2⟨tūx, sūv⟩+ 2⟨tv̄y, sv̄u⟩
= ts

[
d2(u, x) + d2(u, v)− d2(x, v)

]
+ ts

[
d2(v, y) + d2(v, u)− d2(y, u)

]
.
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This implies that,

0 ≥ d2(u, x)− d2(x, v) + d2(v, y)− d2(y, u) + 2d2(u, v).

Thus we have,

2d2(u, v) ≤ d2(x, v) + d2(y, u)− d2(u, x)− d2(v, y).

Since X is CAT(0) space then the above inequality implies that

2d2(u, v) ≤ d2(x, u) + d2(y, v) + 2d(x, y)d(u, v)− d2(u, x)− d2(v, y).

This implies,
d2(u, v) ≤ d(x, y)d(u, v).

Hence,
d(u, v) ≤ d(x, y).

That is,
d(JF (x), JF (y)) ≤ d(x, y).

(3) Let x ∈ K. Observe that the above two inequalities gives us

x ∈ Fix(JF ) ⇔ x = JF (x)

⇔ F (x, y)−Gx[γ̇x,x, γ̇x,y] ≥ 0 ∀y ∈ K

⇔ F (x, y)−Gx[0̇x, γ̇x,y] ≥ 0 ∀y ∈ K

⇔ F (x, y) ≥ 0 ∀y ∈ K

⇔ x ∈ E(K,F ).

□

Lemma 3.3. Given w, z ∈ X , then γ̇z,w ∈ ∂g(z) ⇐⇒ z = proxg(w).

Proof. Follows from Proposition 3.8 of [7] with λ = 1. □

Lemma 3.4. Let Fg : X ×X → R by

(3.10) Fg := g(y)− g(x), ∀x, y ∈ X.

Then we have E(X,Fg) = argminX g and JFg
= proxg . Moreover we have dom(proxg) = X .

Proof. From Lemma 3.3, we have

z ∈ Fix(JFg
) ⇔ Fg(z, y)−Gz[γ̇z,x, γ̇z,y] ≥ 0 ∀y ∈ X

⇔ g(y) ≥ g(z) +Gz[γ̇z,x, γ̇z,y] ∀y ∈ X

⇔ γ̇z,x ∈ ∂g(z)

⇔ z = argmin
y∈X

{
g(y) +

1

2
d2(x, y)

}
= proxg(x).

□

Lemma 3.5. Assume that F is monotone. Let x̄ ∈ X , µ > 0, x̃ ∈ E(K, µ̃F x̄) and x⋆ ∈ E(K,F ),
then Gx̃ [γ̇x̃,x̄, γ̇x̃,x⋆ ] ≤ 0.

Proof. Let x̃ ∈ E(K, F̃x̃), then

0 ≤ µ̃F x̄(x̃, x
⋆) = µF (x̃, x⋆)−Gx̃[γ̇x̃,x̄, γ̇x̃,x⋆ ],

which implies that Gx̃[γ̇x̃,x̄, γ̇x̃,x⋆ ] ≤ µF (x̃, x⋆). Now, using the monotonicity of F is and
the fact that x⋆ ∈ E(K,F ) we obtain F (y, x⋆) ≤ 0, ∀y ∈ K, and particularly F (x̃, x⋆) ≤ 0.
Thus we have Gx̃[γ̇x̃,x̄, γ̇x̃,x⋆ ] ≤ 0. □
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Now, let F : K × K → R with dom(µF ) ⊃ K for all µ > 0. Let {λn} ⊂ (0,∞) and
x0 ∈ K. Then the proximal algorithm is defined as follows

xn := JλnF (x
n−1), ∀n ∈ N.(3.11)

Theorem 3.3. Suppose that F is monotone with E(K,F ) ̸= ∅,∆−usc in the first variable, and
that dom(JµF ) ⊃ K for all µ > 0. Let {λn} be bounded away from 0. Then the proximal
algorithm (3.11) is ∆−convergent to an element in E(K,F ) for any initial start x0 ∈ K.

Proof. Let x0 ∈ K, and x⋆ ∈ E(K,F ), then

d(x⋆, xn+1) = d(JλnF (x
⋆), JλnF (x

n)) ≤ d(xn, x⋆).

The above inequality implies that the sequence {xn} is Fejer convergent with respect to
E(K,F ). Proposition 2.2 implies that the real sequence d(xn, x⋆) is bounded, and thus is
convergent to some ξ ≥ 0. Using Lemma 3.5 we will have that

d2(xn+1, xn) ≤ d2(xn, x⋆)− d2(xn+1, x⋆).

Letting n → ∞, we obtain that limn→∞ d(xn+1, xn) = 0.
Now, Suppose that x̂ ∈ K is a ∆−accumulation point of the sequence {xn}, also let

{xnj} ⊂ {xn} be a subsequence with xnj
∆−→ x̂. Let y ∈ K, then by using (3.11), we obtain

the following inequalities for any index j ∈ N

(3.12) F (xnj , y) ≥ 1

λnj

Gxnj [γ̇xnj ,xnj−1 , γ̇xnj ,y] ≥ − 1

λnj

d(xnj , xnj−1)d(xnj , y).

Since {xn} is bounded (Proposition 2.2) and {λn} is bounded away from 0, then (3.12)
implies that there exists M > 0 such that

(3.13) F (xnj , y) ≥ −Md(xnj , xnj−1),

Letting j → ∞ in (3.13) and using the ∆−upper semi-continuity of F (·, y) we have

F (x̂, y) ≥ lim sup
j→∞

F (xnj , y) ≥ −M lim
j→∞

d(xnj , xnj−1) = 0.

As y ∈ K is arbitrarily chosen, we conclude that x̂ ∈ E(K,F ). Thus, any ∆−accumulation
point of {xn} is a solution of EP (K,F ). Hence, the sequence {xn} is ∆−convergent to an
element of E(K,F ), in view of Proposition 2.2. □

The following result, which is is crucial for obtaining the next corollary, can be found
in [2].

Proposition 3.5. [2] A convex set K ⊂ X is closed if and only if it is ∆-closed.

Corollary 3.1. Let f : X → R be a lsc and convex function with argmin f ̸= ∅. Suppose {λn}
is bounded away from 0. Then for x0 ∈ X the sequence generated by

xn := Jλnf (x
n−1) ∀n ∈ N(3.14)

is ∆−convergent to a minimizer of f .

Proof. Defined F : X × X → R by F (x, y) = f(y) − f(x). Then it is clear that F is
monotone. The ∆-usc follows from Proposition 3.5 by considering the F (·, y) for y ∈ X .
Finally, Lemma 3.4 and Theorem 3.3 yield the desired result. □

Example 3.1. Consider the Hadamard space (X, d) where, X = R2 and

d(x, y) :=
√

(x1 − y1)2 + (x2
1 − x2 − y21 + y2)2,
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where x = (x1, x2), y = (y1, y2) (see for example [30]). Let K = X and F : K × K → R be
defined by F (x, y) = Λ

[
((y2 + 1)− (y1 + 1)2)2 − ((x2 + 1)− (x1 + 1)2)2

]
+ y21 − x2

2, where
Λ > 0. It is not difficult to see that F is monotone, continuous in the first variable and that
E(K,F ) = {(0, 0)}. Indeed, setting f(x) = Λ((x2+1)− (x1+1)2)2+x2

1, the desired properties
of F are guaranteed by Lemma 3.4 and Corollary 3.1.

In Table 1 we report the convergence of the (3.14) to the equilibrium point (0, 0) by
using Matlab with Λ = 24.

TABLE 1. Few values of the sequence {xn} from Example 3.1

x0 = (50,−1001) x0 = (−75,−100) x0 = (−27, 5) x0 = (12, 8)
k xn xn xn xn

0 (50, -1001) (-75, -100) (-27, 5) (12, 8)
1 (-330.296, 107856.4) (-344.992, 117276.6) (-166.158, 27202.4) (-33.1613, 1019.413)
2 (-243.648, 58724.25) (-228.854, 51676.44) (-128.962, 16342.91) (-26.0604, 621.3938)
3 (-172.651, 29392.52) (-168.449, 27948.57) (-95.2151, 8855.893) (-19.106, 322.9214)
4 (-134.738, 17856.26) (-133.482, 17518.59) (-69.5548, 4684.581) (-13.9511, 163.8879)
5 (-97.7053, 9330.131) (-98.6561, 9515.408) (-50.7774, 2466.446) (-10.1845, 81.28041)
6 (-71.553, 4962.113) (-72.073, 5035.673) (-37.0679, 1292.337) (-7.43477, 38.89128)
7 (-52.2441, 2614.312) (-52.616, 2652.488) (-27.0597, 672.5949) (-5.42742, 17.49609)
8 (-38.1389, 1370.526) (-38.41, 1390.683) (-19.7537, 346.6768) (-3.96205, 6.966399
9 (-27.8416, 713.7979) (-28.0395, 724.4209) (-14.4203, 176.1663) (-2.89229, 1.991403)
...

...
...

...
...

39 (-0.00221, -0.00486) (-0.00222, -0.00488) (-0.00109, -0.00238) (-0.00024, -0.00052)
40 (-0.00164, -0.00362) (-0.00161, -0.00352) (-0.00081, -0.00177) (-0.00016, -0.00036)
41 (-0.00118, -0.00262) (-0.00117, -0.0026) (-0.00058, -0.0013) (-0.00014, -0.0003)
42 (-0.00085, -0.00188) (-0.00086, -0.00192) (-0.00041, -0.00091) (-9.92E-05, -0.00025)
43 (-0.00061, -0.00134) (-0.00064, -0.00146) (-0.00031, -0.00068) (-7.99E-05, -0.00015)
44 (-0.00044, -0.00095) (-0.0005, -0.0011) (-0.00023, -0.00053) (-3.02E-05, -8.92E-05
45 (-0.00034, -0.00075) (-0.00038, -0.00083) (-0.00016, -0.00036) (-2.00E-05, -3.94E-05)
46 (-0.00024, -0.00052) (-0.00029, -0.00064) (-0.00014, -0.0003) (-2.42E-05, -2.29E-05
47 (-0.00016, -0.00036) (-0.00023, -0.00051) (-9.92E-05, -0.00025) (-2.42E-05, -2.29E-05)
48 (-0.00014, -0.0003) (-0.00019, -0.00039) (-7.99E-05, -0.00015) (-2.42E-05, -2.29E-05
49 (-9.92E-05,-0.00025) (-0.00014, -0.00031) (-3.02E-05, -8.92E-05) (-2.42E-05, -2.29E-05)

Finally, if the Hadamard space X posess property (∗), then we have the following
strong convergence result.

Theorem 3.4. Let X be an Hadamard satisfying property (∗) and K ⊂ X be a nonempty closed
convex set. F : K ×K → R be a monotone mapping with E(K,F ) ̸= ∅ and that dom(JF ) ⊃ K.
The sequence generated for each n ∈ N by

x0 ∈ K0 := K;

yn = JF (x
n);

Kn = {z ∈ K|d(z, yn) ≤ d(z, xn)} ∩Kn−1;

xn+1 = PKn
xn,

strongly converges to an element of E(K,F ).

Proof. Let z ∈ E(K,F ), then

d(z, yn) = d(JF (z), JF (x
n)) ≤ d(z, xn).
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This implies that E(K,F ) ⊂ Kn for all n ∈ N. From our assumption we have that Kn is
closed and convex. Thus PKn

is well-defined for each n ∈ N. Also, the sequence {Kn} is
convergent to K∗ :=

⋂∞
n=0 Kn in the sense of ∆−Mosco. Now using Theorem 2.2 we get

that {xn} converges to x∗ := PK∗x. As x∗ ∈ Kn for all n ∈ N, we obtain

d(x∗, yn) ≤ d(x∗, xn) for all n ∈ N.(3.15)

Letting n → ∞ in (3.15) we get

lim
n→∞

yn = lim
n→∞

JF (x
n) = x∗.(3.16)

Using Proposition 3.4 (2) we have

JF (x
∗) = lim

n→∞
JF (x

n).(3.17)

Combining (3.16) and (3.17) we have

x∗ = JF (x
∗).(3.18)

The equation (3.18) and Proposition 3.4 (3) imply that

x∗ ∈ E(K,F ),

as required. □

Remark 3.1. It is worth noting that the result of Theorem 3.4 holds for all R-trees, Hadamard
manifolds and Hilbert spaces as they are all special Hadamard spaces with property (∗).

Corollary 3.2. Let X be an Hadamard satisfying property (∗) and K ⊂ X be a nonempty closed
convex set. Suppose f : K → R is a lsc and convex function with argmin f ̸= ∅. Then the
sequence generated for each n ∈ N by

x0 ∈ K0 := K

yn = Jf (x
n)

Kn = {z ∈ K|d(z, yn) ≤ d(z, xn)} ∩Kn−1

xn+1 = PKn
(xn).

strongly converges to a minimizer of f .

Proof. The proof follows from Theorem 3.4 based on the arguments presented in the proof
lines of Corollary 3.1. □

CONCLUSION AND REMARKS

In this work, a resolvent operator is introduced using the concept of monotone vector
field thereby making the operator meaningful in both linear and Hadamard manifolds.
Under suitable conditions, it is shown that this operator is a nonexpansive single-valued
mapping and its fixed points set coincide with the solution of the equilibrium problem.
Furthermore, using the proximal operator, we established ∆-convergent and strong con-
vergence results for approximating a solution of equilibrium problem in the setting of
Hadamard spaces, which include Hilbert space, R-trees, Hilbert balls, Hadamard mani-
folds and complete CAT(κ) spaces for κ ≤ 0.
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[1] Bačák, M. The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), no. 2, 689–701.
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