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Convergence Theorems for Common Solutions of
Nonlinear Problems and Applications

ABDULWAHAB AHMAD 1,2, POOM KUMAM 1,3∗ and MURTALA HARUNA HARBAU 4

ABSTRACT. In this work, two inertial algorithms for approximating common elements of the sets of solu-
tions of three important problems are constructed. The first problem is a generalized mixed equilibrium one
involving relaxed monotone mapping, the second is a zero problem of inverse strongly monotone mappings,
while the third one is a fixed point problem of a family of relatively nonexpansive mappings. The first algorithm
is a shrinking projection type for a common solution of all the three problems. The second is a generalized Alber
projection free method for the second and the third problems. Each of the devised algorithms uses the conjugate
gradient-like direction, which allows it to accelerate its iterates toward a solution of the problems. The strong
convergence theorem for each of the algorithms is formulated and proved in a real 2 - uniformly convex and
uniformly smooth Banach space. Additionally, the applications of our algorithms to convex optimization prob-
lems and image recovery problems are studied. The advantages and computational efficiency of our methods
are analyzed based on their numerical performance in comparison to some of the existing and recently proposed
methods using numerical example.

1. INTRODUCTION

Throughout this paper, H will be a real Hilbert space and C will be a nonempty convex
and closed subset of H. A mapping B : C → H is said to be monotone, if

⟨Bu− Bv, u− v⟩ ≥ 0, ∀u, v ∈ C,
and µ - inverse strongly monotone, if there exists a positive real number µ such that

(1.1) ⟨Bu− Bv, u− v⟩ ≥ µ||Bu− Bv||2, ∀u, v ∈ C.
The zero problem with respect to a µ - inverse strongly monotone mapping B, is to find
z ∈ C, such that

(1.2) Bz = 0,

and the set of all zeros of B, is denoted by B−1(0) = {z ∈ C : Bz = 0}.

In 2003, Fang and Huang [26], introduced a concept of relaxed η − α monotone mapping
for solving mixed equilibrium problem. A mapping B : C → H is said to be relaxed η − α
monotone (see, [26]), if there exists a mapping η : C × C → H and a function α : H → R
with α(tz) = tqα(z), ∀z ∈ H and a constant q > 1, such that

(1.3) ⟨Bu− Bv, η(u, v)⟩ ≥ α(u− v), ∀u, v ∈ C.
It is noticed that when η(u, v) = u− v, ∀u, v ∈ C, then, B becomes a relaxed α monotone.
In a situation where η(u, v) = u − v, ∀u, v ∈ C and α(z) = r||z||q , where q > 1 and r > 0
are two constants, then, B is called q - monotone (see, [28, 50, 58]). In fact, if q = 2, then, B
is r - strongly monotone. One also sees that the class of monotone mappings is contained
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in the class of η−α monotone mappings. It has been proved in [26] that under some mild
assumptions, the variational inequality problem of finding u ∈ C, satisfying

(1.4) ⟨Bu, η(v, u)⟩+Φ(v)− Φ(u) ≥ 0, ∀v ∈ C,
is solvable, where Φ : C → R ∪ {+∞} is a function which is convex and proper. The
problem (1.4) is shown to be equivalent to the problem below, in which we find u ∈ C,
satisfying

(1.5) ⟨Bv, η(v, u)⟩+Φ(v)− Φ(u) ≥ α(v − u), ∀v ∈ C.
In this paper, the symbolMV IP (B,Φ) is used to represent the set of solutions of the prob-
lem (1.4) or (1.5).

For a bimapping η : C × C → H, a mapping B : C → H is called η-hemicontinuous (see
[26]), if for all u, v ∈ C, a function f : [0, 1] → (−∞,+∞) defined by

f(t) =
〈
B
(
(1− t)x+ ty

)
, η(u, v)

〉
,

is continuous at 0+. Since the inception of the monotone mapping described in (1.3),
many methods were proposed and studied for solving problems involving this type of
generalized monotone mapping. For example, Chen et al. [15] studied a new equilibrium
problem of finding z ∈ C, such that

(1.6) ξ(u, v) + ⟨Bu, η(v, u)⟩+Φ(v)− Φ(u) ≥ 0, ∀v ∈ C,
where ξ : C × C → R is a bifunction, Φ : C → R ∪ {+∞} is a convex proper and lower
semicontinuous function and B : C → H is an η − α relaxed monotone mapping. The
solutions’ set of problem (1.6) is represented by

EP (ξ,B,Φ) =
{
u ∈ C : ξ(u, v) + ⟨Bu, η(v, u)⟩+Φ(v)− Φ(u) ≥ 0, ∀v ∈ C

}
.

If B is monotone, that is η(u, v) = u − v, ∀u, v ∈ C and α ≡ 0, then, (1.6) reduces to the
generalized mixed equilibrium problem of Peng and Yao [46], which is to find u ∈ C such
that

(1.7) ξ(u, v) + ⟨Bu, v − u⟩+Φ(v)− Φ(u) ≥ 0, ∀v ∈ C.
If B(u) = 0, ∀u ∈ C, then, (1.6) reduces to the mixed equilibrium problem, studied by
Ceng and Yao [12], in which we find u ∈ C, such that

(1.8) ξ(u, v) + Φ(v)− Φ(u) ≥ 0, ∀y ∈ C.
The set of solutions of (1.8) is denoted by MEP (ξ,Φ). If B is monotone and Φ(u) =
0, ∀u ∈ C, then, (1.6) becomes the generalized equilibrium problem studied by Takahashi
and Takahashi [51] of finding u ∈ C, such that

(1.9) ξ(u, v) + ⟨Bu, v − u⟩ ≥ 0, ∀v ∈ C.
The set of solutions of (1.9) is denoted by GEP (ξ,B). If B(u) = 0 and Φ(u) = 0, ∀u ∈ C,
then, (1.6) reduces to the classical equilibrium problem, studied by Blum and Oettli [9] of
finding u ∈ C, such that

(1.10) ξ(u, v) ≥ 0, ∀v ∈ C.
The set of solutions of (1.10) is denoted by EP (ξ). If ξ(u, v) = 0, ∀u, v ∈ C, then, (1.6) also
becomes the mixed variational inequality problem (1.4) or (1.5).

Therefore, the problem (1.6) seems to be more general in nature, since many important
problems can be classified as its special cases, such as variational inequality problems, op-
timization problems and several problems of interest (see, [38, 59, 60]). However, various
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methods have been introduced for approximating common solutions of zero problems,
fixed point problems and equilibrium problems, see for examples, [6, 13, 18, 20, 30, 33, 43,
45, 57] and the references therein.

Hybrid shrinking projection method proposed by Takahashi et al. [54], has been used to
approximate a solution of a fixed point and an equilibrium problems in various spaces,
see for examples, [15, 30, 55] and the references therein. The rationale behind the method
is to obtain the strong convergence of the iterative schemes.

In most cases, (see, [22, 23]), the Mann algorithm [41], has very slow convergence speed.
However, fast convergence is needed in many practical applications (see, [16, 25, 35,
45]). Consequently, various methods have been introduced to obtain the fast conver-
gence. Some of these methods are called conjugate gradient-like methods contained in
[44], widely seen as an efficient accelerated versions of most gradient methods.

Dong and Yuan [23], introduced accelerated Mann algorithm, by combining the Mann
Algorithm in [41] and conjugate gradient method in [44]. They consequently obtained the
algorithm;

(1.11)

 pn+1 = 1
λ

(
T (vn)− vn

)
+ βnpn

yn = vn + λpn+1

vn+1 = µγnvn + (1− µγn)yn, ∀n ≥ 0,

where µ ∈ (0, 1], λ > 0, p0 = Tv0−v0
λ , {γn} and {βn} are nonnegative real sequences. They

proved the weak convergence of the sequence {vn} to a fixed point of a nonexpansive
mapping T, provided that the following conditions hold:
(A1)

∑∞
n=0 µγn(1− µγn) = ∞;

(A2)
∑∞
n=0 βn <∞;

(A3)
{
T (vn)− vn

}
is bounded.

Polyak [47] also introduced an inertial - type algorithm, which is mostly used in fastening
the sequence of iterates generated by various algorithms towards the solution of a prob-
lem. Since then, many authors incorporated the inertial term with their algorithms for
fast convergence (see, [3, 10, 22, 31, 32] and the references therein).

By combining the accelerated Mann algorithm (1.11) and an inertial term, Dong et al. [24]
proposed the following modified inertial Mann algorithm in Hilbert space.

(1.12)


v0, v1 ∈ H,
tn = vn + αn(vn − vn−1),
pn+1 = 1

λ

(
T (tn)− tn

)
+ βnpn

yn = tn + λpn+1

vn+1 = µγntn + (1− µγn)yn, ∀n ≥ 1,

where αn ∈ [0, α] is nonincreasing with α1 = 0, 0 ≤ α < 1, 0 < µ ≤ 1, λ > 0, p1 = Tv1−v1
λ ,

{γn} and {βn} satisfy some conditions. They proved a weak convergence theorem of
(1.12) to a fixed point of a nonexpansive mapping T and numerically justified that algo-
rithm (1.12) converges faster than algorithm (1.11), provided that for a sequence {tn}, the
following conditions hold:
(D1) {Ttn − tn} is bounded;
(D2) {Ttn − y} is bounded for any y ∈ Fix(T ).
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Recently, Tan et al. [56] introduce the following algorithm called modified inertial shrink-
ing algorithm, by combining algorithm (1.12) and the method in [54] in Hilbert space.

(1.13)



v0, v1 ∈ H,
tn = vn + αn(vn − vn−1),
pn+1 = 1

λ

(
T (tn)− tn

)
+ βnpn,

yn = tn + λpn+1,
gn = θntn + (1− θn)yn,
Cn+1 =

{
z ∈ Cn : ||gn − z||2 ≤ ||tn − z||2 − θn(1− θn)||tn − yn||2 + δn

}
,

vn+1 = PCn+1
v0, n ≥ 0,

where λ > 0, {αn}, {θn}, {βn}, δn = λβnM2[λβnM2+2M1],M1 = diam C = sup
u,v∈C

||u−v||,

M2 = max
{
max

1≤k≤n0

||pk||, 2
λM1

}
, satisfy some conditions. The strong convergence of the

scheme (1.13) to a fixed point of a nonexpansive mapping T is established, under the
boundedness assumption on a nonempty closed and convex subset C of H .

Remark 1.1. It is noted that the convergence results of all the methods (1.11), (1.12) and
(1.13) with conjugate gradient-like directions hold under the assumptions (A3), (D1)-(D2)
and the boundedness of C, respectively. These assumptions appeared to be too restrictive
and it would be interesting to consider dispensing them.

For zeros of a countable family of mappings defined in (1.1) that are fixed points of a
countable family of relatively weak J-nonexpansive mappings in 2 - uniformly convex
and uniformly smooth Banach space, Chidume et al. [18], formulated and proved the
strong convergence theorem for the following algorithm.

(1.14)


v1 ∈ X = C1,
tn = J−1

(
Jvn − λ

(∑∞
i=1 βiBi

)
vn

)
,

yn = J−1
(∑∞

i=1 αiTi
)
tn,

Cn+1 =
{
z ∈ Cn : ϕ(z, yn) ≤ ϕ(z, vn)

}
,

vn+1 = ΠCn+1
v1, n ≥ 1,

where βi, αi ∈ (0, 1), such that
∑∞
i=1 βi = 1,

∑∞
i=1 αi = 1, λ ∈ (0, µ2L ), L > 0 is a

Lipschitz constant of J−1, µ ≥ inf
i≥1

µi > 0 and for each i ≥ 1, µi is the constant appearing

in (1.1) for Bi.

Very recently, motivated by the results in [19], Adamu et al. [2] proposed an inertial algo-
rithm for zeros of a sum of two monotone mappings that are J - fixed points of a relatively
J-nonexpansive mapping in 2 - uniformly convex and uniformly smooth Banach space.

Inspired and motivated by the results in [2, 15, 18, 19, 55, 56], we propose two inertial
algorithms for common elements of the sets of solutions of some important nonlinear
problems. The first is developed based on the hybrid projection technique for approxi-
mating common solutions of a generalized mixed equilibrium problem and a zero prob-
lem of a countable family of inverse strongly monotone mappings, that are fixed points of
a countable family of relatively nonexpansive mappings. The second algorithm is a gen-
eralized Alber projection free method for zeros of a countable family of inverse strongly
monotone mappings, that are fixed points of a countable family of relatively nonexpan-
sive mappings. Each of the constructed algorithms uses the conjugate gradient-like direc-
tion, which allows it to accelerate its sequence of iterates towards a common solution of
the problems. The special point of the two proposed conjugate gradient-like methods in
this work, over some existing methods with conjugate gradient-like directions (see e.g.,
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[23, 24, 56]) is that, the strong convergence theorem for each of the two algorithms is for-
mulated and proved in a real 2 - uniformly convex and uniformly smooth Banach space,
in which we dispensed with the strong assumptions used in [23, 24] and the boundedness
assumption on C used in [56] as discussed in the Remark 1.1. To the best of our knowledge,
this is the first study in a setting of a real 2 - uniformly convex and uniformly smooth Ba-
nach space, using the generalized Alber projection and Lyapunov distance function with
conjugate gradient-like direction. The advantages and computational efficiency of our
methods are analyzed based on their numerical performance, in comparison to some of
the existing and recently proposed methods in solving a numerical example. Addition-
ally, the applications of our algorithms to convex optimization problems are studied and
our second algorithm is used to solve image recovery problems.

2. PRELIMINARIES

Let C be a nonempty convex and closed set in a real Banach space X . The generalized
duality mapping Jψ : X → 2X

∗
(X ∗ is the dual space of X ) associated with a gauge

function ψ is defined by

Jψ(u) = {u∗ ∈ X ∗ : ⟨u, u∗⟩ = ||u||||u∗||, ||u∗|| = ψ(||u||)},

where ψ(t) = tp−1, for all t ≥ 0 and 1 < p < ∞. In particular, if p = 2, then,Jψ = J2 is
called the normalized duality mapping defined by

(2.15) J(u) = {u∗ ∈ X ∗ : ⟨u, u∗⟩ = ||u||2, ||u∗|| = ||u||}.

Remark 2.2. (see, [17, 21, 34]) The following are some of the well known properties of the
map in (2.15).
(i) If X is reflexive, strictly convex and smooth, then, J is surjective, injective and single-
valued respectively.
(ii) If X is uniformly smooth, then, J is norm - to - norm uniformly continuous on bounded
subsets of X .
(iii) If X is a real Hilbert space H, the normalized duality map J reduces to identity map,
i.e., Ju = {u}.

Throughout this paper, we use R and N to denote the sets of real and natural numbers,
S(X ) to denote a unit sphere in X , i,e., S(X ) = {u ∈ X : ||u|| = 1} and the set of ω - weak
cluster limits of {vn} is represented by ωw(vn).

A Banach space X (see, [17]) is said to be uniformly convex, if for any ϵ ∈ (0, 2], there
exists δ > 0, such that ∀u, v ∈ S(X ), with ||u− v|| ≥ ϵ, we have ||u+v||

2 ≤ 1− δ. X is strictly
convex, if ∀u, v ∈ S(X ), with u ̸= v, we have ||u+v||

2 < 1. X is also said to be smooth, if
∀u, v ∈ S(X ), the limit

(2.16) lim
t→0

||u+ tv|| − ||u||
t

exists.

X is also said to be uniformly smooth, if ∀u, v ∈ S(X ), the limit in (2.16) exists uniformly.
A space X is also said to have the Kadec-Klee property see [17], if for any sequence {vn} ⊆
X , such that vn ⇀ u∗ ∈ X and ||vn|| → ||u∗|| implies vn → u∗.

Remark 2.3. (see, [52, 53]) Every uniformly convex Banach space is known to be a reflex-
ive with Kadec-Klee property.
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Let ϕ : X × X → [0,∞) be a Lyapunov functional defined by

ϕ(u, v) = ||u||2 − 2 ⟨u, Jv⟩+ ||v||2, u, v ∈ X ,
where J is the normalized duality mapping. It is easily seen that in H, ϕ(u, v) = ||u −
v||2, ∀u, v ∈ H. In 1996, Alber [4], introduced a generalized projection ΠC in a Banach
space X with a nonempty closed convex subset C, which is an analogue of the metric
projection in Hilbert spaces. The generalized projection ΠC : X → C is defined by ΠCu =
u0 ∈ C such that

ϕ(u0, u) = argmin
v∈C

ϕ(v, u).

The properties of ϕ and the strict monotonicity of J (see, [4]) implies that a unique point
ΠC exists in C. Let X be a smooth, strictly convex and reflexive Banach space, then, for all
u, v, z ∈ X and ϱ ∈ (0, 1), we have the following properties.
(B1)

(
||u|| − ||v||

)2 ≤ ϕ(u, v) ≤
(
||u||+ ||v||

)2,
(B2) ϕ(u, v) = ϕ(u, z) + ϕ(z, v) + 2 ⟨z − u, Jv − Jz⟩,
(B3) ϕ

(
u, J−1(ϱJv + (1− ϱ)Jz)

)
≤ ϱϕ(u, v) + (1− ϱ)ϕ(u, z),

(B4) ϕ(u, v) ≤ ||u||||Ju− Jv||+ ||v||||u− v||.

Define a map V : X × X ∗ → R by

V (u, u∗) = ||u||2 − 2 ⟨u, u∗⟩+ ||u∗||2.
Then it is not difficult to see that V (u, u∗) = ϕ

(
u, J−1(u∗)

)
, ∀u ∈ X , u∗ ∈ X ∗.

A nonlinear map T : C → C is said to be Nonexpansive if

(2.17) ||Tu− Tv|| ≤ ||u− v||, ∀u, v ∈ C,
and a fixed point problem with respect to T, is to find a point u ∈ C, such that

(2.18) Tu = u.

A fixed point u∗ ∈ C (see, [14]), is said to be an asymptotic fixed point of T, if there exists a
sequence {vn} ⊆ C, such that vn ⇀ u∗ and lim

n→∞
||vn − Tvn|| = 0. F (T ) and F̂ (T ) are used

to denote the set of fixed point and the set of asymptotic fixed points of T respectively. T
is said to be relatively nonexpansive (see, [42, 48]), if F̂ (T ) = F (T ) ̸= ∅, and

(2.19) ϕ(p, Tu) ≤ ϕ(p, u), ∀u ∈ C, p ∈ F (T ),

and T is said to be closed, if for any sequence {vn} ⊂ C, with vn → u and Tvn → u∗, then
u∗ = Tu.

Remark 2.4. Observe that if X = H, the mapping in (2.19) reduces to quasi - nonexpansive
mapping.

To solve the generalized mixed equilibrium problem (1.6), the function ξ is assumed to
satisfy the following.
(C1) ξ(u, u) = 0, ∀u ∈ C;
(C2) ξ is monotone, i.e., ξ(u, v) + ξ(v, u) ≤ 0, ∀u, v ∈ C;
(C3) for each u, v, z ∈ C,

lim
s→0

ξ
(
sz + (1− s)u, v

)
≤ ξ(u, v);

(C4) for each u ∈ C, v 7−→ ξ(u, v) is convex and lower semi continuous.

The following Lemmas will be needed in the proof of the main results.
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Lemma 2.1. ([4]) Let C be a nonempty closed and convex subset of a smooth, strictly convex and
reflexive Banach space X . Let u ∈ X and z ∈ C. Then, z = ΠCu, ⇔

(2.20) ⟨z − v, Jz − Ju⟩ ≤ 0, ∀v ∈ C, and

(2.21) ϕ(v,ΠCu) + ϕ(ΠCu, u) ≤ ϕ(v, u), ∀v ∈ C. u ∈ X .

Lemma 2.2. ([4]) Let X be a smooth, strictly convex and reflexive Banach space with X ∗ as its
dual. Then

V (u, u∗) + 2
〈
J−1u∗ − u, v∗

〉
≤ V (u, u∗ + v∗),

for all u ∈ X and all u∗, v∗ ∈ X ∗.

Lemma 2.3. ([60]) Let X be a 2 - uniformly convex real Banach space, then

(2.22) ||u− v|| ≤ 2

c
||Ju− Jv||,

for all u, v ∈ X , where 0 < c ≤ 1 and c is the 2 - uniformly convex constant of X .

Lemma 2.4. ([18]) Let X be a uniformly convex and uniformly smooth Banach space with dual
space X ∗. Let Bi : X → X ∗, i = 1, 2, . . . , be a countable family of mappings defined in (1.1)
with µi > 0 such that µ = inf

i≥1
µi > 0 and

⋂∞
i=1 B

−1
i (0) ̸= ∅. Let B : X → X ∗ be defined by

Bu =
∑∞
i=1 υiBiu, for each u ∈ X , where {υi}∞i=1 is a sequence in (0, 1) such that

∑∞
i=1 υi = 1.

Then,
(i) B is well defined,
(ii) B also satisfies (1.1) with µ > 0,
(iii) B−1(0) =

⋂∞
i=1 B

−1
i (0).

Lemma 2.5. ([60]) Let X be a real uniformly convex Banach space and q > 0 be a fixed number.
Then there exists a continuous and strictly increasing function φ : [0,∞) → [0,∞) with φ(0) =
0, such that;

||σu+ (1− σ)v||2 ≤ σ||u||2 + (1− σ)||v||2 − σ(1− σ)φ(||u− v||),
for all u, v in Bq = {u ∈ X : ||u|| ≤ q} and σ ∈ [0, 1].

Lemma 2.6. ([42]) Let C be a nonempty convex and closed set in a smooth, strictly convex and
reflexive Banach space X , and T : C → C be a relatively nonexpansive map. Then, F (T ) is convex
and closed.

Lemma 2.7. ([62]) Let X be a real 2-uniformly smooth Banach space. Then there exists a constant
ε > 0 such that for all u, v ∈ X

||u+ v||2 ≤ ||u||2 + 2 ⟨v, Ju⟩+ ε||v||2,
where ε = 1 in a real Hilbert space.

Lemma 2.8. ([37]) Let {un} and {vn} be sequences in a smooth and uniformly convex Ba-
nach space X such that either {un} or {vn} is bounded. Then, lim

n→∞
ϕ(un, vn) = 0 implies that

lim
n→∞

||un − vn|| = 0.

Remark 2.5. If both {un} and {vn} are bounded in Lemma 2.8, then, the converse holds
by the property (B4).
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Lemma 2.9. ( [1]) Let X be a real 2-uniformly convex and uniformly smooth Banach space and let
v0, v1, v ∈ X and ϱn ∈ (0, 1). Let {qn} be a sequence in X defined by qn = J−1(Jvn+ϱn(Jvn−
Jvn−1)). Then

ϕ(v, qn) ≤ ϕ(v, vn) + εϱ2n||Jvn − Jvn−1||2 + ϱnϕ(vn, vn−1)

+ ϱn(ϕ(v, vn)− ϕ(v, vn−1)),(2.23)

where ε is the constant appearing in Lemma 2.7.

Lemma 2.10. ([7]) Let {ξn}, {Γn} and {ηn} be sequences in [0,∞) such that ∀n ≥ 1,

ξn+1 ≤ ξn + ηn(ξn − ξn−1) + Γn,

If there exists an η satisfying 0 ≤ ηn ≤ η < 1, ∀n ∈ N and
∑∞
n=1 Γn < ∞. Then, the following

hold:
(i)

∑∞
n=1[ξn − ξn−1]+ <∞, where [t]+ = max{t, 0};

(ii) there exists ξ∗ ∈ [0,∞) such that lim
n→∞

ξn = ξ∗.

Lemma 2.11. ([61]) Let {cn} be a sequence of nonnegative real numbers such that

cn+1 ≤ (1− σn)cn + σnγn + bn, ∀n ∈ N,

where {σn}, {γn} and {bn} are sequences in R satisfying (i) {σn} ⊂ [0, 1] such that
∑∞
n=1 σn =

∞; (ii) lim sup
n→∞

γn ≤ 0 and (iii) bn ≥ 0,
∑∞
n=1 bn <∞. Then, lim

n→∞
cn = 0.

Lemma 2.12. ([39]) Let C be a nonempty closed convex subset of a real uniformly convex and
uniformly smooth Banach space X and let Ti : C → X , i = 1, 2, 3, . . ., be a countable family of
relatively nonexpansive maps such that

⋂∞
i=1 F (Ti) ̸= ∅. Suppose that {δi} and {τi} are sequences

in (0, 1) such that
∑∞
i=1 δi = 1 and T : X → X is defined by

Tu = J−1

( ∞∑
i=1

δi
(
τiJu+ (1− τi)JTiu

))
,

for each u ∈ C. Then, T is relatively nonexpansive and F (T ) =
⋂∞
i=1 F (Ti).

Lemma 2.13. Let C be a nonempty closed convex set in H and let Ti : C → H, i = 1, 2, 3, . . .,
be a countable family of quasi - nonexpansive mappings such that

⋂∞
i=1 F (Ti) ̸= ∅. Suppose that

{δi} and {τi} are sequences in (0, 1) such that
∑∞
i=1 δi = 1 and T : H → H is defined by

Tu =

∞∑
i=1

δi
(
τiu+ (1− τi)Tiu

)
,

for each u ∈ C. Then, T is quasi - nonexpansive and F (T ) =
⋂∞
i=1 F (Ti).

Proof. Let Ti for each i = 1, 2 . . . be a quasi - nonexpansive mapping and p ∈
⋂∞
i=1 F (Ti).

||p− Tu|| =
∣∣∣∣∣∣p− ∞∑

i=1

δi
(
τiu+ (1− τi)Tiu

)∣∣∣∣∣∣
≤

∞∑
i=1

δi||p−
(
τiu+ (1− τi)Tiu

)
||

≤
∞∑
i=1

δi
(
τi||p− u||+ (1− τi)||p− Tiu||

)
≤ ||p− u||.
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Thus, T is a quasi - nonexpansive. To prove that F (T ) =
⋂∞
i=1 F (Ti), one can follow the

same lines of proof of Lemma 3 in [11], with quasi - nonexpansive mappings Ti, ∀i ≥
1. □

Lemma 2.14. ([40]) Let {an} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {anr

} of {an} that satisfies anr
< anr+1, ∀r ≥ 0.

Consider the sequence of integers {β(n)}n≥n0 defined by

β(n) = max{s ≤ n : as < as+1},

then, {β(n)}n≥n0 is a nondecreasing sequence satisfying lim
n→∞

β(n) = ∞ and for all n ≥ n0, it
holds that

aβ(n) ≤ aβ(n)+1 and an ≤ aβ(n)+1

.

Lemma 2.15. ([5]) Let X be a strictly convex, smooth and reflexive Banach space with the dual
X ∗ and let C be a nonempty, closed, convex and bounded subset of X . Let J : X → X ∗ be a nor-
malized duality mapping. Let A : C → X ∗ be an η-hemicontinuous and relaxed η − α monotone
mapping and ξ : C × C → R be a bifunction satisfying (C1) and (C4). Let g : C → R be a
proper, convex lower semicontinuous. For r > 0 and u ∈ X . Suppose
(i) η(u, u) = 0, for all u ∈ C;
(ii) η(v, y) + η(y, v) = 0, ∀v, y ∈ C;
(iii) ⟨Au, η(., v)⟩ is convex and lower semicontinuous for fixed u, v ∈ C;
(iv) α : X → R is weakly lower semicontinuous.

Then there exists z ∈ C, such that

ξ(z, v) + ⟨Az, η(v, z)⟩+ g(v)− g(z) +
1

r
⟨Jz − Ju, v − z⟩ ≥ 0, ∀y ∈ C.

Lemma 2.16. ([15]) Let C be a nonempty convex closed and bounded set in a uniformly smooth
and strictly convex Banach space X with the dual space X ∗. Let A : C → X ∗ be an η-hemicontinuous
and relaxed η − α monotone mapping, ξ : C × C → R be a function which satisfies the conditions
(C1) - (C4) and let g : C → R ∪ {+∞} be a proper, convex and lower semicontinuous function.
For r > 0 and u ∈ X , define a map Tr : X → C as follows

Tr(u) =

{
z ∈ C : ξ(z, v) + ⟨Az, η(v, z)⟩+ g(v)− g(z) +

1

r
⟨v − z, Jz − Ju⟩ ≥ 0, ∀y ∈ C

}
,

Assume that
(i) η(u, v) + η(v, u) = 0, ∀u, v ∈ C;
(ii) for any fixed a, b ∈ C, the mapping u 7→ ⟨Ab, η(u, a)⟩ is convex and lower semicontinuous;
(iii) α : X → R is weakly lower semicontinuous; that is for
any net {uβ}, uβ converges to u in σ(X ,X ∗) implying that α(u) ≤ lim inf α(uβ);
(iv) for any u, v ∈ C, α(u− v) + α(v − u) ≥ 0;
(v)

〈
A
(
tz1 + (1− t)z2

)
, η
(
v, tz1 + (1− t)z2

)〉
≥ t ⟨Az1, η(v, z1)⟩

+ (1− t) ⟨Az2, η(v, z2)⟩, ∀ z1, z2, v ∈ C and t ∈ [0, 1].

Then, the following properties hold:
(1) Tr is single-valued,
(2) Tr is firmly nonexpansive, i.e., for u, v ∈ X ,

⟨Tru− Trv, JTru− JTrv⟩ ≤ ⟨Tru− Trv, Ju− Jv⟩ ;
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(3) F (Tr) =MEP (ξ, A),
(4) MEP (ξ, A) is closed and convex.
(5) ϕ(p, Tru) + ϕ(Tru, u) ≤ ϕ(p, u), p ∈ F (Tr), u ∈ X .

3. MAIN RESULTS

In the first, the following lemma is proved.

Lemma 3.17. Let X be a real 2 - uniformly convex and uniformly smooth Banach space with its
dual space X ∗. Let B : X → X ∗ be a µ - inverse strongly monotone map, A : X → X ∗ be a relaxed
η−αmonotone and η-hemicontinuous mapping, ξ : X×X → R be a function which satisfies (C1)
- (C4) and g : X → R be a convex, proper and lower semicontinuous function. Let T : X → X be
a relatively nonexpansive map such that Ω = F (T ) ∩ GMEP (ξ,A, g) ∩ B−1(0) ̸= ∅. Assume
that the conditions (i) - (v) of Lemma 2.16 and the following condition are satisfied:

(vi) ∀u, v, w, z ∈ X ,

(3.24) lim sup
t→0

〈
Az, η

(
u, tv + (1− t)w

)〉
≤ ⟨Az, η(u,w)⟩ .

Let {vn} be a sequence generated as follows

(3.25)



v0, v1 ∈ X ,
C0 = X ,
tn = vn + θn(vn − vn−1),
gn = J−1

(
Jtn − δBtn

)
,

pn+1 = J−1
(

1
λ

(
JT (gn)− Jgn

)
+ βnJpn

)
,

yn = J−1
(
Jgn + λJpn+1

)
,

zn = J−1
(
αnJtn + (1− αn)Jyn

)
,

un ∈ X such that ξ(un, u) + ⟨Aun, η(u, un)⟩
+g(u)− g(un) +

1
rn

⟨u− un, Jun − Jzn⟩ ≥ 0, ∀u ∈ X ,
Cn+1 =

{
z ∈ Cn : ϕ(z, un) ≤ ϕ(z, tn) + γn

}
,

vn+1 = ΠCn+1
v0, n ≥ 0,

where J is the map defined in (2.15), p1 = Tv1−v1
λ , γn = 2λ(1 − αn)||Tgn||||pn||βn +

λ2||pn||2(1 − αn)β
2
n, λ > 0, {θn}, {αn} ⊂ (0, 1), {βn} ⊂ [0,∞), {rn} ⊂ [b,∞) for some

b > 0 and 0 < δ < cµ
2 , with the 2 - uniformly convex constant of X as c. Then {vn}

converges strongly to v∗ ∈ Ω, provided that the following conditions hold:
(D1) lim

n→∞
βn = 0,

(D2) αn ∈ (a, 1− a), for some a ∈ (0, 1).

Proof. Observe that

yn = J−1
(
Jgn + λJpn+1

)
= J−1

(
Jgn + λ

( 1
λ
(JTgn − Jgn) + βnJpn

))
(3.26)

= J−1
(
JTgn + λβnJpn

)
.

The proof is divided into steps;

Step (1): We show that {vn} is well defined and Ω ⊂ Cn, ∀n ≥ 0.
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Observe that

(3.27) ϕ(z, un) ≤ ϕ(z, tn) + γn ⇔ 2 ⟨z, Jtn − Jun⟩ ≤ ||tn||2 − ||un||2 + γn.

Therefore, using (3.27), it is easily seen that Cn is closed and convex, ∀n ≥ 0. Thus, {vn} is
well defined.

We also observe that for n = 0, Ω ⊂ C0 = X . Assume that Ω ⊂ Cn and let p ∈ Ω. Then,
from the scheme (3.25), Lemma 2.2, Lemma 2.3 and the definition of the map V , we obtain

ϕ(p, gn) = ϕ
(
p, J−1

(
Jtn − δBtn

))
= V

(
p, Jtn − δBtn

)
≤ V

(
p,
(
Jtn − δBtn

)
+ δBtn

)
− 2

〈
J−1

(
Jtn − δBtn

)
− p, δBtn

〉
= V

(
p, Jtn

)
− 2δ

〈
J−1

(
Jtn − δBtn

)
− p,Btn

〉
= ϕ(p, tn)− 2δ ⟨tn − p,Btn⟩ − 2δ

〈
J−1

(
Jtn − δBtn

)
− tn, Btn

〉
(3.28)

= ϕ(p, tn)− 2δ ⟨tn − p,Btn −Bp⟩ − 2δ
〈
J−1

(
Jtn − δBtn

)
− tn, Btn

〉
≤ ϕ(p, tn)− 2δµ||Btn||2 + 2δ||J−1(Jtn − δBtn)− J−1(Jtn)||||Btn||

≤ ϕ(p, tn)− 2δµ||Btn||2 +
4δ2

c
||Btn||2

= ϕ(p, tn)− 2δ
(
µ− 2δ

c

)
||Btn||2.

Using the assumption that 0 < δ < cµ
2 , we have

(3.29) ϕ(p, gn) ≤ ϕ(p, tn).

Using (3.26), (3.29) and the notion that T is relatively nonexpansive, we get

ϕ(p, yn) = ϕ
(
p, J−1(JTgn + λβnJpn)

)
= ||p||2 − 2 ⟨p, JTgn + λβnJpn⟩+ ||J−1(JTgn + λβnJpn)||2

= ||p||2 − 2 ⟨p, JTgn⟩ − 2λβn ⟨p, Jpn⟩+ ||JTgn + λβnJpn||2

≤ ||p||2 − 2 ⟨p, JTgn⟩ − 2λβn ⟨p, Jpn⟩+
(
||JTgn||+ λβn||Jpn||

)2
= ||p||2 − 2 ⟨p, JTgn⟩ − 2λβn ⟨p, Jpn⟩+ ||Tgn||2 + 2λβn||pn||||Tgn||(3.30)

+ λ2β2
n||pn||2

≤ ϕ(p, Tgn)− 2λβn ⟨p, Jpn⟩+ 2λ||pn||||Tgn||βn + λ2||pn||2β2
n

≤ ϕ(p, gn)− 2λβn ⟨p, Jpn⟩+ 2λ||pn||||Tgn||βn + λ2||pn||2β2
n

≤ ϕ(p, tn)− 2λβn ⟨p, Jpn⟩+ 2λ||pn||||Tgn||βn + λ2||pn||2β2
n.
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Now, putting un = Trnzn, using (3.30), (B3), convexity of ||.||2 and Lemma 2.16(5), we get

ϕ(p, un) = ϕ(p, Trnzn)

≤ ϕ(p, zn)

= ϕ
(
p, J−1

(
αnJtn + (1− αn)Jyn

))
≤ αnϕ(p, tn) + (1− αn)

(
ϕ(p, tn)− 2λβn ⟨p, Jpn⟩(3.31)

+ 2λ||pn||||Tgn||βn + λ2||pn||2β2
n

)
≤ ϕ(p, tn)− 2λβn ⟨p, Jpn⟩+ 2λβn ⟨p, Jpn⟩

+ 2λ(1− αn)||pn||||Tgn||βn + λ2||pn||2(1− αn)β
2
n

≤ ϕ(p, tn) + 2λ(1− αn)||pn||||Tgn||βn + λ2||pn||2(1− αn)β
2
n

= ϕ(p, tn) + γn.

Hence, we have p ∈ Cn+1. So, by induction, we have that Ω ⊂ Cn, ∀n ≥ 0.

Step (2): We show that vn → v∗ ∈ X as n→ ∞.

From the definition of vn, we have vn = ΠCnv0. Using (2.21), we obtain

ϕ(vn, v0) = ϕ(ΠC0
v0, v0)

≤ ϕ(p, xo)− ϕ(p,ΠCn
v0)(3.32)

≤ ϕ(p, v0).

∀p ∈ Ω ⊂ X . Therefore,
{
ϕ(vn, v0)

}
is bounded. Consequently, {vn}, {tn}, {gn}, {yn}, {un},

{pn} and {Tgn} are bounded.

On the other hand, since vn+1 ∈ Cn+1 ⊂ Cn, and vn = ΠCnv0, we have

(3.33) ϕ(vn, v0) ≤ ϕ(vn+1, v0), ∀n ≥ 0.

Showing that,
{
ϕ(vn, v0)

}
is nondecreasing. From (3.32) and (3.33), we have that lim

n→∞
ϕ(vn, v0)

exists. Hence for any positive integer m > n, by (2.21), we have

ϕ(vm, vn) = ϕ(vm,ΠCn
v0)

≤ ϕ(vm, v0)− ϕ(vn, v0).(3.34)

Using the fact that lim
n→∞

ϕ(vn, v0) exists, we obtain that

(3.35) lim
m,n→∞

ϕ(vm, vn) = 0.

Consequently, by Lemma 2.8, we have

(3.36) lim
m,n→∞

||vm − vn|| = 0.

This shows that {vn} is Cauchy sequence in X . Hence, there exists v∗ ∈ X such that

(3.37) lim
n→∞

vn = v∗.

Step (3): We show that v∗ ∈ B−1(0).

Considering m = n+ 1 in (3.36), we see that

(3.38) lim
n→∞

||vn+1 − vn|| = 0.
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From the definition of tn and (3.38), we get

||vn − tn|| = θn||vn − vn−1||
≤ ||vn − vn−1|| → 0 as n→ ∞.(3.39)

In view of Remark 2.5 and the boundedness {tn}, one see that lim
n→∞

ϕ(vn, tn) = 0. Also

from (3.38) and (3.39), we have ||vn+1 − tn|| → 0. Again, by Remark 2.5, we obtain

(3.40) lim
n→∞

ϕ(vn+1, tn) = 0.

Now, from vn+1 = ΠCn+1
v0 ∈ Cn+1, we get

ϕ(vn+1, un) ≤ ϕ(vn+1, tn) + γn, ∀n ≥ 0.

Since lim
n→∞

βn = 0, we have from the boundedness of {pn} and {Tgn} that lim
n→∞

γn = 0.
Thus, from (3.40) we get

lim
n→∞

ϕ(vn+1, un) = 0.

Again, from Lemma 2.8, we obtain

(3.41) lim
n→∞

||vn+1 − un|| = 0.

Using (3.38) and (3.41), we obtain

(3.42) ||vn − un|| ≤ ||vn − vn+1||+ ||vn+1 − un|| → 0 as n→ ∞.

From (3.39) and (3.42), we have

(3.43) lim
n→∞

||tn − un|| = 0.

Using the uniform continuity of J on a bounded set in X , we get

(3.44) lim
n→∞

||Jtn − Jun|| = 0.

The inequalities (3.28), (3.30) and (3.31) imply

ϕ(p, un) ≤ (1− αn)ϕ(p, yn) + αnϕ(p, tn)

≤ αnϕ(p, tn) + (1− αn)ϕ(p, gn)− 2λ(1− αn)βn ⟨p, Jpn⟩
+ 2λ(1− αn)||pn||||Tgn||βn + λ2||pn||2(1− αn)β

2
n

≤ αnϕ(p, tn) + (1− αn)
(
ϕ(p, tn)− 2δ

(
µ− 2δ

c

)
||Btn||2

)
+ γn(3.45)

= ϕ(p, tn) + γn − 2δ(1− αn)
(
µ− 2δ

c

)
||Btn||2.

Therefore, we obtain from (3.45) and condition (D2) that

(3.46) 2δa
(
µ− 2δ

c

)
||Btn||2 < 2δ(1− αn)

(
µ− 2δ

c

)
||Btn||2 ≤ ϕ(p, tn)− ϕ(p, un) + γn,
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where

ϕ(p, tn)− ϕ(p, un) = ||tn||2 − 2 ⟨p, Jtn⟩+ ||p||2

−
(
||p||2 − 2 ⟨p, Jun⟩+ ||un||2

)
= −2 ⟨p, Jtn⟩+ ||tn||2 + 2 ⟨p, Jun⟩ − ||un||2

= ||tn||2 − ||un||2 − 2 ⟨p, Jtn − Jun⟩

≤
∣∣∣∣||tn||2 − ||un||2

∣∣∣∣+ 2
∣∣ ⟨p, Jtn − Jun⟩

∣∣(3.47)

≤ 2||p||||Jtn − Jun||+
∣∣∣∣||tn|| − ||un||

∣∣∣∣(||tn||+ ||un||
)

≤ ||tn − un||
(
||tn||+ ||un||

)
+ 2||p||||Jtn − Jun||.

Using (3.43) and (3.44), we obtain from (3.47) that

(3.48) lim
n→∞

(
ϕ(p, tn)− ϕ(p, un)

)
= 0.

Now, from (3.46), (3.48), the fact that 0 < δ < cµ
2 , the condition (D1) and the boundedness

of {pn} and {Tgn}, we get

(3.49) lim
n→∞

||Btn|| = 0.

Since B is µ - inverse strongly monotone, it is 1
µ - Lipschitz continuous. It therefore follows

from (3.37), (3.39) and (3.49) that v∗ ∈ B−1(0).

Step (4): We show that v∗ ∈ F (T ).

Let r = sup
n∈N

{
||tn||, ||Tgn||

}
. Since X is uniformly smooth Banach space, then, X ∗ is uni-

formly convex Banach space. So, for p ∈ Ω, putting un = Trnzn, using (3.26), (3.29),
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Lemma 2.16(5) and the notion that T is relatively nonexpansive mapping, we obtain

ϕ(p, un) = ϕ(p, Trnzn)

≤ ϕ
(
p, J−1

(
αnJtn + (1− αn)Jyn

))
≤ ||p||2 − 2αn ⟨p, Jtn⟩ − 2(1− αn) ⟨p, JTgn + λβnJpn⟩

+ ||αnJtn + (1− αn)(JTgn + λβnJpn)||2

≤ ||p||2 − 2αn ⟨p, Jtn⟩ − 2(1− αn) ⟨p, JTgn⟩
+ αn||tn||2 + (1− αn)||Tgn||2 − αn(1− αn)g

(
||Jtn − JTgn||

)
+ 2||pn||λ(1− αn)

(
αn||tn||+ (1− αn)||Tgn||

)
βn

− 2(1− αn) ⟨p, λβnJpn⟩+ λ2||pn||2(1− αn)
2β2
n

≤ αnϕ(p, tn) + (1− αn)ϕ(p, Tgn)− αn(1− αn)g
(
||Jtn − JTgn||

)
(3.50)

+ 2||pn||λ(1− αn)
(
αn||tn||+ (1− αn)||Tgn||

)
βn

− 2(1− αn) ⟨p, λβnJpn⟩+ λ2||pn||2(1− αn)
2β2
n

≤ αnϕ(p, tn) + (1− αn)ϕ(p, gn)− αn(1− αn)g
(
||Jtn − JTgn||

)
+ 2||pn||λ(1− αn)

(
αn||tn||+ (1− αn)||Tgn||

)
βn

+ λ2||pn||2(1− αn)
2β2
n

≤ αnϕ(p, tn) + (1− αn)ϕ(p, tn)− αn(1− αn)g
(
||Jtn − JTgn||

)
+ 2||pn||λ(1− αn)

(
αn||tn||+ (1− αn)||Tgn||

)
βn

+ λ2||pn||2(1− αn)
2β2
n

= ϕ(p, tn) + 2||pn||λ(1− αn)
(
αn||tn||+ (1− αn)||Tgn||

)
βn

+ λ2||pn||2(1− αn)
2β2
n − αn(1− αn)g

(
||Jtn − JTgn||

)
.

The condition (D2) implies

ϕ(p, un) ≤ ϕ(p, tn)+λ
2||pn||2(1−a)2β2

n+2||pn||λβn(1−a)2
(
||tn||+||Tgn||

)
−a2g

(
||Jtn−JTgn||

)
.

Thus,

a2g
(
||Jtn−JTgn||

)
≤ ϕ(p, tn)−ϕ(p, un)+λ2||pn||2(1−a)2β2

n+2||pn||λβn(1−a)2
(
||tn||+||Tgn||

)
.

Using (3.48), the conditions (D1), (D2) and the boundedness of {pn}, {tn} and {Tgn}, we
have

lim
n→∞

g
(
||Jtn − JTgn||

)
= 0.

The property of g gives
lim
n→∞

||Jtn − JTgn|| = 0.

Uniform continuity of J−1 on bounded set in X ∗ leads to

(3.51) lim
n→∞

||tn − Tgn|| = 0.

Also, from (3.25), we obtain
||Jgn − Jtn|| = δ||Btn||.

Using (3.49), we have

(3.52) lim
n→∞

||Jgn − Jtn|| = 0.

Similar argument as in obtaining (3.51) also leads to

(3.53) lim
n→∞

||gn − tn|| = 0.
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Combining (3.51) and (3.53), we get

||gn − Tgn|| = ||gn − tn + tn − Tgn||
≤ ||gn − tn||+ ||tn − Tgn|| → 0 as n→ ∞.(3.54)

Since vnq ⇀ v∗, then from (3.39), we get tnq ⇀ v∗. Combining with gnq − wnq → 0, it fol-
lows that gnq

⇀ v∗. Together with (3.54) and the notion of the relative nonexpansiveness
of T , we obtain v∗ ∈ F (T ) = F̂ (T ).

Step (5): We show that v∗ ∈ GMEP (ξ, A, g).

Putting un = Trnzn and using Lemma 2.16(5), we have

ϕ(un, zn) = ϕ(Trnzn, zn)

≤ ϕ(p, zn)− ϕ(p, Trnzn)

≤ ϕ(p, tn) + γn − ϕ(p, un)

= ϕ(p, tn)− ϕ(p, un) + γn.

From (3.48) and condition (D1), we get

lim
n→∞

ϕ(un, zn) = 0.

It follows from Lemma 2.8 that

(3.55) lim
n→∞

||un − zn|| = 0.

Now, from vnq
⇀ v∗, (3.42) and (3.55), we have znq

⇀ v∗ and unq
⇀ v∗ as q → ∞.

Applying the uniform continuity of J on a bounded set in X and (3.55), we have

(3.56) lim
n→∞

||Jun − Jzn|| = 0.

From rn ≥ b, we have

(3.57) lim
n→∞

∣∣∣∣∣∣∣∣Jun − Jzn
rn

∣∣∣∣∣∣∣∣ ≤ lim
n→∞

1

b
||Jun − Jzn|| = 0.

By un = Trnzn, we see that

ξ(un, z) + ⟨Aun, η(z, un)⟩+ g(z)− g(un) +
1

rn
⟨z − un, Jun − Jzn⟩ ≥ 0, ∀z ∈ X .

Replacing n by nq , we have from the conditions (C4) and (i) that

1

rnq

||z − unq
||||Junq

− Jznq
|| ≥

〈
Aunq

, η(unq
, z)

〉
+ g(unq )− g(z)− ξ(unq , z)

≥
〈
Aunq

, η(unq
, z)

〉
+ g(unq

)− g(z) + ξ(z, unq
)(3.58)

Letting q → ∞ in (3.58), using (3.57), (C4) and (ii), we get

(3.59) ⟨Av∗, η(v∗, z)⟩+ g(v∗)− g(z) + ξ(z, v∗) ≤ 0, ∀z ∈ X .

Assume that s ∈ (0, 1]. For z ∈ X , let zs = sz + (1 − s)v∗. It is clear that, zs ∈ X and
therefore,

(3.60) ⟨Av∗, η(v∗, zs)⟩+ g(v∗)− g(zs) + ξ(zs, v
∗) ≤ 0.
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Now using (C1), (C4), (i), (ii), the convexity of g and (3.60), we have

0 = ξ(zs, zs) + ⟨Av∗, η(zs, zs)⟩+ g(zs)− g(zs)

= ξ
(
zs, sz + (1− s)v∗

)
+ ⟨Av∗, η(zs, zs)⟩

≤ s
(
ξ(zs, z) + ⟨Av∗, η(z, zs)⟩+ g(z)− g(zs)

)
+ (1− s)

(
ξ(zs, v

∗) + ⟨Av∗, η(v∗, zs)⟩+ g(v∗)− g(zs)
)

≤ s
(
ξ(zs, z) + ⟨Av∗, η(z, zs)⟩+ g(z)− g(zs)

)
and dividing by s, we have

ξ(zs, z) + ⟨Av∗, η(z, zs)⟩+ g(z)− g(zs) ≥ 0, ∀z ∈ X .
By taking limit as s → 0, using (C3), (vi) together with the lower semicontinuity of g, we
obtain that

ξ(v∗, z) + ⟨Av∗, η(z, v∗)⟩+ g(z)− g(v∗) ≥ 0, ∀z ∈ X .
Showing that v∗ ∈ GMEP (ξ,A, g) and so v∗ ∈ Ω. Hence the proof is complete.

□

In view of Lemma 3.17, the following is proved as our first main theorem.

Theorem 3.1. Let X be a real 2 - uniformly convex and uniformly smooth Banach space with
its dual space X ∗. Let Bi : X → X ∗, i = 1, 2, . . . , be a countable family of mappings de-
fined in (1.1) with µi > 0 and µ = inf

i≥1
µi > 0, A : X → X ∗ be a relaxed η − α mono-

tone and η-hemicontinuous mapping, ξ : X × X → R be a bifunction which satisfies the con-
ditions (C1) - (C4) and g : X → R be a convex proper and lower semicontinuous function.
Let Ti : X → X , i = 1, 2, 3, . . . , be a countable family of mappings in (2.19) such that⋂∞
i=1 F (Ti) ∩

⋂∞
i=1 B

−1
i (0) ∩ GMEP (ξ,A, g) ̸= ∅. Suppose that {δi}, {υi} and {τi} are se-

quences in (0, 1) which satisfy
∑∞
i=1 δi = 1 and

∑∞
i=1 υi = 1. Let B : X → X ∗ be defined by

Bu =
∑∞
i=1 υiBiu and T : X → X be defined by Tu = J−1

(∑∞
i=1 δi

(
τiJu + (1 − τi)JTiu

))
for all u ∈ X . Assume that the conditions (i) - (v) of Lemma 2.16 and the following condition are
satisfied:

(vi) ∀u, v, w, z ∈ X ,

(3.61) lim sup
t→0

〈
Az, η

(
u, tv + (1− t)w

)〉
≤ ⟨Az, η(u,w)⟩ .

Let {vn} be a sequence generated as follows

(3.62)



v0, u1 ∈ X ,
C0 = X ,
tn = vn + θn(vn − vn−1),
gn = J−1

(
Jtn − δBtn

)
,

pn+1 = J−1
(

1
λ

(
JT (gn)− Jgn

)
+ βnJpn

)
,

yn = J−1
(
Jgn + λJpn+1

)
,

zn = J−1
(
αnJtn + (1− αn)Jyn

)
,

un ∈ X such that ξ(un, u) + ⟨Aun, η(u, un)⟩
+g(u)− g(un) +

1
rn

⟨u− un, Jun − Jzn⟩ ≥ 0, ∀u ∈ X ,
Cn+1 =

{
z ∈ Cn : ϕ(z, un) ≤ ϕ(z, tn) + γn

}
,

vn+1 = ΠCn+1
v0, n ≥ 0,

where J is the map defined in (2.15), p1 = Tv1−v1
λ , γn = 2λ(1−αn)||pn||||Tgn||βn+λ2||pn||2(1−

αn)β
2
n, λ > 0, {θn}, {αn} ⊂ (0, 1), {βn} ⊂ [0,∞), {rn} ⊂ [b,∞) for some b > 0, 0 < δ < cµ

2 ,
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with the 2 - uniformly convex constant of X as c. Then, the sequence {vn} converges strongly to
v∗ ∈ Ω = F (T ) ∩ B−1(0) ∩GMEP (ξ,A, g), provided that the conditions (D1) and (D2) hold.

Proof. It follows from Lemma 2.4 that B is µ - inverse strongly monotone mapping and
B−1(0) =

⋂∞
i=1 B

−1
i (0). It also follows from Lemma 2.12 that T satisfies (2.19) and F (T ) =⋂∞

i=1 F (Ti). Thus, the conclusion follows from Lemma 3.17. This completes the proof of
the first main theorem. □

For the convergence analysis of the second algorithm, we make the following assumption;

Assumption 1: Let X be a real 2-uniformly convex and uniformly smooth Banach space
with its dual X ∗ and v0, v1 ∈ X be arbitrary points. For the iterates vn−1 and vn ∀n ≥ 1,
choose ςn ∈ (0, 1) such that

∑∞
n=1 ςn <∞, θn ∈ [0, θ̄n] and any η ≥ 0 such that

θ̄n :=


min

{
n−1
n+η−1 ,

ςn
||Jvn−Jvn−1|| ,

ςn
ϕ(vn,vn−1)

}
if vn ̸= vn−1,

n−1
n+η−1 .

We obtained this idea based on the recent inertial extrapolation steps in [2, 8].

Remark 3.6. It is immediately seen from Assumption 1 that for every n ≥ 1, we have

θn||Jvn − Jvn−1||2 ≤ ςn and θnϕ(vn, vn−1) ≤ ςn.

Together with
∑∞
n=1 ςn < ∞ and the constant ε appearing in Lemma 2.7, we respectively

obtain

(3.63)
∞∑
n=1

εθn||Jvn − Jvn−1||2 <∞

and

(3.64)
∞∑
n=1

θnϕ(vn, vn−1) <∞.

Next, we consider the following lemma;

Lemma 3.18. Let X be a real 2 - uniformly convex and uniformly smooth Banach space with its
dual space X ∗. Let B : X → X ∗ and T : X → X be mappings which satisfy (1.1) with µ > 0
and (2.19) respectively, such that Ω = F (T ) ∩ B−1(0) ̸= ∅. Let {vn} be a sequence generated as
follows;

(3.65)



v0, v1 ∈ X ,
tn = vn + θn(vn − vn−1),
gn = J−1

(
Jtn − δBtn

)
,

pn+1 = J−1
(

1
λ

(
JT (gn)− Jgn

)
+ βnJpn

)
,

yn = J−1
(
Jgn + λJpn+1

)
,

zn = J−1
(
αnJtn + (1− αn)Jyn

)
,

vn+1 = J−1
(
σnJu+ (1− σn)Jzn

)
, n ≥ 0,

where J is the map defined in (2.15), λ > 0, 0 < δ < cµ
2 , where c is the 2 - uniformly

convex constant of X , p1 = Tv1−v1
λ and {βn} ⊂ [0, β̄n], ∀n ≥ 1, such that

(3.66) β̄n =
ϑn

max{||pn||||Tgn||, ||pn||, β}
, for any β > 0.
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Then, the sequence {vn} converges strongly to v∗ ∈ Ω, provided that Assumption 1 and
the following conditions hold;
(E1) ϑn ∈ [0,∞), such that

∑∞
n=0 ϑn <∞,

(E2) αn ∈ (a, 1 − a), for some a ∈ (0, 1) and σn ∈ (b, 1 − b), for some b ∈ (0, 1) such that
lim
n→∞

σn = 0 and
∑∞
n=1 σn = ∞.

Proof. We begin our proof with the following remark.

Remark 3.7. It is immediately seen from the definition of βn in (3.66) that for all n ≥ 1,
we have

βn||pn||||Tgn|| ≤ ϑn and βn||pn|| ≤ ϑn.

Together with condition (E1), we respectively obtain

(3.67)
∞∑
n=1

βn||pn||||Tgn|| <∞

and

(3.68)
∞∑
n=1

βn||pn|| <∞.

In a similar fashion, the following steps are followed for the proof.

Step (I): We start by showing that {vn} is bounded.

Let p ∈ Ω. In view of the inequality (3.31), one sees that

(3.69) ϕ(p, zn) ≤ ϕ(p, tn) + γn,

where γn = 2λ(1− αn)||pn||||Tgn||βn + λ2||pn||2(1− αn)β
2
n.

Now, using (B3), inequality (3.69), Lemma 2.9 and the fact that θn ∈ (0, 1), one sees that

ϕ(p, vn+1) = ϕ
(
p, J−1

(
σnJu+ (1− σn)Jzn

))
≤ σnϕ(p, u) + (1− σn)

(
ϕ(p, tn) + γn

)
≤ σnϕ(p, u) + (1− σn)

(
ϕ(p, vn) + θn

(
ϕ(p, vn)− ϕ(p, vn−1)

)
(3.70)

+ εθ2n||Jvn − Jvn−1||2 + θnϕ(vn, vn−1) + γn
)

≤ max
{
ϕ(p, u), ϕ(p, vn) + θn

(
ϕ(p, vn)− ϕ(p, vn−1)

)
+ εθn||Jvn − Jvn−1||2 + θnϕ(vn, vn−1) + γn

}
If ϕ(p, u) is the maximum, then we obtained the desired result. Otherwise, there exists
n0 ∈ N, such that ∀n ≥ n0, we have

ϕ(p, vn+1) ≤ ϕ(p, vn) + θn
(
ϕ(p, vn)− ϕ(p, vn−1)

)
+ εθn||Jvn − Jvn−1||2 + θnϕ(vn, vn−1) + γn.

Hence, by Assumption 1, condition (E1), Lemma 2.10 and (3.66) , we obtain that for ev-
ery p ∈ Ω, the sequence {ϕ(p, vn)} converges and thus, bounded. Furthermore, by (B1),
{vn} is bounded. Consequently, {tn}, {gn}, {zn}, {yn}, {pn} and {Tgn} are bounded.

Step (II): Next is to show that lim
n→∞

||vn+1 − vn|| = 0.
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Let p ∈ Ω. Following the same lines of proof as in (3.50), we first estimate ϕ(p, zn) as
follows;

ϕ(p, zn) ≤ 2||pn||λ(1− αn)
(
αn||tn||+ (1− αn)||Tgn||

)
βn + ϕ(p, tn)

+ λ2||pn||2(1− αn)
2β2
n − αn(1− αn)g

(
||Jtn − JTgn||

)
.(3.71)

Using the inequality (3.71), conditions (E2), Lemma 2.9 and the fact that σn, θn ∈ (0, 1),
we estimate ϕ(p, vn+1) as follows;

ϕ(p, vn+1) ≤ (1− σn)ϕ(p, zn) + σnϕ(p, u)

≤ σnϕ(p, u) + ϕ(p, tn) + 2||pn||λ(1− σn)(1− αn)
(
αn||tn||

+ (1− αn)||Tgn||
)
βn + λ2||pn||2(1− σn)(1− αn)

2β2
n

− αn(1− αn)(1− σn)g
(
||Jtn − JTgn||

)
≤ ϕ(p, vn) + σnϕ(p, u) + θn

(
ϕ(p, vn)− ϕ(p, vn−1)

)
(3.72)

+ εθn||Jvn − Jvn−1||2 + θnϕ(vn, vn−1) + Γn

− a2bg
(
||Jtn − JTgn||

)
,

where Γn = ||pn||λ(1− σn)(1− αn)
(
2
(
αn||tn||+ (1− αn)||Tgn||

)
+ ||pn||λ(1− αn)βn

)
βn.

Rearranging the terms in (3.72), we get

a2bg
(
||Jtn − JTgn||

)
≤ σnϕ(p, u)− ϕ(p, vn+1) + ϕ(p, vn)

+ εθn||Jvn−1 − Jvn||2 + θnϕ(vn, vn−1)(3.73)
+ θn

(
ϕ(p, vn)− ϕ(p, vn−1)

)
+ Γn.

In the remaining part of the proof, the following two cases are considered.

Case 1. Assume that n0 ∈ N exists, such that for any n ≥ n0,

ϕ(p, vn+1) ≤ ϕ(p, vn).

Then, {ϕ(p, vn)} converges. Therefore, it follows from the inequality (3.73), conditions
(E1), (E2), the boundedness of {tn}, the definition of β̄n in (3.66) and the facts that
lim
n→∞

ϕ(p, vn) exists, lim
n→∞

θnϕ(vn, vn−1) = 0 and lim
n→∞

εθ||Jvn − Jvn−1||2 = 0, we obtain
that

lim
n→∞

g
(
||Jtn − JTgn||

)
= 0.

The property of g also implies

(3.74) lim
n→∞

||Jtn − JTgn|| = 0.

Similar argument as in (3.51) also leads to

lim
n→∞

||tn − Tgn|| = 0.

Observe that since lim
n→∞

θnϕ(vn, vn−1) = 0, Lemma 2.8 provides that lim
n→∞

θn||vn− vn−1|| =
0. The uniform continuity of J on bounded sets implies that lim

n→∞
θn||Jvn − Jvn−1|| = 0.

Furthermore, since ||Jtn − Jvn|| = θn||vn − vn−1|, then

(3.75) lim
n→∞

||Jtn − Jvn|| = 0.

Considering the equation (3.75) and the uniform continuity of J−1 on bounded sets ensure
that

(3.76) lim
n→∞

||tn − vn|| = 0.
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Combining (3.26), (3.74), (3.75), the condition (E1) and equation (3.66), one sees that

||Jvn − Jyn|| ≤ ||Jvn − JTgn||+ λ||pn||βn
≤ ||Jvn − Jtn||+ ||Jtn − JTgn||+ λ||pn||βn → 0 as n→ ∞.(3.77)

Similarly, from (3.75), (3.77) and αn ∈ (0, 1), we obtain

(3.78) ||Jzn − Jvn|| ≤ αn||Jtn − Jvn||+ (1− αn)||Jvn − Jyn|| → 0 as n→ ∞.

Combining (3.75) and (3.78), we have

(3.79) ||Jtn − Jzn|| ≤ ||Jtn − Jvn||+ ||Jvn − Jzn|| → 0 as n→ ∞.

By the uniform continuity of J−1 and equation (3.79), we get

(3.80) lim
n→∞

||tn − zn|| = 0.

Using (3.78), the boundedness of {vn} and lim
n→∞

σn = 0, we get

(3.81) ||Jvn+1 − Jvn|| ≤ σn||Ju− Jvn||+ (1− σn)||Jzn − Jvn|| → 0 as n→ ∞.

By the uniform continuity of J−1 on a bounded set, we see that

(3.82) lim
n→∞

||vn+1 − vn|| = 0.

Step (III): We prove that ωw(vn) ⊂ Ω .

Observe that the boundedness of {vn} implies that ωw(vn) ̸= ∅. Let v∗ ∈ ωw(vn). Then,
a subsequence {vnq

} of {vn} such that vnq
⇀ v∗ exists. From (3.76) and (3.80), we have

tnq ⇀ v∗ and znq ⇀ v∗ respectively.

We first show that v∗ ∈ B−1(0). Following the same lines of proof as in (3.47), one sees
that

(3.83) ϕ(p, tn)− ϕ(p, zn) ≤ ||tn − zn||
(
||tn||+ ||zn||

)
+ 2||p||||Jtn − Jzn||.

Combining (3.79), (3.80), (3.83) and the boundedness of {tn} and {zn}, we have

(3.84) lim
n→∞

(
ϕ(p, tn)− ϕ(p, zn)

)
= 0.

In view of (3.45), (3.66), (3.84), the boundedness of {Tgn}, the conditions (E1), (E2) and
the definition of zn in (3.65), we obtain

(3.85) 2δa
(
µ− 2δ

c

)
||Btn||2 ≤ ϕ(p, tn)− ϕ(p, zn) + γn → 0 as n→ ∞.

It follows from (3.85) and the fact that 0 < δ < cµ
2 that

(3.86) lim
n→∞

||Btn|| = 0.

Continuity of B, together with the equations (3.76), (3.86) and vnq ⇀ v∗, we see that
v∗ ∈ B−1(0).

Next, we show that v∗ ∈ F (T ). In connection with (3.86) and the definition of gn in (3.65),
we equivalently obtain similar result as in (3.52). Uniform continuity of J−1 on bounded
sets also leads to the same result as in (3.53). Combining (3.52) and (3.74), we have

(3.87) lim
n→∞

||Jgn − JTgn|| = 0.

Uniform continuity of J−1 on bounded sets implies

(3.88) lim
n→∞

||gn − Tgn|| = 0.
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Since vnq
⇀ v∗, then we obtain from (3.53) and (3.76) that gnq

⇀ v∗. Using (3.88) and the
fact that T satisfies (2.19), we get v∗ ∈ F (T ) = F̂ (T ). So that v∗ ∈ Ω.

Finally, we show that vn → p = ΠΩu as n → ∞. One sees that if p = v∗, then, we obtain
what is needed. Suppose that p ̸= v∗, then, the inequality (2.20), the boundedness of {vn}
and the fact that Ω is closed and convex imply the existence of a subsequence {vnq

} ⊂ {vn}
such that

lim sup
n→∞

⟨vn − v, Ju− Jv⟩ = lim
q→∞

〈
vnq

− v, Ju− Jv
〉
= ⟨v∗ − v, Ju− Jv⟩ ≤ 0.

In connection with (3.81) and the uniform boundedness of J−1, we see that

(3.89) lim sup
n→∞

⟨vn+1 − v, Ju− Jv⟩ ≤ 0.

Using (3.69), Lemma 2.2, Lemma (2.15),

ϕ(p, vn+1) = ϕ
(
p, J−1(σnJu+ (1− σn)Jzn)

)
= V (p, σnJu+ (1− σn)Jzn)

≤ V
(
p, σnJu+ (1− σn)Jzn − σn(Ju− Jv)

)
+ 2σn ⟨vn+1 − v, Ju− Jv⟩

= V
(
p, σnJp+ (1− σn)Jzn

)
+ 2σn ⟨vn+1 − v, Ju− Jv⟩

= ϕ(p, J−1(σnJp+ (1− σn)Jzn)
)
+ 2σn ⟨vn+1 − v, Ju− Jv⟩

≤ σnϕ(p, p) + (1− σn)ϕ(p, zn) + 2σn ⟨vn+1 − v, Ju− Jv⟩(3.90)
≤ (1− σn)

(
ϕ(p, vn) + εθn||Jvn − Jvn−1||2 + θnϕ(vn, vn−1)

+ θn(ϕ(p, vn)− ϕ(p, vn−1))
)
+ (1− σn)γn + 2σn ⟨vn+1 − v, Ju− Jv⟩

≤ (1− σn)ϕ(p, vn) + εθn||Jvn − Jvn−1||2 + θnϕ(vn, vn−1)

+ (1− σn)γn + 2σn ⟨vn+1 − v, Ju− Jv⟩ .

By Lemma 2.11, the inequalities (3.89), (3.90), the conditions (E1), (E2), the Assumption 1
and the definition of β̄n in (3.66) respectively, we see that lim

n→∞
ϕ(p, vn) = 0. Together with

Lemma 2.8, one obtains that lim
n→∞

vn = p.

Case 2: If the assumption in case 1 does not hold, then, we ensured the existence of a
subsequence {vmr} ⊂ {vn} such that

ϕ(p, vmr ) < ϕ(p, vmr+1), ∀r ∈ N.

By Lemma 2.14, a nondecreasing sequence {ms} exists, such that lim
s→∞

ms = ∞ and the
following hold

ϕ(p, vms+1) ≥ ϕ(p, vms
), and ϕ(p, vms

) ≥ ϕ(p, vs), ∀s ∈ N.

From the Inequality (3.73), we have

a2bg
(
||Jtms

− JTgms
||
)

≤ σms
ϕ(p, u) + ϕ(p, vms

)− ϕ(p, vms+1)

+ εθ2ms
||Jvms − Jvms−1||2 + θmsϕ(vms , vms−1)

+ θms

(
ϕ(p, vms

)− ϕ(p, vms−1)
)
+ Γms

≤ σms
ϕ(p, u) + εθms

||Jvms
− Jvms−1||2(3.91)

+ θms
ϕ(vms

, vms−1) + Γms

+ θms

(
ϕ(p, vms

)− ϕ(p, vms−1)
)
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Similar arguments as in the Case 1, lead to

lim
s→∞

||gms − Tgms || = 0, lim
s→∞

||vms+1 − vms || = 0

and
lim sup
s→∞

⟨vms+1 − v, Ju− Jv⟩ ≤ 0.

Equivalently, one easily sees from (3.90) and the fact that θms
∈ (0, 1) that

ϕ(p, vms+1) ≤ (1− σms)ϕ(p, vms) + εθms ||Jvms − Jvms−1||2

+ θmsϕ(vms , vms−1) + (ϕ(p, vms)− ϕ(p, vms−1))

+ (1− σms)γms + 2σms ⟨vms+1 − v, Ju− Jv⟩ .(3.92)

Lemma 2.11 and the inequality (3.92) lead to conclude that lim
s→∞

ϕ(p, vms
) = 0, which

implies that
lim sup
s→∞

ϕ(p, vs) ≤ lim
s→∞

ϕ(p, vms
) = 0.

Thus, lim sup
s→∞

ϕ(p, vs) = 0. Hence, by Lemma 2.8 we get that lim
s→∞

vs = p. This completes

the proof. □

Using Lemma 3.18, we prove the following as our second main Theorem.

Theorem 3.2. Let X be a real 2 - uniformly convex and uniformly smooth Banach space with its
dual space X ∗. Let Bi : X → X ∗, i = 1, 2, . . . , be a countable family of mappings which satisfies
(1.1) with µi > 0 and µ = inf

i≥1
µi > 0. Let Ti : X → X , i = 1, 2, . . . , be a countable family of

mappings defined in (2.19) such that
⋂∞
i=1 F (Ti) ∩

⋂∞
i=1 B

−1
i (0) ̸= ∅. Suppose that {δi}, {υi}

and {τi} are sequences in (0, 1) such that
∑∞
i=1 δi = 1,

∑∞
i=1 υi = 1. Let B : X → X ∗ and

T : X → X be defined by Bu =
∑∞
i=1 υiBiu and Tu = J−1

(∑∞
i=1 δi

(
τiJu + (1 − τi)JTiu

))
for every u ∈ X .

Let {vn} be a sequence generated as follows

(3.93)



v0, v1 ∈ X ,
tn = J−1(Jvn + θn(Jvn − Jvn−1)),
gn = J−1

(
Jtn − δBtn

)
,

pn+1 = J−1
(

1
λ

(
JT (gn)− Jgn

)
+ βnJpn

)
,

yn = J−1
(
Jgn + λJpn+1

)
,

zn = J−1
(
αnJtn + (1− αn)Jyn

)
,

vn+1 = J−1
(
σnJu+ (1− σn)Jzn

)
, n ≥ 0,

where J is the map defined in (2.15), λ > 0, 0 < δ < cµ
2 , where c is the 2 - uniformly convex

constant of X , p1 = Tv1−v1
λ and {βn} ⊂ [0, β̄n], ∀n ≥ 1, such that β̄n is obtained by (3.66).

Then, the sequence {vn} converges strongly to v∗ ∈ Ω = F (T ) ∩ B−1(0), provided that the
Assumption 1 and the conditions (E1) and (E2) hold.

Proof. It follows from Lemma 2.4 that B is µ - inverse strongly monotone map and B−1(0) =⋂∞
i=1 B

−1
i (0). It also follows from Lemma 2.12 that T satisfies (2.19) andF (T ) =

⋂∞
i=1 F (Ti).

Hence, the conclusion follows from Lemma 3.18. □

If in the Theorems 3.1 and 3.2, X = H, then we respectively obtain the following from
Remark 2.4.
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Corollary 3.1. Let H be a real Hilbert space. Let Bi : H → H, i = 1, 2, . . . , be a countable
family of µi - inverse strongly monotone maps with µ = inf

i≥1
µi > 0, A : H → H be an η-

hemicontinuous and relaxed η − α monotone mapping, ξ : H × H → R be a bifunction which
satisfies the conditions (C1) - (C4) and g : H → R be a proper, convex and lower semicontinu-
ous function. Let Ti : H → H, i = 1, 2, 3, . . . , be a countable family of quasi - nonexpansive
mappings such that

⋂∞
i=1 F (Ti)∩

⋂∞
i=1 B

−1
i (0)∩GMEP (ξ,A, g) ̸= ∅. Suppose that {δi}, {υi}

and {τi} are sequences in (0, 1) such that
∑∞
i=1 δi = 1,

∑∞
i=1 υi = 1. Let B : H → H and

T : H → H be defined by Bu =
∑∞
i=1 υiBiu and Tu =

∑∞
i=1 δi

(
τiu + (1 − τi)Tiu

)
for any

u ∈ H. Assume that the conditions (i) - (v) of Lemma 2.16 and the following condition are satisfied:

(vi) ∀u, v, w, z ∈ H,

(3.94) lim sup
t→0

〈
Az, η

(
u, tv + (1− t)w

)〉
≤ ⟨Az, η(u,w)⟩ .

Let {vn} be a sequence generated as follows

(3.95)



v0, v1 ∈ H,
C0 = H,
tn = vn + θn(vn − vn−1),
gn = tn − δBtn,
pn+1 = 1

λ

(
T (gn)− gn

)
+ βnpn,

yn = gn + λpn+1,
zn = αntn + (1− αn)yn,
un ∈ H such that ξ(un, u) + ⟨Aun, η(u, un)⟩
+g(u)− g(un) +

1
rn

⟨u− un, un − zn⟩ ≥ 0, ∀u ∈ H,
Cn+1 =

{
z ∈ Cn : ||un − z||2 ≤ ||tn − z||2 + γn

}
,

vn+1 = PCn+1v0, n ≥ 0,

where γn = 2λ(1 − αn)||pn||||Tgn||βn + λ2||pn||2(1 − αn)β
2
n, λ > 0, {θn}, {αn} ⊂ (0, 1),

{βn} ⊂ [0,∞), {rn} ⊂ [b,∞) for some b > 0, 0 < δ < µ
2 and p1 = Tv1−v1

λ . Then, the sequence
{vn} converges strongly to v∗ ∈ Ω = F (T ) ∩ B−1(0) ∩ GMEP (ξ,A, g), provided that the
following the conditions (D1) and (D2) hold.

Corollary 3.2. Let H be a real Hilbert space and Bi : H → H, i = 1, 2, . . . , be a countable family
of mappings which satisfies (1.1) with µi > 0 and µ = inf

i≥1
µi > 0. Let Ti : H → H, i = 1, 2, . . . ,

be a countable family of mappings defined in (2.19) such that
⋂∞
i=1 F (Ti) ∩

⋂∞
i=1 B

−1
i (0) ̸= ∅.

Suppose that {δi}, {υi} and {τi} are sequences in (0, 1) such that
∑∞
i=1 δi = 1,

∑∞
i=1 υi = 1. Let

B : H → H and T : H → H be defined by Bu =
∑∞
i=1 υiBiu and Tu = J−1

(∑∞
i=1 δi

(
τiJu +

(1− τi)JTiu
))

for every u ∈ H. Let {vn} be a sequence generated as follows

(3.96)



v0, v1 ∈ H,
tn = vn + θn(vn − vn−1),

gn = tn − δBtn,
pn+1 = 1

λ

(
T (gn)− gn

)
+ βnpn,

yn = gn + λpn+1,

zn = αntn + (1− αn)yn,

vn+1 = σnu+ (1− σn)zn, n ≥ 0,
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where λ > 0, {αn} ⊂ (0, 1), 0 < δ < µ
2 , p1 = Tv1−v1

λ and {βn} ⊂ [0, β̄n], ∀n ≥ 1, such that β̄n
is obtained by (3.66). Then, the sequence {vn} converges strongly to v∗ ∈ Ω = F (T ) ∩ B−1(0),
provided that Assumption 1 and the following the conditions (E1) and (E2) hold.

4. NUMERICAL EXAMPLE AND APPLICATIONS

4.1. Numerical example.

Example 4.1. Consider X = R. Let A : X → X , η : X ×X → X and α : X → R be defined
by

A(v) = −t2v, η(v, y) = −c(v − y), α(v) = v2, ∀v, y ∈ X ,

then, one sees that A is η - hemicontinuous and relaxed η − α monotone with t, c > 0
and satisfies the conditions (i)− (v) of Lemma 2.16 and condition (vi) of the Theorem 3.1.
Define a bifunction ξ : X ×X → R and a function g : X → R by ξ(v, y) = 8y2+2vy− 10v2

and g(v) = v2, ∀v, y ∈ X . Then, we observe that ξ and g satisfy all the stated conditions
in the Theorem 3.1 and 0 ∈ GMEP (ξ,A, g). Therefore, by Lemma 2.16, we obtain that for
any v ∈ X , rn > 0, Trnv is nonempty and single-valued. Following similar arguments as
in the example in [30], we get that

Trnv =
2v

2 + 40rn + 2t2crn
.

For each i = 1, 2, . . . , let Bi : X → X and Ti : X → X be defined by Bi(v) = 3v and
Ti(v) =

5
8v and v,∀v ∈ X . Then, it respectively follows from the Lemma 2.4 and Lemma

2.12 that B(v) = 3v is 1
3 -inverse strongly monotone and T (v) =

∑∞
i=1 δi(τiv + (1− τi)Tiv)

is relatively nonexpansive with 0 ∈ F (T ) ∩ B−1(0). The performance of our new devised
algorithms (3.62) and (3.93) are compared with the algorithms of Adamu et al. [2] and
Cholamjiak et al. [19] with A(v) = 2v, ∀v ∈ X . For the implementation of all the algo-
rithms, the initial values v0 and v1 are randomly chosen in four different cases; Case 1:
v0 = v1 = rand(1, 1), Case 2: v0 = v1 = 10rand(1, 1), Case 3: v0 = 10rand(1, 1), v1 =
rand(1, 1) and Case 4: v0 = rand(1, 1), v1 = 10rand(1, 1) and applied ||vn+1− vn|| ≤ 10−6

as the stopping criteria with 300 as the maximum number of iterations. We represent
the execution time in seconds by ”Time”, the number of iterations by ”Iter.” and set
p1 = Tv1−v1

λ and the following for the parameters;

• In the Algorithm (3.62), we set λ = 5, δ = 0.02, c = 10, t = 80, βn = 1
(n+1)20 ,

αn = 1
10n2+1 , rn = 2n

3n+1 and θn = 3n
n3+10 .

• In the Algorithm (3.93), we set λ = 5, δ = 0.3, η = 2, β = 0.01, αn = 1
10n2+1 ,

ϑn = 1
(n+1)100 , ςn = 1

10n2+1 σn = 1
50000n+1 and u = 0.5v1.

• In the Algorithm of Adamu et al. [2] (Abbreviated as AKKP Alg 3.1), the chosen param-
eters were adapted from [2].
• In the Algorithm of Cholamjiak et al. [19] (Abbreviated as PPAK Alg 1), we set λn =
0.02, βn = 0.999, σn = 1

50000n+1 and u = 0.5v1.
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TABLE 1. Numerical results of all algorithms under different initial val-
ues and mappings in Example 4.1

Ti(v) Algorithms Case 1 Case 2 Case 3 Case 4

Iter. Time Iter. Time Iter. Time Iter Time

Ti(v) =
5
8v

Alg 3.62 17 0.3525 21 0.4745 23 0.2481 2 0.0497
Alg 3.93 6 0.0872 7 0.1822 6 0.0663 7 0.1220
AKKP Alg 3.1 98 0.1847 106 0.2161 94 0.0942 80 0.1806
PPAK Alg 1 58 0.1103 124 0.2607 138 0.1521 63 0.1383

Ti(v) = v

Our Alg 3.62 21 0.0181 24 0.0278 23 0.0253 2 0.0227
Our Alg 3.93 7 1.24e-04 9 0.0068 9 0.0081 9 1.76e-04
AKKP Alg 3.1 98 7.44e-04 98 0.0121 89 0.0085 83 4.24e-04
PPAK Alg 1 69 1.62e-04 87 0.0078 170 0.0088 55 1.82e-04
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FIGURE 1. Computational results of all algorithms for Ti(v) = 5
8v and

Ti(v) = v in Example 4.1.
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Remark 4.8. Based on the numerical results reported in Table 1 and Figure 1, we observe
that Algorithms 3.62 and 3.93 require fewer iterations to reach the stopping condition than
the algorithms of Adamu et al. [2] and that of Cholamjiak et al. [19]. Moreover, Algorithm
3.93 provides smaller execution time than all the algorithms.

4.2. Applications.

4.2.1. Approximating a common minimizer of continuously Fréchet differentiable convex func-
tionals.

Lemma 4.19. (see, [36]) Let f : X → R be a continuously Fréchet differentiable, convex func-
tional on a Banach space X and ∇f represents the gradient of f . If ∇f is 1

µ - Lipschitz continuous,
then ∇f is µ - inverse strongly monotone.

To approximate a minimizer of f , the following conditions are assumed to be satisfied;

(1) f is a continuously Fréchet differentiable, convex functional on X and ∇f is 1
µ -

Lipschitz continuous;

(2) Φ = argmin
x∈X

f(u) = {u∗ ∈ S : f(u∗) = min
x∈X

f(u)} ≠ ∅.

Suppose that for each i = 1, 2, . . . , fi : X → R satisfies the conditions (1) − (2). Then,
setting Bi = ∇fi for each i = 1, 2, . . . in Algorithms 3.62 and 3.93 and assuming that⋂∞
i=1 F (Ti) ∩

⋂∞
i=1 Φi ∩ GMEP (ξ,A, g) ̸= ∅. Suppose that {υi} is a sequence in (0, 1)

such that
∑∞
i=1 υi = 1 and define B : X → R by Bu =

∑∞
i=1 υiBiu for each u ∈ X ,

then it follows from the Theorems 3.1 and 3.2 that {vn} converges strongly to v∗ ∈ Ω1 =
F (T ) ∩ B−1(0) ∩GMEP (ξ,A, g) and v∗ ∈ Ω2 = F (T )∩B−1(0) respectively.

4.2.2. Image restoration.

Example 4.2. In this example, we apply our Algorithm 3.93 to solve image restoration
problem, which is concern with the reconstruction of an image degraded by blur and
additive noise. Generally, the problem can be modeled as the following linear equation

(4.97) b = Fv + σ,

where v ∈ RN is the original image, b ∈ RM is the degraded image with noise σ and
F : RN → RM ; (M < N) is a bounded linear operator known as the blurring operator.
We use ℓ1 - regularization problem to solve (4.97), which can be modeled and viewed as
solving the following LASSO problem [27]

(4.98) min
v∈RN

{
τ ||v||1 +

1

2
||b− Fv||22

}
,

where τ > 0 is the balancing parameter. In view of the results in [29], we have ∇
(

1
2 ||Fv−

b||22
)
= FT (Fv − b).

In the experiments, we compare our Algorithm 3.93 and some relevant existing algo-
rithms in [2, 19, 49], in solving problem (4.97) and the test images of Abdul (344 × 258),
Abubakar (258 × 258), Lena (320 × 320), Barbara (320 × 320), MATLAB blur function
”fspecial(′motion′, 20, 30)” and added random noise are used. The stopping criteria of
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10−5 and the maximum number of iterations N = 3000 are used for all the algorithms.
The number of iterations is denoted by ”Iter.” and the execution time is represented in
seconds by ”Time”. We set the following for the implementations.

• In our Algorithm (3.93), we set Bv = ∇
(

1
2 ||Fv − b||22

)
, T v = nv

n+1 , θn = 0.95, σn =
1

103n+1 , αn = 1
n7 , ϑn = 1

(n+1)10 , βn = 1
(10n+1)100 , ςn = 1

(n+1)2 , λ = 100 and η = 5 .

• In the Algorithms of Adamu et al. [2] (Abbreviated as AKKP Alg 3.1), Cholamjiak et
al. [19] (Abbreviated as PPAK Alg 1), and Shehu [49] (Abbreviated as Shehu Alg 3.3), we
set Av = ∇

(
1
2 ||Fv − b||22

)
, T v = nv

n+1 , Bv = ∂(τ ||v||1) and the chosen parameters were
adapted from [2, 19]. In particular, we select λn = 0.11 for the Shehu Alg 3.3.

In Figure 2, the original, degraded and restored images by all the agorithms are presented.

TABLE 2. Computational results of all the algorithms in example 4.2

Figure Algorithms Iter. Time SNR PSNR

Abdul

Alg 3.93 1779 43.7959 52.1880 28.3388
Shehu Alg 3.3 2740 97.0222 49.0335 26.1896
PPAK Alg 1 3000 104.6158 42.4158 24.0568
AKKP Alg 3.1 2794 90.4897 41.1098 23.4103

Abubakar

Alg 3.93 2282 40.0348 47.5674 26.8269
Shehu Alg 3.3 3000 61.0223 43.6486 25.0520
PPAK Alg 1 3000 58.2490 36.6962 21.9048
AKKP Alg 3.1 3000 60.9556 35.5236 21.3199

Lena

Alg 3.93 1720 46.9639 53.1598 32.4825
Shehu Alg 3.3 2346 91.6060 51.5655 32.5016
PPAK Alg 1 2965 95.5873 43.7120 29.3881
AKKP Alg 3.1 2720 85.7591 42.7090 28.9011

Barbara

Alg 3.93 1840 127.8623 52.8909 31.4123
Shehu Alg 3.3 2639 263.8614 50.0878 30.9593
PPAK Alg 1 3000 403.2466 43.6449 28.1606
AKKP Alg 3.1 2885 317.0611 42.4174 27.5585
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(A) Original Images

(B) Test images degraded by motion blur and random noise

(C) Degraded images in (B) restored with Alg 3.93

(D) Degraded images in (B) restored with Shehu Alg 3.3

(E) Degraded images in (B) restored with PPAK Alg 1

(F) Degraded images in (B) restored with AKKP Alg 3.1

FIGURE 2. Degradation of the test images and their restorations using
Alg 3.93, Shehu Alg 3.3, PPAK Alg 1 and AKKP Alg 3.1
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One observes that it is not easy to identify which of the algorithms has better performance
in the restoration process from the Figure 2. For that purpose, to measure the quality
of restored image by each algorithm, we apply the two different tools, SNR known as
signal-to-noise ratio and PSNR called peak signal-to-noise ratio, respectively defined by

(4.99) SNR = 20× log10

(
||v||22

||v − v∗||22

)
and PSNR = 20× log10

(
MAXI√
MSE

)
,

where MAXI denotes the image’s possible maximum pixel value and MSE represents the
mean square error, which is computed by

(4.100) MSE =
1

N

∑∑(
v − v∗

)2
,

where N is the image size and v and v∗ are respectively the original and the restored
images. The larger the SNR or PSNR, the better the quality of the restored image. The
results are reported in Figure 3, 4 and Table 2.
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FIGURE 3. Graphs of SNR and PSNR for Abdul and Abubakar images
restored via all the algorithms .
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FIGURE 4. SNR and PSNR graphs for Lena and Barbara images restored
via all the algorithms .

Remark 4.9. In view of the numerical results of Example 4.2 in Figure 3, Figure 4 and
Table 2 for the restored images in Figure 2, the advantages and computational efficiency
of our proposed Algorithm 3.93 in solving the problem in Example 4.2, over the existing
methods considered in the experiments, which include the Shehu Alg 3.3 in [49], PPAK
Alg 1 in [19] and AKKP Alg 3.1 in [2] are shown. More specifically, in its fewer iterations
and execution time requirements to reach the stipulated tolerance with the largest value
of SNR and PSNR for all the test images than the methods in [2, 19, 49]. In particular,
PPAK Alg 1 was only abled to restore the Lena Image in the whole experiments before the
exhaustion of the maximum number of iterations. Similarly, Abubakar Image was also
not abled to be restored by Shehu Alg 3.3 and AKKP Alg 3.1 before reaching the maxi-
mum number of iterations.
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5. CONCLUSIONS

This paper presents efficient and accelerated inertial algorithms with conjugate gradient
- like direction for solutions of a generalized mixed equilibrium problem with relaxed
monotone mapping and zeros of a countable family of inverse strongly monotone map-
pings, that are fixed points of a family of relatively nonexpansive mappings. Applications
of the theorems for a common minimizer of a countable family of smooth and convex
functions are considered. Moreover, the numerical performance of our proposed methods
in solving image restoration problems and numerical example are compared with that of
algorithms in [2, 19, 49]. The numerical results justify the advantages and computational
efficiency of our proposed algorithms over those in [2, 19, 49].
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