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Inertial Krasnosel’skii-Mann iterative algorithm with
step-size parameters involving nonexpansive mappings
with applications to solve image restoration problems

NATTHAPHON ARTSAWANG!2, SOMYOT PLUBTIENG!2, OVIDIU BAGDASAR®#9,
KASAMSUK UNGCHITTRAKOOLY2, SUPARAT BAIYA! and PURIT THAMMASIRI!

ABSTRACT. In this work, we propose and study an inertial Krasnosel’skii-Mann iterative algorithm with
step-size parameters involving nonexpansive mapping to find a solution of a fixed point problem of a nonex-
pansive mapping in the frame work of Hilbert spaces. Strong convergence of the new proposed algorithm is
proved under some useful properties of a nonexpansive mapping and inequalities on real Hilbert spaces to-
gether with the appropriate conditions of scalar controls without relying on the concept of viscosity methods.
For the applications, we employ the obtained results to find a zero point of some monotone inclusion problems
and then apply to solve image restoration problems. For representing the advantage of the new algorithm, the
signal to noise ratio (SNR) with various types of blurring operators and some numerical experiments are pre-
sented to compare and illustrate the behavior of the new algorithm with numerical results of some previous
existing algorithms.

1. INTRODUCTION

Throughout this work, the notations N, R, R* and I stand for the set of all natural
numbers, the set of all real numbers, the Euclidean space R* (k € N) and the identity
mapping, respectively. Let H be a real Hilbert space with its inner product (-, -) which
induces its norm || - || = /{-, ).

Let H be a real Hilbert space and let 7" be a mapping with domain D(7") and range
R(T)in H (ie.,, T : D(T)(C H) — R(T)(C H)). Then, the set of all fixed points of T is
denoted by F(T) := {u € D(T) : Tu = u}. Amapping T : D(T)(C H) — R(T)(C H) is
said to be:

(i) a Lipshitzian mapping if there exists a real constant L > 0 such that

|ITu —Tv|| < L|lu—v|, Vu,ve D).
(ii) a strict pseudo-contractive mapping if there exists x € (—oo, 1) such that
(1.1) |Tu —To||* < |lu—v|]> +&|(I = T)u— (I —T)o||>, Vu,ve D(T).

In particular, it is well known that if K = —1in (1.1), then the mapping T"in (1.1) is said to
be a firmly nonexpansive mapping and the equivalent form of this mapping can be written
as |[Tu —Tw||* < (u—v,Tu—Tv), VYu,v € H. If k = 0in (1.1), then the mapping T in
(1.1) is said to be a nonexpasive mapping, that is, | Tu — Tv|| < ||lu —v|, Vu,v € H. Fur-
thermore, if & is outside (—o0,1) and k = 1, then T is called a pseudo-contractive mapping,
see [9, 16, 37] for more details.
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Image restoration is an interesting field of image processing which assists in the recov-
ery of images that have been degraded by a variety of factors under varied conditions.
The goal of image restoration mathematically is to retrieve the original image = from a
degraded image y. One can assume the below mathematical model that relates x and y as
follows:

y=Tz+w,
where I is the blur operator and w is noise. To obtain the reconstructed image, one can
solve the following least-squares problem, that is, min {% Tz — y||§ +7 qS(a:)} , Where
TzeRF

7 > 0 is the regularization parameter and ¢(-) is the regularization functional. A well-
known regularization functional that is used to remove noise in the restoration problem
is the [; norm. The problem above can be written in the form of the following problem as:

1
(1.2) find = € argmin { Tz — y||§ + T||:r:||1} ,
z€RF 2

where || - ||, is the /; norm, |-/, is the usual norm. Let f,L : R* — R be defined by
f(z) = 7l|z||; and L(z) = § ||Lz — y||2, respectively. Then, solving (1.2) is equivalent to

solve the following monotone inclusion problem:
(1.3) find Z € R* such that 0 € (® + 1I),
where ®(z) = 0f(x) ={z € H: f(y) > f(z) + {2,y —x), Vy € H}isthesubdifferential
of fand Il = VL = V (% IT() — y||§) = T*(I'(-) — y) is the gradient of L where I'* is the
transpose of I'. Moreover, from (1.3) it can be observed that

te{x ER’“’ 0€ (®+1a} = zer(® + 1),

where zer(® +I1) is the set of all zeros of ® + II. Furthermore, it can be seen from Section 4
that zer(® +1II) = F(T) where T is nonexpansive which in the form of T := J,,4 o (I — nII)
where J,s is the resolvent operator of n® (n > 0) (see Section 4 for more details). These
show that image restoration problems, monotone inclusion problems and fixed point
problems have a strong relationship among them.

Recall that if C is a nonempty closed and convex subset of H, then for each w € H there
is a unique & € C such that |jw — &|| = muég ||lw — z||. Then, the mapping Pc : H — C

which is defined by Po(w) = & for all w € H is said to be the metric projection (or the
nearest point projection) of H onto C, see [6, 33, 34] for more details.

Fixed Point Problem: The fixed point problem for the mapping 7', which is typically
expressed by:

(1.4) find x € H such that z = Tx.

The construction of fixed points for nonexpansive mappings is a significant topic within
the field of nonexpansive mappings and has wide-ranging applications in various prac-
tical domains such as image restoration, image recovery, and signal processing (see, e.g.
[4, 9, 10, 12, 29]). However, creating a tool to find a solution of (1.4) for a nonexpan-
sive mapping 7" in the form of a simple iterative algorithm such as Picard iteration [26],
ie. xp41. = Txy for all n € N U {0} where z; is any arbitrary point in H may fail to
converge to a solution of (1.4). For example, if we let T : [0,1] — [0,1] defined by
Tx = 1 — x for every z € [0,1] it is not hard to verify that T is a nonexpansive map-
ping with F(T') = {3} and if starting with 2y = § then it generates z; = 1 — zp = 2 and

ro =1 —21 = % which goes on and on and then it produces an alternating sequence,
that is, (zn),-0 = (3,3, 3,2,1, 2,...) which is a sequence that does not converge to the
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desired answer that is 1. In order to overcome and solve problems which are disadvan-
tages like this, the Krasnosel’skii-Mann algorithm [20], which is widely recognized and
significant for solving (1.4), was introduced in the following manner:

{xo eC,

15
(1.5) Tp1 = (1 — an)tn + Tz, Vn >0,

where (a,),>0 is some appropriate sequence chosen from [0, 1]. Reich [31] proved that
if T in (1.5) is nonexpansive with a fixed point and (ay,),>0 in accordance with certain
favorable conditions, then (1.5) converges weakly to a fixed point of T. Subsequently,
Ishikawa [16] drew inspiration from Krasnosel’skii-Mann’s concepts and put forward the
subsequent iterative approach for a Lipschitzian pseudo-contractive mapping 7" in Hilbert
spaces, as outlined below:

X € C,
(1.6) Yn = (1 - an)xn + apTay,

In specific circumstances involving appropriate choices of C, (a)n>0 and (8,)n>0, he
successfully demonstrated that (1.6) converges strongly to a fixed point of T'. In another
way, Halpern [15] introduced a novel method for solving a fixed point problem (1.4) of a
nonexpansive mapping T'. This approach deviates not much from Krasnosel’ski-Mann’s
technique by requiring that one element of the vector remains unchanged, as follows:

{u,zo eC,

1.7
(1.7) Tnt1 = (1 —ap)u+ o, Tz, VYn>0,

where (a,)n>0 is taken from [0,1]. He showed that (1.7) converges strongly to a fixed
point of T' under some suitable conditions. Moudafi [21] later devised an improved it-
erative technique that ensures strong convergence, which subsequently became known
as the viscosity approximation method. This approach was developed by merging the
Halpern iterative method with the concept of contraction mapping. Subsequently, nu-
merous scholars explored the idea of the viscosity approximation method and further
developed it in various directions. For more comprehensive information, please refer to
references [3, 11, 25, 27, 28, 35].

In 2009, Yao et al. [39] proposed a modified Krasnosel’skil-Mann iterative algorithm for
non-expansive mappings by employing some step-size parameters. They showed that the
new algorithm converges strongly to a fixed point of a nonexpansive mapping in Hilbert
spaces. Their algorithm was defined as follows:

xg € H,
(1.8) Yn = (1 — ap) zp,
Tnt1 = (1= Bn)yn + BnTyn, Vn =0,
where g € H and (a),,50, (Bn),,>( are some appropriate sequences in [0, 1].

In 2019, Bot et al. [8] studied and improved (1.5) to achieve strong convergence to a
fixed point of a nonexpansive mapping. Their method is the following procedure:

{.CL‘()EH,

1.
( 9) Tn4+1 = (1 - )\n)a—nzn + AnTUnIn; n Z 07

when (A,)n>0 and (o, )n>0 are sequences chosen from (0, 1]. Moreover, they proved under
some suitable assumptions on (A, )n>0 and (o,,)n>0 that the sequence generated by (1.9)
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converges strongly to the fixed point Z of 7" which is the nearest point of zero, that is,
& = Pp(r)(0).

In 1964, Polyak [30] put up a number of ideas to increase the convergence speed of
iterative algorithms. These approaches involve adjustments to traditional iterative proce-
dures, such as incorporating variable relaxation parameters and employing acceleration
methods that utilize an inertial extrapolation term, that is, 8,,(z,, — z,—1) where (6,,) is a
sequence that meets some suitable assumptions. After that, inertial extrapolation has gar-
nered significant interest and been the subject of investigation by numerous researchers,
see[1,2,4,5,7,18, 22, 24, 23] for more details. In 2019, Shehu [32] introduced an algo-
rithm that integrates the inertial technique, the Halpern method, and error components
to find a solution for a fixed point of a nonexpansive mapping. Subsequently, Kitkuan et
al. [17] applied the concept of inertial extrapolation terms to the viscosity approximation
method for solving some monotone inclusion problems and then utilized their methods
to address issues related to image restoration. Artsawang and Ungchittrakool [4] pro-
posed and studied the inertial Mann-type iterative scheme, which was inspired by Bot et
al. [8], for solving some fixed point problems of a nonexpansive mapping. They then ap-
plied it to address problems related to monotone inclusion and image restoration. Their
procedure can be expressed as follows:

To,x1 € H,
(AU2020) Yn = Tp + en(xn - mn71)7
Tn+1 = OnlYn + an(TUnyn - Unyn) + Ens n 2 1a

where (0,,)n>1, (n)n>1, (0n)n>1 are sequences chosen from [0, 1] which satisfy certain de-
sirable properties.

Motivated by above research works in this direction, it inspired us to come up with the
idea to propose the following iterative algorithm:

xo,r1 € H,

Yn = Tpn + O (T — Tp_1),

zn = (1= an)Tyn,

Tpy1 = onzn + bp(Tonzy — Onzn) +€ny, Yn>1,

(Algorithm 1)

where T' : H — H is nonexpansive, (6,,),,~,; C [0,60] with 0 € [0,1), (an)n>1, (bp)n>1 C
[0,1), (6n)n>1 C [0,1], and (,,),~, € H which correspond to certain favorable condi-
tions. Moreover, we can show in Section 3 that the defined by Algorithm 1 above con-
verges strongly to & € F'(T') which is the nearest point of zero, that is, & = Pp7)(0).

Inclusion Problem of the Sum of Three Monotone Operators: The inclusion problem
of the sum of three monotone operators can be stated by:

(IPSTMO) find z € H such that0 € &z + Yz + Iz

where ®, ¥ : H — 2% and Il : H — H are some monotone operators (see Section 4 for
more details).

In the part of applications by utilizing Algorithm 1, it is important to note that the con-
sidered nonexpansive mapping 7' can be constructed by the three monotone operators
®, ¥, II. In addition, it was found that zer (¢ + ¥ + II) = J,5 (F(T')), where zer (® + ¥ + II)
is the set of all zeros of ® + ¥ + II and J,,y is the resolvent operator of n¥ (n > 0). With
this direction, we can apply Algorithm 1 to solve IPSTMO (see Section 4 for more details).

Finally, to demonstrate the usefulness and numerical advantages of the newly invented
tool in the form of Algorithm 1, we can create a new algorithm that is a product of Algo-
rithm 1 to solve the image restoration problems. In addition, we can validate the efficacy
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of our new algorithm by showcasing numerical results in different circumstances. These
findings undeniably demonstrate that our algorithm surpasses its previous version, as in-
dicated by the superior performance observed in the numerical analys is (see Section 5 for
more details).

2. PRELIMINARIES

In this section, some related and useful tools that play an important role in proving
the main theorem in the framework of real Hilbert spaces are collected for use in the next
section.

Lemma 2.1 ([33, 34]). Let H be a real Hilbert space. Then, the following equality and inequality
hold.

(D) flu+v|? <|ul®+2(u+v,0), Vu,veH

(2) lau+(1—a)|? = aljul|>+ (1 —a)||v)|> —a(l —a)|[u—v]]?, Va € Randu,v € H.

Lemma 2.2 ([38, Lemma 2.5], [19, Lemma 3.1]). Let (cn)n207 (en)nZO C [0, 400), (pn)n20 -
[0, 1] and (An),,>¢ € R be sequences such that

Cnt1 < (1 - pn)cn + pnAn + €n, VN 2> 0.

oo
Assume that Y, €, < 4o0. Then, the statements below are true.

n=0

(1) If ppAn < kpn (where k > 0), then (Cn)nzo is bounded.
(2) If 3 pn = +ooand limsup A\, <0, then lim ¢, = 0.
n:O n— o0

n—oo
Proposition 2.1 ([14, Theorem 1.]). Let T' : H — H be nonexpansive such that F(T) # @.
Then, F'(T) is closed and convex.

Throughout this study, the symbols “— ” and “— ” stand for strong and weak conver-
gence, respectively.

Lemma 2.3 (Demi-closed principle [6]). Let T' : H — H be nonexpansive, (un)n>0 C H.
Then I — T is demi-closed at 0, that is, if u, — u € H asn — oo and ||u, — Tuy| — 0 as
n — oo, then (I — T)u = 0 or equivalently to say that w € F(T).

There are some nice characteristics of the metric projection that will be useful as a tool
for proving the main theorem in the next section, which can be stated as follows:

Lemma 2.4 ([6, 33, 34]). Let C be a nonempty closed convex subset of H. Then for every w € H
and 7 € C,

&= Po(w) ifand only if (w — &,v — %) <0, VYveC.

3. MAIN RESULTS

In order to analyze the convergence of Algorithm 1 in this section, we present the con-
trol condition for the convergence of Algorithm 1 to the solution of the considered fixed
point problem.

Condition 3.1. Let (an)n>0, (bn)n>0 C [0,1), (00)n>0 C [0,1], and (en),,>q C H satisfy the
following conditions:

“+o0

(1) > an < +o0.
n=0

(2) limsup b, < 1.

n— oo
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+oo
(3) > by — bp_1] < +o0.
n=1
(4) (a) lim o, =1.
n—oo
® > (1—-o0,)=+4o00,and > |6, — op_1| < +00.
n=0 n=1
(5) > |lenll < +oc.
n=0
We can create some examples of simple sequences that satisfy the conditions in Condi-

tion 3.1 as follows:

Remark 3.1. Letv € H. Weseta, = 5, b, = 5 + n%rl, op=1— %_H,), and e, = 3% forall
n > 0. It is not hard to verify that all of the sequences above satisfy Condition 3.1.

Lemma 3.5. Let T : H — H be a nonexpansive mapping with F(T) # 0 and let (2,,)n>0
be defined by Algorithm 1. Let (0,),,~, C [0,0] with 6 € [0,1) such that 3_ 0y ||xn — Tp—1]]

n=1
< +00. Assume that Condition 3.1 holds. Then (z,)n>0 is bounded.
Proof. Letn € Nand u € F (T). Then, let us consider
(3.10) yn — ull = llzn + On(2n — za—1) —ull < |2 — ull + O lzn — 2]l

By using (3.10), we get that
lzn — ull = [[(1 = an)Tyn — ull = [[(1 = an) (Tyn — u) — anul|
< (1= an) lyn — ull + an [Jull
< (1 =an) (lzn — ull + 0n [|2n — zp—1]]) + an [Jull
(3.11) < (1 =an) |lzn —ull + On |20 — Tn—1ll + an [ull.
By using (3.11), it can be observed that
lonzn — ull
= [lon(zn —u) + (o0 = Dull < on llzn —ull + (1 = on) [Jul]
< on(l—an) |lzn —ull + 0 (|20 — Tp1l| + onan [lull + (1 — on) [ull
(312) < (1= (1= 0n(l—an)) n — ull + (1 = o(1 = an) [ull + 00 120 — 2011l
Using (3.12) for connecting, we will have
[ €01 = ull
= |lonzn + bn(Tonzn — onzn) +en — ul|
=1|(1 = bn)(onzn —u) + bn(Topz, —u) + &,
< (1 =by) llonzn — ull + by [Tonzn — ull + llenll < llonzn — ull + (el
S (=1 =on(l=an)) llzn —ull + (1 = on(l —an)) [u]
(3.13) + O |20 — 1]l + llenll -
Applying Lemma 2.2 (1) to (3.13) via setting 1 — 0, (1 — an) = pn, |Tn —ul| = cp, |Jul| =

An =k, and 0, ||z, — zp—1] +]|en]] = €n, thenit allows (), >0 to be a bounded sequence.

g

Lemma 3.6. Let T : H — H be a nonexpansive mapping with F(T) # () and let (x,,),>0 be

defined by Algorithm 1. Let (6,,),~, C [0,0] with § € [0,1) such that 3~ 0, ||z, — zp—1| <
- n=1

+00. Assume that Condition 3.1 holds. Then ||zp41 — x| — 0as n — 4o0.
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Proof. We first note that

lyn — yn71|| =[zn — Tp_1+ en(xn —Tp1) = Op1(Tpn_1 — 37n72)H
(3.14) <|wn = Tn-1ll + O |20 — Tp—1|l + On-1 |2n—1 — Tp—2]| -
Using (3.14), we get that

20 = zn—1ll

=1 = an)Tyn — (1 = an—1)Typn-1||
= [|(1 = an)(Tyn — Tyn—1) — (an — @n—1)TYn—1||
< (1 =an) |Tyn = Tyn-1ll + lan = an—1| | Tyn-1]
< yn — yn—1ll + lan — an—1| M1
(3.15) < |wn — Tl + On |20 — 1 || + On-1 |Tn-1 — Tn—2]|| + |an — an—1| M,
where M7 := sup{||Tyn—1]|| n € N}. By connecting (3.15) with the inequality below, we
obtain that
Hanzn - Un—lzn—lll
= |lon(zn — 2n—1) + (On — On—1)2n—1]|
< 0onllzn = 2n—1l|| +lon — on-1| |2n-1l|
<on Hxn - wn71|| + 0, Hxn - $n71|| +0n1 ||33an - xanH
(3.16) +|an — an—1| My + |op — Opn_1| M2,
where My :=sup {||z,—1||| » € N}. By employing (3.16), we have the following:
[ Znt1 — xnl|
=||(1 = bn)onzn + bpTonzy, +€n — (1 —bp1)on—12n—1+ bn_1T0n_12n-1 + €n-1)||
= (1 =bn)(onzn — On-12n-1) — (bn = bn-1)on-12n-1 + bpn(Tonzn — Topn_12n-1)
+(bn, —bp—1)Ton_12n-1+ (€n — €n—1)||
< (1 =bp) lonzn — on—1zn-1ll + [bn — bu-1| lon=12n-1l + bn |Tonzn — Ton—12n—1||
+ [bn = by—1| | Ton—12n—1| + llen — en—1|
<lonzn = on-12n-1l + |bn — bp—1| Mz + [len — en—1l|
<onllzn = Tn-all + O0n |20 — Tn—all + On1 |Tn—1 — Tn—2ll + |an — an—1| M
+|on — on_1| Mo + |byy — bp—1| M5 + |len, — €n-1|
(3.17)
=1 =1 =0n) llzn —zn-1ll + (1 = 02)0 + G,
where M3 :=sup {||on-12n—1|| + | T0n-12n-1]|| n» € N} and
Cn = 0n ||zn — Tp—1|| + On—1 |Tn-1 — 2| + |an — an_1| M1 + |00y — Op—1| M2
+ by = bp_1| M3 + |len, — en_1| -
By applying Lemma 2.2 (2) and the Condition 3.1 to (3.17), we can conclude that
|Zn+1 — 2l = 0as n — +o0. U

Theorem 3.2. Let T : H — H be a nonexpansive mapping with F(T) # 0 and let (z,,)n>0
be defined by Algorithm 1. Let (6,,),,~, C [0,0] with 6 € [0,1) such that >_ 0y ||[2n — zn—1|

n=1
< +o00. Assume that Condition 3.1 holds. Then, the sequence (x,)n>o converges strongly to
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Proof. From Lemma 3.5, we have (z,)n>0 is bounded. Since F(T) # 0, y, = =, +
On (Tn —zp—1) and z, = (1 —an) TYn, SO (Yn)n>0 and (zn)n20 are also bounded. Let
% := Pp(7)(0). Then & € F(T). By using Lemma 2.1 (1), we get that

[y — 5%”2 = [|[zn — & + On(zn — xn71)||2 < lwn — *%”2 + 200 (Y — T, Tn — Tp_1)

(3.18) < lan — &|1* + 0 |20 — Tn_1|| L1,
where Ly :=sup {2 ||y, — Z||| n € N} . Therefore, using (3.18), we get that
Iz — &1 = (1 = an)Tyn — 2|° = (Tyn — &) — anTyn|”
1 —a 2
T n - L 77741—‘ n
= - (T gy
2 1 —a 2
=(1- — (Tyn—4)+ —"T

9 1 12 —a 2 a A 12
=(1-an) <(1_a)||Tyn—$|| "‘(1_7;L)||Tyn” +(1_2)2||33>

= (1= an)ITyn — &* = an(1 = an) [ Tyn || + anl|2]*
< lyn — &[1* + an1 ]
(3.19) < Nlwn — &% + O |0 — Tu_1]| L1 + an 2]
Employing (3.19) we obtain that
lonzn = &% = lon(za = 2) + (00 — D
= 02|20 — &> 4 200 (1 — 0,) (=2, 20 — &) + (1 — 0,) |||
< o (llzn = 2 + 0 |0 = 2n-all L1 + an2]?)
+ (1= 0v) (200 (=20 = &) + (L= o)|1@])°)
< (1= (U= o)llon = &l + (1 = o) (200 (20 — &) + (1= o) 0]
(3.20) + 0 |20 — na ]| Ly + an 2],
By using (3.20), it can be observed that
|zns1 = 2% = lonzn + ba(Tonzn — onzn) + & — &
= |(1 = bp)(Onzn — &) + bp(Tonzn — 2) + 0
< (1 = bp)(Onzn — &) + b (Tonzn — 2)||° + 2 (Eny1 — &, 20)
< (1= ba)llonzn = &|* + bal| Tonza — (1 + leall L
< lonzn — 2" + llenll L
< (1= (L= 0n)|an = #l° + (1= o) (200 (=220 = &) + (1 = ou)]12])
(3.21) + 6 ||z — 21| Ly + an||2]]* + [len]l Lo,

where Ly := sup {2 |z,41 — Z||| » € N} . Next, we will prove that ||To,,z, — opzp| — 0
as n — +o00. We observe that

IT2nes = zall = [T20s1 = (1= a0)Tyall = T2ns1 = Ty + anTyal
S ||T.13n+1 - TynH +an HTynH S ||xn+1 - yn” + aan
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= ||znt1 — @ — On(zn — p_1)|| + an M
(3.22) < |zpn+1 — zn|l + On |0 — -1 || + an M.
By using (3.22), we get that
| Tonzn — onznll = |Tonzn — Tont1 + Tni1 — onznl|
< |NTonzn — Tepir|l + | TTnt1 — onznll
<Nonzn = g1l + [[(1 = 0n)T2ng1 + 0n(TTpy1 — 20)||
< |lonzn — (onzn + bn(Tonzn — onzn) + &n)ll
+ (1 = on) [ Txpt1ll + on [ TTnt1 — 24|
< by [|[Tonzn — onzall + llenll + (1 — opn)Ls
(3.23) + |Tnt1 — Tnll + On ||Tn — Tn-1l| + an M,

where L3 := sup {||Tzn+1| | n € N}. It follows from (3.23), Condition 3.1 and Lemma 3.6
that

| Tonzn — onznll

1
< 11— bn) (lenll + (X = on)Ls + [|zn41 — zull + 05 20 — Tn—1|l + an M)
n

(3.24) — 0 as n — oo.
From (3.24), we can conclude that

(3.25) lim || Ton2, — 0nzall = 0.

n— oo
Next, we expect that the sequence (z,),>0 converges strongly to & which it is enough to
show that

(3.26) lim sup(—2%, z,, — &) < 0.

n——+oo
Let us assume on the contrary that (3.26) does not hold. Then, there exists a real number
r > 0 and a subsequence (zy,, )m>1 C (2n)n>1 such that
(—&,2zp,, —&) >r>0, Vm>1

The boundedness of (zp,, )m>1 implies that there is a subsequence (z,,, )i>1 of (2n,, )m>1
such that z,,,, — z € H as | — +oc. Therefore,

(3.27) 0<r< lim (=%,2,, —2&) =(-2,2-%).

l— 400

Since lim o, =1, so we get that

n—-+oo
(3.28) Oy Znm, — % @S 0 —> 00
By (3.25), (3.28) and Lemma 2.3, it implies that z € F'(T'). Due to the assurances of Propo-
sition 2.1 and Lemma 2.4, the inequality (—Z,z — 2) = (0 — 2,z — &) < 0 is valid which
causes a contradiction with (3.27). Therefore, it leads to the conclusion that (3.26) is true.
And then, Condition 3.1 (4.1) ensures that

lim sup (20n<—§:,zn — &)+ (1 - on)||:fs||2) <0.

n—+oo
Finally, (3.21) and Lemma 2.2 (2) give us the desired result, that is, hr_{l z, = 2. The
n—-+0oo

proof is complete. O
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Remark 3.2. Let {{,}n>1 C [0, +00) be the sequence such that 3~ &, < +oc. Then, we define
n=1
O = min {07 m} , if T # Tna,
2 otherwise,

where (xy,)n>0 and 0 are taken from Theorem 3.2. Next, if (6,,)n>1 is chosen from [0, én] for all

o0
n € N, then it is not hard to verify that Y~ 0, ||z, — zp—1] < +o0.
n=1

4. APPLICATIONS TO MONOTONE INCLUSION PROBLEMS

In this section, we will focus on applying Algorithm 1 to find a zero point of some
monotone inclusion problems of three operators on the framework of real Hilbert spaces.

Let ¥ : H — 28 be a multivalued operator, where 2 stands for the power set of
H. Then, the set of all zero points of U is defined by zer(¥) := {z € H| 0 € ¥z} and
the graph of ¥ is denoted by G(V) := {(u,v) € H x H| v € Wu}, respectively. Then, the
multivalued operator ¥ is said to be:

(A) monotone if
(u—v,a—v) > 0forall (u,a), (v,0) € G(T).

(B) ~-strongly monotone if there is v > 0 such that
(u—wv,0— ) > v|lu—v|? forall (u,a), (v,0) € G(P).

(C) A-cocoercive (or A-inverse strongly monotone) if there is A > 0 such that
(u—v, 71— o) > N|a— 0|? for all (u, @), (v,9) € G(P).

(D) maximal monotone if ¥ is monotone and G(¥) is not properly contained in any
graph of other multivalued monotone operator, that is, if ® : H — 2 is a multi-
valued monotone operator such that G(¥) C G(®), then G(¥) = G(®).

In particular, if ¥ : H — H is a single-value operator, then the inequalities in (A), (B) and
(C) reduce to:

(a) monotone if
(u—v,%u — Pv) > 0 for all u,v € H.
(b) ~-strongly monotone if there is v > 0 such that
(u — v, Uu — Vo) > vy|jlu — v||? for all u,v € H.
(c) A-cocoercive (or M-inverse strongly monotone) if there is A > 0 such that
(u— v, u — Uv) > \||Yu — Yo||? for all u,v € H.
Recall that for a multivalued operator ¥ : H — 2 if we define Jy := (I + ¥)~}, then
Jy : H — 2H is said to be the resolvent operator of W. It is well known that if ¥ : H — 2H
is maximal monotone and 1 > 0, then J,,y is single-valued and firmly nonexpansive.
We focus on the monotone inclusion problem of three operators as follows:

(4.29) find x € H such that0 € &z 4+ Uz + Iz

where ®, ¥ : H — 28 are maximal monotone operators and I : H — H is a A-cocoercive
operator with A > 0.

In order to solve (4.29) by using Algorithm 1, we would like to mention some of the
key tools below:

Proposition 4.2 (Davis and Yin [13, Proposition 2.1]). Let Fy, F» : H — H be two firmly
nonexpansive operators and I1 : H — H be a A-cocoercive operator with A > 0. Let n € (0,2).
Then operator

TZ:F10(2F2—I—77HOF2)+I—F2
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2\
4A—n

is T-averaged with coefficient T :=
u,v € H

< 1. In particular, the following inequality holds for all

(1-7)
|1 Tw = Tol* < Jlu—vf* = =—=I(I = T)u — (I = T)|*
The set zer (& + ¥ + II) can be changed the writing form relative to the set F'(T") where
T is obtained from Proposition 4.2 as follows:

Lemma 4.7 (Fixed point encoding [13, Lemma 2.2]). Let ®, ¥ : H — 2" be maximal mono-
tone operators and I1 : H — H be an operator. Suppose that zer (® + W + II) # (). Then

zer (®+ W +1I) = Jyo (F(T)),
where T = Jyep 0 (2Jyw — I —nllo Jyw) + (I — J,w) and n > 0.
It can be observed that if T' = J,g 0 (2Jy0 — I —nllo J,¢) + (I — J,w), then
zn = (1= an)Tyn
=1 —=an)(Jyo o (2Jyy — I —nllo Jyg) + (I — Jyw)) yn

(4.30) = Jne (2Jpw (Yn) — Yn — Jpw (Yn)) + yn — Jyw (Yn) -
On the other hand, we observe that

Tonzn — Onzn

= (Jpo o (2Jyw — I —nllo Jyy) + (I — Jyw)) Onzn — Opn2n

= Jyo (2Jyw (0n2n) — 0nzn — NILdypw (0n2n)) + 0nzn — Jyw (On2n) — Onzy
(4.31) = Jyo (2Jyw (0n2n) — 0nzn — Nldyw (0n2n)) — Jyw (0nzn) -

Therefore, by employing Algorithm 1, the following algorithm can be constructed for
solving (4.29) as follows:

(4.32)
o, T1 € H,

Yn = Tn + Hn(xn - $n—1)a
zn = (1= an) (Jpo 2w (Yn) = Yn — 1MTyw (Yn)) + Yn — Jyw (Yn)) ,
Lot =0OnZntby (Jna (2Jnw (0n2n) —0nzn —nIlJyw (0n2n)) —Jnw (0n2n)) +en

for all n > 1, where i € (0, 2)).

(Algorithm 2)

Theorem 4.3. Let ®, ¥ : H — 2H be two maximal monotone operators and 11 : H — H be
A-cocoercive with A > 0. Suppose that zer (® + W +1II) # 0. Let (0,,)n>1 be a sequence in [0, 6]
with @ € [0,1) and n € (0,2)). Let (xn)n>0, (Yn)n>1 and (z,)n>1 be generated by Algorithm
2. Assume that >~ 0, ||z, — Tn—1|| < +oo and the Condition 3.1 hold. Then the following
=1

statements are m;le:

(1) (Tn)n>0, (Yn)n>1 and (2n)n>1 converge strongly to & := Pp(1)(0), where

T:= an) 9} (2Jn\p -1 - 17HO Jn\p) + (I— J/r]\lj) .
(2) (Jyw(Yn)),s1 and (Jyw(onzn)),, s, converge strongly to Jyw(2) € zer (® + ¥ + 1I).

Proof. (1) Let (x,,),>0 be generated by Algorithm 2. By Proposition 4.2, we get T is non-
expansive. By applying Theorem 3.2, we have the sequence (z,),>0 strongly converges
to # := Pp1)(0) as n — +oc. Since z,, — & and y,, = z, + O, (vn — T_1), S0 it is not
hard to see that y,, — &. Finally, from «,, — 0, the continuity of T"and y,, — &, we get that
zn =1 — )Ty, - TT = z.
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(2) By the first part, we know that y,, — & and since 0,, = 1 and 2, — &, 50 o2, — &.
Then, the continuity of J,y and Lemma 4.7 allows us to get that J,o(yn), Jyw(0nzn) —
Jpw(2) € Jyw(F(T)) = zer(® + ¥ +1I). O

If we put ¥ = 0 in Theorem 4.3, then J,y(z) = (I + n0) Nz) = ([40) ' (x) = I(z)
forallz € H and
T= Jn@ o (2(],7\1/ -1 — UHO anz) + (I — an;)
— Jyeo (21— Tyl T)+ (I 1)
= Jyo o (I —nll).

By applying Lemma 4.7, it yields zer (® + II) = F(T'). These will give rise to the following
corollary.

Corollary 4.1. Let ® : H — 2 be a maximal monotone operator and 11 : H — H be A-cocoercive
with X > 0 and zer (® +1I) # (. Let (2,,),>0 be generated by the following

To,x1 € H,

Yn = Tn + On(Tn — Tp_1),

Zn = (1— an)Jn<I> (Yn — nllyy) ,

Tyl = (1 = bn)onzn + bndno (0nzn — Nllonz,) + €5,

foralln > 1, where n € (0,2X) and (6,,)n>1 C [0, 6] with 6 € [0, 1). Assume that

(Algorithm 3)

> O ||xn — 2n_1|| < +oo and the Condition 3.1 hold. Then, the sequence (z,,)n>0 converges
n=1

strongly to Pyer(@+11)(0).

5. APPLICATIONS TO IMAGE RESTORATION PROBLEMS AND THEIR NUMERICAL
EXPERIMENTS

In this section, we utilize the proposed algorithm to address image restoration chal-
lenges, encompassing tasks such as image deblurring and denoising. Our primary focus
lies in employing a degradation model that faithfully reflects real-world image restoration
problems, or, at the very least, offers the most pertinent mathematical approximations for
such problems.

(5.33) y=Tz+w,

where y represents the corrupted image, I' stands for the degradation operator (or blur-
ring operator), = denotes the pristine image, and w represents the noise operator.

To obtain the reconstructed image, we solve the following regularized least-squares
problem:

(5.34) mzin{;IIF:v —yll3 +T¢($)}a

where the regularization parameter is represented by 7 > 0, and ¢(-) stands for the reg-
ularization function. A well-established regularization technique often used to reduce
noise in restoration problems is the [ norm, commonly known as Tikhonov regulariza-
tion [36]. The problem described in equation (5.34) can be formulated as follows:

1
(5.35) find = Eargmin{||Fa:—y||§+7'||a:|1},
TERF 2
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where the variable y denotes the corrupted image, and I' represents a bounded linear
operator. It’s worth highlighting that problem (5.35) can be viewed as a specific case
of problem (1.3) when configured with the following settings: ® = 9f(-), ¥ = 0, and
Il = VL(-). Here, f(z) = ||z, 7 = 0.001, and L(z) = }|Tz — y||3. With this setup, it
can be deduced that II(z) = VL(z) = I'"(I'z — y), where I'* represents the transpose of
I'. To initiate the problem-solving process, we begin by selecting images and subjecting
them to different blurring techniques. By employing the setup specified in Corollary 4.1,
we utilize Algorithm 3 to address problem (5.35) under the following conditions: «,, =
W’ Brn = 0.97 + m, op=1— ﬁnﬂ, e, = 0 and 0, is defined by

: 70n—9 1 .
I’Illl’l{ ) 2y }7 if .I?n#l‘n_l,
(5.36) 0, = { M L0 G
n—

100m ° otherwise.

We compare our proposed algorithm with the algorithm (AU2020) presented in [4, Algo-
rithm in Corollary 2], and the algorithm (KKMS2019) introduced by Kitkuan et al. [17].
For the AU2020, we choose the following parameter values: «, = 0.97 + m,

op = 1 — Wim' and A, = 0.7. Concerning the KKMS2019, we select the following

parameter values: ¢, = 0,, o, = ﬁ, An = 0.7, and h(z) = “17—; To assess the quality
of the reconstructed image, we gauge it using the signal to noise ratio (SNR) for images,
which is defined as follows:

SNR(n) = 20log,, — 2
(n) - OglO Hl'—(E ||§a

where x and z,, represent the original and the restored image at iteration n, respectively.

All experiments were conducted using MATLAB 9.19 (R2022b) and performed all com-
putations on a MacBook Pro 14-inch 2021 with an Apple M1 Pro processor and 16 GB
memory. The numerical results corresponding to the selections mentioned above are pre-
sented in the following figures.
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(A) Historical Park

(D) AU2020 (E) Algorithm 3

FIGURE 1. (A) displays the original image 'Historical Park,” while (B)
presents the images degraded by Gaussian blur. (C), (D), and (E) depict
the reconstructed images obtained using KKMS2019, AU2020, and Algo-
rithm 3, respectively.
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(D) AU2020 (E) Algorithm 3

FIGURE 2. (A) displays the original image ‘Sunflower,” while (B) presents
the images degraded by motion blur. (C), (D), and (E) depict the recon-
structed images obtained using KKMS2019, AU2020, and Algorithm 3,
respectively.
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FIGURE 3. The figures illustrate the behavior of the signal to noise ratio
(SNR) for three algorithms in Figure 1.

36 //” 4
355 1

345¢

SNR

34r

2 1
2 —Algorithm 3 ~FAlgorithm 3
—-AU2020 . ~-AU2020 ]
» —+-KKMS2019|] ~+-KKMS2019
50 100 150 200 250 300 200 210 220 230 240 250 260 270 280 290 300

Number of iterations (n) Number of iterations (n)

FIGURE 4. The figures illustrate the behavior of the signal to noise ratio
(SNR) for three algorithms in Figure 2.

TABLE 1. The signal to noise ratio (SNR) is evaluated for two images to
assess their performance.

Historical Park Sunflower

KKMS2019 AU2020 Algorithm 3 KKMS2019 AU2020 Algorithm 3
1 36.5176  41.2997 39.4942 21.6616  22.5250 22.4580
10 429012 43.4347 43.6027 24.8251 24.9899 26.0268
20 43.7624  44.0617 44.2719 26.4078 26.5469 27.8841
50 44.6071 44.7894 44.9965 29.0489 29.2146 30.6414
100 45.1287 45.2720 45.4668 31.1685 31.3474 32.7318
200 45.5866 45.7068 45.8718 33.2680 33.4526 34.7679

300 45.8229 459319 46.0464 34.4659 34.6502 35.7912
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FIGURE 5. Behaviors of the behavior of the signal to noise ratio (SNR)
for three algorithms in Figure 2.

Figure 5 shows the behavior of the signal to noise ratio (SNR) with respect to the com-
putational running time in seconds. It can be seen that Algorithm 3 consistently exhibits
a higher SNR value compared to others within the same time frame. Our algorithm has
showcased remarkable performance in image restoration, surpassing other algorithms, as
substantiated by the experimental findings.

6. CONCLUSION

We proposed and studied an inertial Krasnosel’ski-Mann iterative algorithm with step-
size parameters involving nonexpansive mapping as in Algorithm 1. We proved under
weak scalar conditions that the newly developed tool in the form of Algorithm 1 con-
verges strongly to the fixed point of a nonexpansive mappping 7" which is the nearest
point to zero, that is, the fixed point in the form & = Pp(7(0) (see Theorem 3.2). In or-
der to see the advantages and benefits of using the newly invented tool in the form of
Algorithm 1, we use Algorithm 2 (a product of Algorithm 1) to find a zero point of the
monotone inclusion problem of three operators (4.29) (see Theorem 4.3). Additionally, the
image restoration problem (5.35) can be solved by employing Algorithm 3 (a product of
Algorithm 2) (see Corollary 4.1). Furthermore, by showing numerical outcomes under
various conditions, we can confirm the positive effects of our new approach. These re-
sults clearly show that our method has greater advantages than its previous iteration, as
shown by the superior performance displayed in the numerical analysis.
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