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Inertial split projection and contraction method for
pseudomonotone variational inequality problem in Banach
spaces

ROSE MALULEKA1 , G. C. UGWUNNADI2, M. APHANE3, H. A. ABASS4 and A. R.
KHAN5

ABSTRACT. In this article, we introduce a Halpern iterative method together with an inertial projection
and contraction method for finding an approximate solution of variational inequality problem involving pseu-
domonotone mapping which also solves split common fixed point problem of Bregman demigeneralized map-
ping and Bregman strongly nonexpansive mapping in the framework of p-uniformly convex and uniformly
smooth real Banach spaces. Using our iterative method, we establish a strong convergence result for approxi-
mating the solution of the aforementioned problems and state some consequences of our main result. The result
discussed in this article extends and complements many related results in the literature.

1. INTRODUCTION

Let C be a nonempty, closed and convex subset of a real Banach space E and let E∗ denote
the dual space of E. The Variational Inequality Problem (in short VIP) is to find x ∈ C
such that

⟨Ax, y − x⟩ ≥ 0, ∀ y ∈ C,(1.1)

where A : C → E∗ is a nonlinear mapping. We denote by VI(C,A) the set of solutions of
(1.1).
Variational inequality theory introduced by Stampacchia and Fichera [24, 36] indepen-
dently, in early sixties in mechanics and potential theory respectively provides the natu-
ral, unified and efficient framework for a general treatment of a wide class of unrelated
linear and nonlinear problems arising in elasticity, economics, transportation, optimiza-
tion, control theory and engineering sciences (see [9, 10]).
The development of variational inequality theory can be viewed as the simultaneous pur-
suit of two different lines of research. The first aspect reveals the fundamental facts on
the qualitative behavior of solutions to important classes of problems. On the other hand,
it allows us to develop highly efficient and powerful numerical methods to solve, for in-
stance, obstacle, unilateral, free and moving boundary value problems.
In 1985, Pang [34] showed that a variety of equilibrium models, for example, the traffic
equilibrium problem, the spatial equilibrium problem, the Nash equilibrium problem and
the general equilibrium programming problem can be uniformly modelled as a VIP. It is
well-known that V I(C,A) is equivalent to the fixed point problem:

find x∗ ∈ C such that x∗ = PC(x
∗ − τAx∗),
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where τ is any positive real number and PC is a metric projection onto C. Recently, many
methods have been applied for finding V I(C,A), (see [2, 5, 7, 12, 13]). The simplest one
is the projection method, which is called the Gradient Projection Method (in short, GPM).
The basic idea of extending the GPM for solving problem of minimizing f(x) subject to
x ∈ C is given by

xn+1 = PC(xn − αn ▽ f(xn)), n ≥ 0,(1.2)

where {αn} is a positive real sequence satisfying certain condition and ∇f is the gradient
function. An immediate extension of the method in (1.2) is the GPM which requires sub-
stituting the gradient function with operator F so that we can generate a sequence {xn}
in the following manner:

xn+1 = PC(xn − αnFxn), ∀ n ≥ 0.

However, the convergence of this method requires a slightly strong assumption that the
operators are inverse strongly monotone or strongly monotone. In order to relax this
condition, Korpelvich [29] and Antipin [6] proposed the Extragradient Method (in short
EM) in finite dimensional Euclidean spaces for a monotone and L-Lipschitz continuous
mapping A as follows: 

x0 ∈ C, τ > 0,

yn = PC(xn − τAxn),

xn+1 = PC(xn − τAyn), ∀ n ≥ 1,

(1.3)

where τ ∈ (0, 1
L ). The sequence {xn} generated by EM (1.3) converges to an element of

V I(C,A) provided V I(C,A) is nonempty. It should be noted that in EM, one needs to
calculate two projections onto the feasible set C in each iteration. If the set C is not so sim-
ple, then the EM becomes very difficult and its implementation is costly. In addition, the
convergence of the method (1.3) requires prior estimate of the Lipschitz constant which
is often difficult to estimate and we emphasize that the stepsize defined by the process is
too small and reduces the convergence rate of the method. To the best of our knowledge,
there are some methods to overcome these drawbacks. The first one is the subgradient ex-
tragradient method (SEGM) proposed by Censor et al. [13], in which the second projection
onto C is replaced by a projection onto a specific constructible half-space. Their method is
of the form: 

yn = PC(xn − τFxn),

Tn = {w ∈ H : ⟨xn − τFxn − yn, w − yn⟩ ≤ 0},
xn+1 = PTn

(xn − τFyn), ∀ n ≥ 0,

(1.4)

where τ ∈ (0, 1
L ).

The second one is the method proposed by Tseng in [38]. His method is of the form:{
yn = PC(xn − τFxn),

xn+1 = yn − λ(Fyn − Fxn), ∀ n ≥ 0,
(1.5)

where τ ∈ (0, 1
L ).

The third one is the projection and contraction method (PCM) proposed by He [25] for
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solving VIP. The PCM can be summarized as follows:
x0 ∈ H,

yn = PC(xn − τFxn),

d(xn, yn) := (xn − yn)− τ(Fxn − Fyn),

xn+1 = xn − γηnd(xn, yn), ∀ n ≥ 0,

(1.6)

where γ ∈ (0, 2), τ ∈ (0, 1
L ) and

ηn :=
ϕ(wn, yn)

∥d(wn, yn)∥2
, ϕ(wn, yn) := ⟨wn − yn, d(wn, yn)⟩, ∀ n ≥ 0.

It is worth mentioning that the SEGM, TM and PCM described above need only to calcu-
late one projection onto C in each iteration which may improve the performance of the
algorithms. Also, the SEGM, TM and PCM have received great attention by many au-
thors, who improved it in various ways (see [2, 7, 13, 14, 18, 21, 22, 23, 27, 28, 38] and
the references contained in). We emphasize that the first two methods (SEGM and TM)
have been considered by authors extensively in the settings of real Hilbert and Banach
spaces,but no result on PCM in the literature can be found in the framework of Banach
spaces.
Question: Can we employ the PCM for solving VIP in the setting of Banach spaces?
One of the best ways to speed up the convergence rate of iterative algorithms is to com-
bine the iterative scheme with the inertial term. This term which is represented by θn(xn−
xn−1), is a remarkable tool for improving the performance of algorithms and it is known
to have some nice convergence characteristics. Thus, there are growing interests by au-
thors working in this direction (see [1, 2, 3, 4, 17, 26]). The idea of inertial extrapolation
method was first introduced by Polyak [35] and was inspired by an implicit discretiza-
tion of a second-order-in-time dissipative dynamical system, so-called ”Heavy Ball with
Friction”.

v′′(t) + γv′(t) +▽f(v(t)) = 0,(1.7)

where γ > 0 and f : Rn → R is differentiable. System (1.7) is discretized so that, having
the terms xn−1 and xn, the next term xn+1 can be determined using

xn−1 − 2xn + xn−1

j2
+ γ

xn − xn−1

j
+▽f(xn) = 0, n ≥ 1,(1.8)

where j is the step-size. Equation (1.8) yields the following iterative algorithm:

xn+1 = xn + β(xn − xn−1)− α▽ f(xn), n ≥ 1,(1.9)

where β = 1− γj , α = j2 and β(xn − xn−1) is called the inertial extrapolation term which
is intended to speed up the convergence of the sequence generated by (1.9). Alvarez and
Attouch [8] also employed the inertial extrapolation method to the setting of a general
maximal monotone operator using the proximal point algorithm (PPA), which is called
the inertial PPA, and is of the form:{

yn = xn + θn(xn − xn−1),

xn+1 = (I + rnB)−1yn, n > 1.
(1.10)

They proved that if {rn} is non-decreasing and {θn} ⊂ [0, 1) with
∞∑

n=1

θn||xn − xn−1||2 < ∞,(1.11)
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then the iterative Algorithm (1.10) converges weakly to a zero of B. More precisely, con-
dition (1.11) is true for θn < 1

3 . Here θn is an extrapolation factor.
Very recently, Dong et al. [23] proposed an inertial projection and contraction method
(IPCM) of the form: 

x0, x1 ∈ H,

wn = xn + αn(xn − xn−1),

yn = PC(wn − τFwn),

d(wn, yn) = (wn − yn)− τ(Fwn − Fyn),

xn+1 = wn − γηnd(wn, yn), ∀ n ≥ 0,

(1.12)

where γ ∈ (0, 2), τ ∈ (0, 1
L ) and

ηn :=

{
ϕ(wn,yn)

∥d(wn,yn∥2) , if d(wn, yn) ̸= 0,

0, if d(wn, yn) = 0,
(1.13)

where ϕ(wn, yn) := ⟨wn − yn, d(wn, yn)⟩. Under suitable conditions, they established that
the sequence {xn} generated by (1.12) converges weakly to an element of V I(C,F ). In the
setting of Banach space, several authors have modified the inertial extrapolation method
without the computation of the difference between the norm of the two adjacent iterates
xn and xn−1. Approximating solutions of different optimization problems with inertial
extrapolation method using either viscosity and Halpern method in the setting of Banach
space requires the modification of inertial term due to the geometry of the space (see
[3, 7, 33, 37] and the references contained in). The only case where the inertial term is
not modified is when the hybrid and shrinking methods are employed in the setting of
Banach space, (see [2, 17, 26]). To the best of our knowledge, there is no result on inertial
extrapolation method without modification using Halpern method in the setting of Ba-
nach spaces.
Question 2: Can we introduce an inertial Halpern method without the computation of
the difference between the norm of the two adjacent iterates xn and xn−1 for finding the
solution of VIP in the setting of p-uniformly convex real Banach space which are also uni-
formly smooth?.

Motivated by the results of [6, 14, 21, 22, 28, 38] and other related results in literature, we
proposed a Halpern inertial iterative algorithm with projection and contraction method
for approximating the solution of split variational inequality problem involving a pseu-
domonotone operator, fixed points of Bregman demigeneralized mapping and Bregman
strongly nonexpansive mapping in the setting of p-uniformly convex real Banach space
which is also uniformly smooth. Using our iterative method, we establish a strong con-
vergence result for approximating the solution of the aforementioned problems. We em-
phasize that our iterative method is design in such a way that it does not require prior
knowledge of the operator norm. We present some numerical examples to show the effi-
ciency of our result. The result green discussed in this paper extends and complements
many related results in the literature.

We state some known and useful results which will be needed in the proof of our main
theorem. In the sequel, we denote strong and weak convergence by ”→” and ”⇀”. re-
spectively.
Let E be a Banach space with the dual E∗. An operator A : E → E∗ is said to be p − L-
Lipschitz, if

||Ax−Ay|| ≤ L||x− y||p ∀ x, y ∈ E,
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where L ≥ 0 and p ∈ [1,∞) are two constants. If p = 1, the operator A is said to be L
-Lipschitz.
Let C ⊆ E be a nonempty set. Then a mapping A : C → E∗ is called

(a) monotone on C, if ⟨Ax−Ay, x− y⟩ ≥ 0 for all x, y ∈ C;

(b) pseudomonotone on C, if for all x, y ∈ E, ⟨Ax, y − x⟩ ≥ 0 =⇒ ⟨Ay, y − x⟩ ≥ 0;

(c) weakly sequentially continuous if for any {xn} ⊂ C such that xn ⇀ x implies
Axn ⇀ Ax.

Let E be a real Banach space and f : E → R. Then f is called:

(i) Gâteaux differentiable at x ∈ E, denoted by f ′(x) or ∇f(x), if there exists an
element y of E, such that

lim
t→0

f(x+ ty)− f(x)

t
= ⟨y, f ′(x)⟩, ∀ y ∈ E.

f is Gâteaux differentiable on E if f is Gâteaux differentiable at every x ∈ E;
(ii) weakly lower semicontinuous at x ∈ E, if xk ⇀ x implies f(x) ≤ lim inf

k→∞
f(xk).

f is weakly lower semicontinuous on E, if f is weakly lower semicontinuous at
every x ∈ E.

Let K(E) := {x ∈ E : ∥x∥ = 1} denote the unit sphere of E. The modulus of convexity is
the function δE : (0, 2] → [0, 1] defined by

δE(ϵ) = inf

{
1− ∥x+ y∥

2
: x, y ∈ K(E), ∥x− y∥ ≥ ϵ

}
.

The space E is said to be uniformly convex if δE(ϵ) > 0 for all ϵ ∈ (0, 2]. Let p > 1.
Then E is said to be p-uniformly convex (or to have a modulus of convexity of power
type p) if there exists cp > 0 such that δE(ϵ) ≥ cpϵ

p for all ϵ ∈ (0, 2]. Note that every
p-uniformly convex space is uniformly convex. The modulus of smoothness of E is the
function ρX : R+ := [0,∞) → R+ defined by

ρX(τ) = sup

{
∥x+ τy∥+ ∥x− τy∥

2
− 1 : x, y ∈ K(E)

}
.

The space E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0. Let q > 1. Then a

Banach space E is said to be q-uniformly smooth if there exists κq > 0 such that ρE(τ) ≤
κqτ

q for all τ > 0. It is known that E is p-uniformly convex if and only if E∗ is q-uniformly
smooth, where p and q satisfy 1

p + 1
q = 1, (see [19]).

Let p > 1 be a real number, the generalized duality mapping JE
p : E → 2E

∗
is defined by

JE
p (x) = {x ∈ E∗ : ⟨x, x⟩ = ∥x∥p, ∥x∥ = ∥x∥p−1},

where ⟨., .⟩ denotes the duality pairing between elements of E and E∗. In particular, if
p = 2, then JE

2 is called the normalized duality mapping. If E is p-uniformly convex and
uniformly smooth, then E∗ is q-uniformly smooth and uniformly convex. In this case, the
generalized duality mapping JE

p is one-to-one, single-valued and satisfies JE
p = (JE∗

q )−1,
where JE∗

q is the generalized duality mapping of E∗. Furthermore, if E is uniformly
smooth, then the duality mapping JE

p is norm-to-norm uniformly continuous on bounded
subsets of E, (see [20] for more details).
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If f : E → (−∞,+∞] is a proper, lower semicontinuous and convex function, then the
Frenchel conjugate of f denoted by f∗ : E∗ → (−∞,+∞] is defined as

f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ E, x∗ ∈ E∗}.

Let the domain of f be denoted by domf = {x ∈ E : f(x) < +∞}. For any x ∈ int(domf)
and y ∈ E, we denote and define the right-hand derivative of f at x in the direction of y
by

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

Definition 1.1. [11]Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable func-
tion. The function ∆f : E × E → [0,+∞) defined by

∆f (x, y) := f(y)− f(x)− ⟨∇f(x), y − x⟩(1.14)

is called the Bregman distance with respect to f , where ⟨∇f(x), y⟩ = f0(x, y).

It is well-known that Bregman distance function ∆f does not satisfy the properties of a
metric function, because Bregman function ∆f fails to satisfy the symmetric and triangu-
lar inequality properties. Moreover, it is well- known that the duality mapping JE

p is the
sub-differential of the functional fp(.) = 1

p ||.||
p for p > 1, (see [16]). Using (1.14), one can

show that the following equality called three-point identity is satisfied:

∆p(x, y) + ∆p(y, z)−∆p(x, z) = ⟨JE
p (z)− JE

p (y), x− y⟩, ∀ x, y, z ∈ E.(1.15)

In addition, if f(x) = 1
p ||x||

p, where 1
p + 1

q = 1, then we obtain

∆f (x, y) = ∆p(x, y) =
1

p
∥y∥p − 1

p
∥x∥p − ⟨y − x, JE

p (x)⟩

=
1

p
∥y∥p − 1

p
∥x∥p − ⟨y, JE

p (x)⟩+ ⟨x, JE
p (x)⟩

=
1

p
∥y∥p − 1

p
∥x∥p − ⟨y, JE

p (x)⟩+ ∥x∥p

=
1

p
∥y∥p + 1

q
∥x∥p − ⟨y, JE

p (x)⟩.(1.16)

Let T : C → C be a nonlinear mapping,
(i) a point p ∈ C is called an asymptotic fixed point of T, if C contains a sequence

{xn} which converges weakly to p such that lim
n→∞

∥Txn − xn∥ = 0. We denote by

F̂ (T ) the set of asymptotic fixed points of T ;

(ii) T is said to be Bregman relatively nonexpansive, if

F̂ (T ) = F (T ) ̸= ∅ and ∆p(u, Tx) ≤ ∆p(u, x), ∀ x ∈ C, u ∈ F (T ).

(iii) T is said to be Bregman firmly nonexpansive mapping (BFNE) if

⟨JE
p (Tx)− JE

p (Ty), Tx− Ty⟩ ≤ ⟨JE
p (x)− JE

p (y), Tx− Ty⟩, ∀ x, y ∈ C,

(iv) T is said to be Bregman strongly nonexpansive mapping (BSNE) with F̂ (T ) ̸= ∅ if

∆p(y, Tx) ≤ ∆p(y, x), ∀ y ∈ F̂ (T )

and for any bounded sequence {xn}n≥1 ⊂ C,

lim
n→∞

(∆p(y, xn)−∆p(y, Txn)) = 0
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implies

lim
n→∞

∆p(Txn, xn) = 0.

Let C be a nonempty, closed and convex subset of E. The metric projection

PCx := argmin
y∈E

||x− y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a variational
inequality:

⟨Jp
E(x− PCx), z − PCx⟩ ≤ 0, ∀ z ∈ C.(1.17)

Also, the Bregman projection from E onto C denoted by ΠC satisfies the property

∆p(x,ΠC(x)) = inf
y∈C

∆p(x, y), ∀ x ∈ E.(1.18)

[19] Let C be a nonempty, closed and convex subset of a p-uniformly convex and uni-
formly smooth Banach space E and x ∈ E. Then the following assertions hold:,
z = ΠCx if and only if

⟨Jp
E(x)− Jp

E(z), y − z⟩ ≤ 0, ∀ y ∈ C;(1.19)

and

∆p(ΠCx, y) + ∆p(x,ΠCx) ≤ ∆p(x, y), ∀ y ∈ C.(1.20)

We now give some results that will help us in the proof of our main theorem.

Lemma 1.1. [15] If E is a p-uniformly convex Banach space with p ≥ 2, then there exists K > 0
such that for all x, y ∈ E, the following inequalities hold:

⟨Jp
E(x)− Jp

E(y), x− y⟩ ≥ K||x− y||p,(1.21)

and

||x− y|| ≤
( 1

K

) 1
(p−1) ||Jp

E(x)− Jp
E(y)||

1/(p−1).(1.22)

Lemma 1.2. [16] Let E be a Banach space and x, y ∈ E. If E is q-uniformly smooth, then there
exists Cq > 0 such that

∥x− y∥q ≤ ∥x∥q − q⟨Jq
E(x), y⟩+ Cq∥y∥q.

Lemma 1.3. [39] Let E be a p-uniformly convex Banach space, the metric and Bregman distance
have the following relation for all x, y ∈ E

πp∥x− y∥p ≤ ∆p(x, y) ≤ ⟨x− y, Jp
E(x)− Jp

E(y)⟩,(1.23)

where πp > 0 is a fixed number and for any q > 1, if 1
p + 1

q = 1, by Young’s inequality, we have

⟨Jp
E(x), y⟩ ≤ ||Jp

E(x)||||y|| ≤ 1

q
||Jp

E(x)||
q +

1

p
||y||p

=
1

q
(||x||p−1)q +

1

p
||y||p

=
1

q
||x||p + 1

p
||y||p.(1.24)
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Lemma 1.4. [16] Let q > 1 be a fixed real number and E be a smooth Banach space. Then E is
q-uniformly smooth if and only if there exists a constant Cq such that for all x, y ∈ E, we have∥∥∥x+ y

2

∥∥∥q ≥ 1

2
||x||q + 1

2
||y||q − 2−qCq||x− y||q.(1.25)

Putting x = u− v and y = u+ v in (1.25), we get for all u, v ∈ E

||u− v||q ≤ 2(||u||q + Cq||v||q)− ||u+ v||q ≤ 2(||u||q + Cq||v||q).(1.26)

Lemma 1.5. [40] Let E be a real p-uniformly convex and uniformly smooth Banach space. Let
Vp : E∗ × E → [0,+∞) be defined by

Vp(x
∗, x) =

1

q
∥x∗∥q − ⟨x∗, x⟩+ 1

p
∥x∥p, ∀ x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
(i) Vp is nonnegative and convex in the first variable.
(ii) ∆p(J

E∗

q (x∗), x) = Vp(x
∗, x), ∀ x ∈ E, x∗ ∈ E∗.

(iii) Vp(x
∗, x) + ⟨y∗, JE∗

q (x∗)− x⟩ ≤ Vp(x
∗ + y∗, x),∀ x ∈ E, x∗, y∗ ∈ E∗.

Lemma 1.6. [19] Let E be a real p-uniformly convex and uniformly smooth Banach space. Sup-
pose that {xn} and {yn} are bounded sequences in E. Then lim

n→∞
∆p(xn, yn) = 0 implies

lim
n→∞

||xn − yn|| = 0.

Definition 1.2. [42] Let C be a nonempty subset of a p-uniformly convex (0 < p < ∞)
and uniformly smooth real Banach space E. A mapping T : C → E is called θ−Bregman
demigeneralized type with respect to p, if F (T ) ̸= ∅ and there exists a real number θ such
that

∆p(x, Tx) ≤ θ⟨Jp
E(x)− Jp

E(Tx), x− x∗⟩ ∀ x ∈ E, x∗ ∈ F (T ).(1.27)

Lemma 1.7. [42] Let C be a nonempty subset of a p-uniformly convex and uniformly smooth real
Banach space E. Let T : C → E be a θ−Bregman demigeneralized type mapping with θ ∈ R.
Then F (T ) is closed and convex.

Lemma 1.8. [30] Let E be a real reflexive Banach space and C a nonempty, closed and convex
subset of E Let A be a continuous pseudomonotone mapping from C into E∗. Then, V I(C,A) is
closed and convex. Furthermore, x∗ ∈ V I(C,A) if and only if ⟨Ax, x− x∗⟩ ≥ 0 for all x ∈ C.

Lemma 1.9. [41] Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence of real
numbers in (0, 1) with condition:

∞∑
n=1

αn = ∞

and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn,∀n ≥ 1.

If lim sup
k→∞

bnk
≤ 0 for every subsequence {ank

} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank
) ≥ 0,

then lim
n→∞

an = 0.

In the sequel, we assume the following hold.

Assumption 1.1. (C1) E1 and E2 are p−uniformly convex real Banach spaces which are also
uniformly smooth and C is a nonempty closed and convex subset of E1.
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(C2) A : C → E∗
1 is pseudomonotone and (p− 1)− L−Lipschitz continuous on E1.

(C3) A is weakly sequentially continuous, that is for any {xn} ⊂ E1, we have xn ⇀ x∗ implies
Axn ⇀ Ax∗.

(C4) B : E1 → E2 is a bounded linear operator with adjoint B∗ : E∗
2 → E∗

1 and S : E2 →
E2 is a ξ− Bregman demigeneralized type mapping which is demiclosed at 0 such that
F (S) ̸= ∅, where ξ ∈ (0,∞) with 1

ξ ≥ 1 − η, η ∈ (−∞, 0] and T : E1 → E1 is a
Bregman strongly nonexpansive mapping.

(C5) {µn} is a positive sequence in
(
0,

pπp

2p−1

)
, where πp is defined in (1.23), µn = ◦(αn),

where αn is a sequence in (0, 1) such that lim
n→∞

αn = 0 and
∞∑

n=1
αn = ∞, and {βn},

{γn} are sequences in (0, 1) such that αn + βn + γn = 1, βn ∈ (a, b) ⊂ (0, 1) and
γn ∈ (c, d) ⊂ (0, 1) for all n ≥ 1.

(C6) Denote the set of solution by Γ := SOl(A,C)∩B−1(F (S))∩F (T ) and is assumed to be
nonempty. Then Γ is closed and convex.

Next, we introduce an inertial extrapolation with projection and contraction method for
finding common solution of fixed point problem and pseudomonotone variational in-
equality problem:

Algorithm 1.2. Initialization: Choose x0, x1 ∈ E1 to be arbitrary and θ ∈ (0, πp), K∗ > 0.
Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn for each n ≥ 1, θ > 0, choose θn such that 0 ≤ θn ≤ θ̄n,
where

(1.28) θ̄n =


min{θ, µn

∥Jp
E1

(xn)−Jp
E1

(xn−1)∥}, if xn ̸= xn−1,

θ, otherwise.

Step 2. Compute

(1.29)

{
yn = Jq

E∗
1
[Jp

E1
(xn) + θn(J

p
E1

(xn)− Jp
E1

(xn−1))],

wn = ΠC(J
q
E∗

1
[Jp

E1
(yn)− τA(yn)]).

If wn = yn for some n ≥ 1, then stop and is a solution of the problem (VIP). Otherwise
go to step 3.

Step 3. Compute

(1.30)

{
vn = Jq

E∗
1
[Jp

E1
(yn)− ρnJ

p
E1

(dn)],

dn = Jq
E∗

1
(Jp

E1
(yn)− Jp

E1
(wn)− τ(A(yn)−A(wn))).

where

ρq−1
n = K∗ ||J

p
E1

yn − Jp
E1

wn||q

||Jp
E1

dn||q
, if dn ̸= 0; otherwise ρn = 0(1.31)

and ⟨Jp
E1

dn, yn − wn⟩ ≥ K∗||Jp
E1

yn − Jp
E1

wn||q.(1.32)

Step 4. Compute

(1.33)
{

zn = Jq
E∗

1
(Jp

E1
(vn)− λnB

∗(Jp
E2

(Bvn)− Jp
E2

(S(Bvn))))

xn+1 = Jq
E1

(αnJ
p
E1

(u) + (1− αn)J
p
E1

(Tzn)),
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where, for any fixed ϵ > 0, the step λn is chosen as follows:

(1.34) 0 < ϵ ≤ λn ≤
( πpq||Bvn − SBvn||p

Cqξ||B∗(Jp
E2

(Bvn)− Jp
E2

(SBvn))||q
− ϵ

) 1
p−1

,

if Bvn ̸= SBvn, otherwise λn = (λ > 0). Set n := n+ 1 and return to Step 1.

Lemma 1.10. If yn = wn or dn = 0 in Algorithm 1.2, then yn ∈ V I(C,A).

Proof. Since A is (p−1)−L− Lipschitz continuous with constant L > 0, from (1.30), (1.22)
and (1.26), we get

||Jp
E1

dn||q = ||Jp
E1

yn − Jp
E1

wn − τ [Ayn −Awn]||q

≤ 2
(
||Jp

E1
yn − Jp

E1
wn||q + Cqτ

q||Ayn −Awn||q
)

≤ 2||Jp
E1

yn − Jp
E1

wn||q + 2Cqτ
q[L||yn − wn||(p−1)]q

≤ 2||Jp
E1

yn − Jp
E1

wn||q + 2Cqτ
qLq

( 1

K

)q

||Jp
E1

yn − Jp
E1

wn||q

= 2
(
1 + Cq

(τL
K

)q)
||Jp

E1
yn − Jp

E1
wn||q.(1.35)

Also

||Jp
E1

dn||q = ||Jp
E1

yn − Jp
E1

wn − τ [Ayn −Awn]||q

≥ 2−1||Jp
E1

yn − Jp
E1

wn||q − Cqτ
q||Ayn −Awn||q

≥ 2−1||Jp
E1

yn − Jp
E1

wn||q − Cqτ
q[L||yn − wn||(p−1)]q

≥ 2−1||Jp
E1

yn − Jp
E1

wn||q − Cqτ
qLq

( p

c2

)q

||Jp
E1

yn − Jp
E1

wn||q

=
(1
2
− Cq

(τL
K

)q)
||Jp

E1
yn − Jp

E1
wn||q.(1.36)

Combining (1.35) and (1.36), we obtain

(1
2
−Cqτ

qLq
( 1

K

)q) 1
q ||Jp

E1
yn−Jp

E1
wn||≤||Jp

E1
dn|| ≤2

(
1+Cqτ

qLq
( 1

K

)q) 1
q ||Jp

E1
yn−Jp

E1
wn||

(1.37)

thus, Jp
E1

yn = Jp
E1

wn ⇒ yn = wn if and only if Jp
E1

dn = 0. Hence, if yn = wn or dn = 0,
we get

yn = PC(yn − τAyn).

□

Lemma 1.11. Let {xn} be the sequence generated by Algorithm 1.2 under Assumption 1.1. Then,
{xn} is bounded.

Proof. Let x∗ ∈ Γ, since wn ∈ C, it follows that ⟨Ax∗, wn − x∗⟩ ≤ 0, thus by pseudomono-
toncity of A, we get

⟨Awn, wn − x∗⟩ ≤ 0.(1.38)

Also, by definition of wn, i.e. wn := ΠC [J
q
E1

(Jp
E1

yn−τAyn)], letting Jp
E1

bn := Jp
E1

yn−τAyn,
then wn = ΠCzn, by (1.19), we get

⟨Jp
E1

zn − Jp
E1

wn, wn − x∗⟩ ≥ 0

which implies

⟨Jp
E1

yn − τAyn − Jp
E1

wn, wn − x∗⟩ ≥ 0.(1.39)
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Combining (1.38) and (1.40), we obtain

⟨Jp
E1

yn − Jp
E1

wn − τ(Ayn −Awn), wn − x∗⟩ ≥ 0.

Hence

⟨Jp
Edn, wn − x∗⟩ ≥ 0.(1.40)

Now, by Lemma 1.2 and 1.5, and relations (1.31), (1.32), (1.40), (1.22) and (1.23), we get

∆p(vn, x
∗) = ∆p(J

q
E∗

1
(Jp

E1
yn − ρnJ

p
E1

dn), x
∗)

= Vp(J
p
E1

yn − ρnJ
p
E1

dn, x
∗)

=
1

q
||Jp

E1
yn − ρnJ

p
E1

(dn)||q − ⟨Jp
E1

yn − ρnJ
p
E1

(dn), x
∗⟩+ 1

p
||x∗||p

≤ 1

q
||Jp

E1
yn||q − ρn⟨Jp

E1
dn, yn⟩+ Cqq

−1||ρnJp
E1

dn||q

−⟨Jp
E1

yn, x
∗⟩+ ρn⟨Jp

E1
dn, x

∗⟩+ 1

p
||x∗||p

= Vp(J
p
E1

yn, x
∗)− ρn⟨Jp

E1
(dn), yn − x∗⟩+ Cqq

−1||ρnJp
E1

(dn)||q

= ∆p(yn, x
∗)− ρn⟨Jp

E1
(dn), yn − wn⟩ − ρn⟨Jp

E1
(dn), wn − x∗⟩

+Cqq
−1||ρnJp

E1
(dn)||q

≤ ∆p(yn, x
∗)− ρnK||Jp

E1
yn − Jp

E1
wn||q + Cqq

−1||ρnJp
E1

(dn)||q

≤ ∆p(yn, x
∗)− ||ρnJp

E1
(dn)||q + Cqq

−1||ρnJp
E1

(dn)||q

= ∆p(yn, x
∗)− (1− Cqq

−1)||ρnJp
E1

(dn)||q

= ∆p(yn, x
∗)− (1− Cqq

−1)||Jp
E1

yn − Jp
E1

vn||q.(1.41)

From Bregman identity (1.15), we get

∆p(yn, x
∗) = ∆p(xn, x

∗)−∆p(xn, yn) + ⟨Jp
E1

yn − Jp
E1

xn, yn − x∗⟩.(1.42)

Since we have yn = Jq
E∗

E1

(Jp
E1

xn+ θn(J
p
E1

xn−Jp
E1

xn−1)), it follows from (1.23), (1.24) and
(1.28) that

⟨Jp
E1

yn − Jp
E1

xn, yn − x∗⟩ ≤ ||Jp
E1

yn − Jp
E1

xn||||yn − x∗||
= θn||Jp

E1
xn − Jp

E1
xn−1||||yn − x∗||

≤ θn||Jp
E1

xn − Jp
E1

xn−1||
[1
p
||yn − x∗||p + 1

q

]
≤ θn

p
||Jp

E1
xn − Jp

E1
xn−1||[2p−1(||xn − yn||p + ||xn − x∗||p)]

+
θn
q
||Jp

E1
xn − Jp

E1
xn−1||

≤ 2p−1µn

pπp

(
∆p(xn, yn) + ∆p(xn, x

∗)
)
+

µn

q
.(1.43)

Combining (1.42) and (1.43), we get

∆p(yn, x
∗) ≤

(
1 +

2p−1µn

pπp

)
∆p(xn, x

∗)−
(
1− 2p−1µn

pπp

)
∆p(xn, yn) +

µn

q
.(1.44)
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Indeed from the definition of (zn), Lemma 1.2 and 1.5, and relations (1.23) and (1.2), we
get

∆p(zn, x
∗) = ∆p(J

q
E1

(Jp
E1

(vn)− λnB
∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))), x

∗)

= Vp(J
p
E1

(vn)− λnB
∗(Jp

E2
(Bvn)− Jp

E2
(SBvn)), x

∗)

=
1

p
||x∗||p − ⟨Jp

E1
(vn)− λnB

∗(Jp
E2

(Bvn)− Jp
E2

(SBvn)), x
∗⟩

+
1

q
||Jp

E1
(vn)− λnB

∗(Jp
E2

(Bvn)− Jp
E2

(SBvn))||q

≤ 1

p
||x∗||p−⟨Jp

E1
(vn), x

∗⟩+λn⟨B∗(Jp
E2

(Bvn)− Jp
E2

(SBvn)), x
∗⟩+1

q

[
||Jp

E1
(vn)||q

−λnq⟨B∗(Jp
E2

(Bvn)−Jp
E2

(Sbvn)), vn⟩+Cqλ
q
n||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q

]
=

1

p
||x∗||p + 1

q
||vn||p − ⟨Jp

E1
(vn), x

∗⟩ − λn⟨Jp
E2

(Bvn)− Jp
E2

(SBvn), Bvn −Bx∗⟩

+
Cqλ

q
n

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q

≤ ∆p(vn, x
∗)− λn

ξ
∆p(Bvn, S(Bvn)) +

Cqλ
q
n

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q

≤ ∆p(vn, x
∗)−λn

(
πp

ξ
||Bvn − SBvn||p−

Cqλ
q−1
n

q
||B∗(Jp

E2
(Bvn)−Jp

E2
(SBvn))||q

)
.(1.45)

On the other hand from the step size λn in (1.34), we have

λq−1
n ≤ πpq||Bvn − SBvn||p

Cqξ||B∗(Jp
E2

(Bvn)− Jp
E2

(SBvn))||q
− ϵ,

if and only if

ϵCq||B∗(Jp
E2

(Bvn)−Jp
E2

(SBvn))||q ≤πpq

ξ
||Bvn−SBvn||p−λq−1

n Cq||B∗(Jp
E2

(Bvn)− Jp
E2

(SBvn))||q.
(1.46)

Thus with left side of λn in (1.34) and together with (1.46), we get

ϵ2Cq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q ≤ λnϵCq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q

≤ λn[
πp

ξ
||Bvn)− (SBvn))||p

−λq−1
n Cq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q].(1.47)

Combining (1.45) and (1.47), we obtain

∆p(zn, x
∗) ≤ ∆p(vn, x

∗)− ϵ2Cq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q.(1.48)

Hence, combining (1.41), (1.44) and (1.48), we obtain

∆p(zn, x
∗) ≤

(
1 +

2p−1µn

pπp

)
∆p(xn, x

∗)−
(
1− 2p−1µn

pπp

)
∆p(xn, yn) +

µn

q

−(1− Cqq
−1)||Jp

E1
yn − Jp

E1
vn||q −

ϵ2Cq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q.(1.49)
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Since, from (C5) taking ζ ∈
(
0,

pπp

2p−1

)
, there exists n ∈ N such that for all n ≥ N

µn2
p−1

pπp
< αnζ.

For some constant M > 0, it which follows from (1.49) that

∆p(zn, x
∗) ≤ (1 + αnζ)∆p(xn, x

∗) + αnM.(1.50)

Using the definition of (xn+1), (1.50) and the fact that T is a Bregman strongly relative
nonexpansive mapping, we obtain

∆p(xn+1, x
∗) = ∆p(J

q
E8

1
[αnJ

p
E1

u+ (1− αn)J
p
E1

Tzn], x
∗)

≤ αn∆p(u, x
∗) + (1− αn)∆p(Tzn, x

∗)

≤ αn∆p(u, x
∗) + (1− αn)∆p(zn, x

∗)(1.51)
≤ αn∆p(u, x

∗) + (1− αn)[(1 + αnζ)∆p(xn, x
∗) + αnM ]

≤ αn∆p(u, x
∗) + [1− αn(1− ζ)]∆p(xn, x

∗) + αnM

= [1− αn(1− ζ)]∆p(xn, x
∗) + αn(1− ζ)

∆p(u, x
∗) +M

1− ζ

≤ max
{
∆p(xn, x

∗),
∆p(u, x

∗) +M

1− ζ

}
...

≤ max
{
∆p(xN , x∗),

∆p(u, x
∗) +M

1− ζ

}
.

By induction, we get

∆p(xn, x
∗) ≤ max

{
∆p(xN , x∗),

∆p(u, x
∗) +M

1− ζ

}
, for all n ≥ N.

This implies that {∆p(xn, x
∗)} is bounded. From (1.23), we know that πp||xn − x∗||p ≤

∆p(xn, x
∗), so {xn} is also bounded. Hence {yn}, {vn}, {wn} and {zn} are bounded. Fur-

thermore, combining (1.49) and (1.51), we get

∆p(xn+1, p) ≤ αn∆p(u, x
∗) + (1 = αnζ)∆p(xn, x

∗)− (1− αnζ)∆p(xn, yn) + αnM

−(1− Cqq
−1))||Jp

E1
yn − Jp

E1
vn||q −

ϵ2Cq

q
||B∗(Jp

E2
(Bvn)− Jp

E2
(SBvn))||q.

Thus

Ψn ≤ ∆p(xn, x
∗)−∆p(xn+1, x

∗) + αnM1,(1.52)

where Ψn := (1−αnζ)∆p(xn, yn)+ (1−Cqq
−1)||Jp

E1
yn − Jp

E1
vn||q + ϵ2Cq

q ||B∗(Jp
E2

(Bvn)−
Jp
E2

(SBvn))||q and M1 := sup
n≥N

{∆p(xn, x
∗),M}. □

Theorem 1.3. The sequence {xn} generated by Algorithm 1.2 converges strongly to a point x∗ ∈
Γ, where x∗ = ΠΓu.

Proof. Claim 1. Let {yn} and {wn} be sequences generated by Algorithm 1.2 under As-
sumption 1.1. If there exist subsequences {ynk

} and {wnk
} of {yn} and {wn}, respectively

such that {ynk
} converges weakly to a point say z in H1 and lim

k→∞
||wnk

− ynk
|| = 0, then

z ∈ V I(C,A).
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Claim 2.

∆p(xn+1, x
∗) ≤ [1− αn(1− ζ)]∆p(xn, x

∗)

+αn(1− ζ)
[
(1− ζ)−1

(
⟨Jp

E1
(u)− Jp

E1
(x∗), xn+1 − x∗⟩+ µn

αn

)]
.(1.53)

Indeed, using Lemma 1.5 (ii), (iii), (1.49), (1.50) and µn = ◦(αn) in (C5), we get

∆p(xn+1, x
∗) = ∆p(J

q
E∗

1
(αnJ

p
E1

(u) + (1− αn)J
p
E1

(zn)), x
∗)

= Vp(αnJ
p
E1

(u) + (1− αn)J
p
E1

(zn), x
∗)

≤ Vp(αnJ
p
E1

(u) + (1− αn)J
p
E1

(zn)− αn(J
p
E1

(u)− Jp
E1

(x∗)), x∗)

−⟨Jq
E∗

1
(αnJ

p
E1

(u) + (1− αn)J
p
E1

(zn))− x∗,−αn(J
p
E1

(u)− Jp
E1

(x∗))⟩
= Vp(αnJ

p
E1

(z0) + (1− αn)J
p
E1

(zn), x
∗) + αn⟨Jp

E1
(u)− Jp

E1
(x∗), xn+1 − z0⟩

= ∆p(J
q
E∗

1
(αn + (1− αn)J

p
E1

(zn)), x
∗) + αn⟨Jp

E1
(u)− Jp

E1
(x∗), xn+1 − x∗⟩

≤ αn∆p(x
∗, x∗) + (1− αn)∆p(zn, x

∗) + αn⟨Jp
E1

(u)− Jp
E1

(x∗), xn+1 − x∗⟩

≤ [1−αn(1−ζ)]∆p(xn, x
∗) +αn(1−ζ)

[
(1−ζ)−1

(
⟨Jp

E1
(u)−Jp

E1
(x∗), xn+1− x∗⟩+ µn

αn

)]
.

Claim 2. {∆p(xn, x
∗)} converges to zero. That is by Lemma 1.9 and Claim 3, we re-

quire only to show that lim sup
k→∞

⟨Jp
E1

(u)− Jp
E1

(x∗), xnk+1 − x∗⟩ ≤ 0 for every subsequence

{∆p(xnk
, x∗)} of {∆p(xn, x

∗)} satisfying

lim inf
k→∞

(∆p(xnk+1, x
∗)−∆p(xnk

, x∗)) ≥ 0.

Now, suppose that {∆p(xnk
, x∗)} is a subsequence of {∆p(xn, x

∗)} such that
lim inf
k→∞

(∆p(xnk+1, x
∗)−∆p(xnk

, x∗)) ≥ 0. Then from (1.52), we get

lim sup
k→∞

Ψnk
≤ lim inf

k→∞
[∆p(xnk

, x∗)−∆p(xnk+1, x
∗) + αnk

M1]

≤ lim sup
k→∞

[∆p(xnk
, x∗)−∆p(xnk+1, x

∗)] + lim sup
k→∞

αnk
M1

≤ −lim inf
k→∞

[∆p(xnk+1, x
∗)−∆p(xnk

, x∗)] + lim sup
k→∞

αnk
M1

≤ 0.

This implies that
lim
k→∞

Ψnk
= 0,

where Ψnk
:= (1−αnζ)∆p(xnk

, ynk
)+(1−Cqq

−1)||Jp
E1

yn−Jp
E1

vn||q+ ϵ2Cq

q ||B∗(Jp
E2

(Bvnk
)−

Jp
E2

(SBvnk
))||q . Hence

lim
k→∞

∆p(xnk
, ynk

)=lim
k→∞

||Jp
E1

yn−Jp
E1

vn||= lim
k→∞

||B∗(Jp
E2

(Bvnk
)−Jp

E2
(SBvnk

))||=0.(1.54)

Thus, we obtain from (1.54) that

lim
k→∞

||xnk
− ynk

|| = lim
k→∞

||ynk
− vnk

|| = 0,(1.55)

which implies that

lim
k→∞

||xnk
− vnk

|| = 0.(1.56)
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Since S is ξ−demigeneralized mapping, by (1.23) and for some M2 > 0, we get

||B∗(Jp
E2

(Bvnk
)− Jp

E2
(SBvnk

))||M2 ≥ ||B∗(Jp
E2

(Bvnk
)− Jp

E2
(SBvnk

))||||vnk
− x∗||

≥ ⟨B∗(Jp
E2

(Bvnk
)− Jp

E2
(SBvnk

)), vnk
− x∗⟩

= ⟨Jp
E2

(Bvnk
)− Jp

E2
(SBvnk

), Bvnk
−Bx∗⟩

≥ 1

ξ
∆p(Bvnk

, SBvnk
)

≥ πp

ξ
||Bvnk

− SBvnk
||p,

it follows from (1.54) that

lim
k→∞

||Bvnk
− SBvnk

|| = 0.(1.57)

By the definition of (zn) and (1.54), we get

0 ≤ ||Jp
E1

znk
− Jp

E1
vnk

||
≤ λnk

||B∗(Jp
E2

(Bvnk
)− Jp

E2
(SBvnk

))|| → 0

as k → ∞, relying on the fact that Jq
E1

is norm-to-norm uniformly continuous on bounded
subset of E∗

1 , we obtain

lim
k→∞

||znk
− vnk

|| = 0.(1.58)

Combining (1.56) and (1.58), we get

lim
k→∞

||znk
− xnk

|| = 0.(1.59)

Using (1.50), we get

∆p(zn, x
∗)−∆p(Tzn, x

∗) = ∆p(zn, x
∗)−∆p(xn+1, x

∗) + ∆p(xn+1, x
∗)−∆p(Tzn, x

∗)

⩽ ∆p(zn, x
∗)−∆p(xn+1, x

∗) + αn∆p(u, x
∗)

+ (1− αn)∆p(Tzn, x
∗)−∆p(Tzn, x

∗)

≤ (1 + αnζ)∆p(xn, x
∗) + αnM −∆p(xn+1, x

∗)− αn∆p(Tzn, x
∗)

=[∆p(xn, x
∗)−∆p(xn+1, x

∗)+αn[ζ∆p(xn, x
∗)+M−∆p(Tzn, x

∗)]

it follows that

lim sup
k→∞

[∆p(znk
, x∗)−∆p(Tznk

, x∗)] ≤ lim sup
k→∞

[∆p(xnk
, x∗)−∆p(xnk+1, x

∗)]

+lim sup
k→∞

αnk
[ζ∆p(xnk

, x∗) +M −∆p(Tznk
, x∗)]

≤ −lim inf
k→∞

[∆p(xnk+1, x
∗)−∆p(xnk

, x∗)]

≤ 0

hence

lim
k→∞

[∆p(znk
, x∗)−∆p(Tznk

, x∗)] = 0.(1.60)

Thus, by the definition of T , we obtain

lim
k→∞

∆p(Tznk
, znk

) = 0.(1.61)

Therefore

lim
k→∞

||Tznk
− znk

|| = 0.(1.62)



114 Rose Maluleka, G. C. Ugwunnadi, M. Aphane, H.A. Abass and A. R. Khan

Indeed, from (1.33) and (1.61), we get

∆p(xnk+1, znk
) ≤ αnk

∆p(u, znk
) + (1− αnk

)∆p(Tznk
, znk

) → 0,

as k → ∞, hence

lim
k→∞

||xnk+1 − znk
|| = 0.(1.63)

Combining (1.59) and (1.64), we get

lim
k→∞

||xnk+1 − xnk
|| = 0.(1.64)

Furthermore, from (1.31), we get

||Jp
E1

yn − Jp
E1

wn||q =
ρq−1
n ||Jp

E1
dn||q

K∗ =
||ρnJp

E1
dn||q

Kρn
=

||Jp
E1

vn − Jp
E1

yn||q

K∗ρn
(1.65)

And by (1.35), we get

||Jp
E1

yn − Jp
E1

wn||q

||Jp
E1

dn||q
≥ 1

2
(
1 + Cq

(
τL
K

)q) .(1.66)

Therefore, we get

ρq−1
n = K∗ ||J

p
E1

yn − Jp
E1

wn||q

||Jp
E1

dn||q
≥ K∗

2
(
1 + Cq

(
τL
K

)q)
thus

1

ρn
≤

(2(1 + Cq

(
τL
K

)q)
K∗

) 1
q−1

=: κ(1.67)

Combining (1.65) and (1.67), we obtain

||Jp
E1

yn − Jp
E1

wn||q ≤ κ

K∗ ||J
p
E1

vn − Jp
E1

yn||q(1.68)

Hence, from (1.54) and (1.68), we get

||Jp
E1

ynk
− Jp

E1
wnk

||q ≤ κ

K∗ ||J
p
E1

vnk
− Jp

E1
ynk

||q → 0

as k → ∞. That is,

lim
k→∞

||Jp
E1

ynk
− Jp

E1
wnk

|| = 0

and by property of Jp
E1

, we get

lim
k→∞

||ynk
− wnk

|| = 0.(1.69)

Since {xnk
} is bounded, there exists a subsequence say {xnkj

} of {xnk
} that converges

weakly to say z ∈ E1 as j → ∞. Then, from (1.55), we have that {ynkj
} converges weakly

to z as j → ∞, so by (1.69) and Claim 1, we obtain that z ∈ V I(C,A).
Next, we show that Bz ∈ F (S). From (1.55), we get that {vnkj

} converges weakly to z

as j → ∞ and since B is a bounded linear operator, then {Bvnkj
} converges weakly to

Bz ∈ E2. Thus, combining (1.57) and demiclosedness of S, we obtain that Bz ∈ F (S).
Also, from (1.59), we get znkj

converges weakly to z, it follows from (1.62) that z ∈ F (T ),
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since F (T ) = F̂ (T ). Hence, from Claim 2, we get z ∈ Γ := V I(C,A)∩ F (T )∩B−1(F (T )).
Since x∗ = ΠΓu, from (1.19), we get

lim sup
k→∞

⟨Jp
E1

(u)− Jp
E1

x∗, xnk
− x∗⟩ = lim

j→∞
⟨Jp

E1
(u)− Jp

E1
x∗, xnkj

− x∗⟩

= ⟨Jp
E1

(u)− Jp
E1

x∗, z − x∗⟩ ≤ 0.(1.70)

Combining (1.64) and (1.70), we get

lim sup
k→∞

⟨Jp
E1

(u)− Jp
E1

x∗, xnk+1 − x∗⟩ = lim sup
k→∞

⟨Jp
E1

(u)− Jp
E1

x∗, xnk
− x∗⟩

= ⟨Jp
E1

(u)− Jp
E1

x∗, z − x∗⟩ ≤ 0.(1.71)

Therefore, using Lemma 1.9 and Claim 3, we obtain that ∆p(xn, x
∗) → 0 as n → ∞, by

(1.23), we know that πp||xn − x∗||p ≤ ∆p(xn, x
∗) → 0. Hence, xn → x∗, where x∗ =

ΠΓu. □

2. NUMERICAL ILLUSTRATION

In this section, we provide some numerical examples for implementing our algorithm.

Example 2.1. We consider this example in (R3, ∥ · ∥2) of the problem considered in Theo-
rem 1.3. For this example, let C := {x = (x1, x2, x3) ∈ R3 : ⟨a, x⟩ = b}, where a = (2,−1, 5)
and b = 1 then

ΠC(x) = PC(x) =
b− ⟨a, x⟩
∥a∥22

.

We choose the operators as follows: Let T = PC , then T is a Bregman strongly nonexpan-
sive mapping (see [31, 32]). We also define the ξ-Bregman demigeneralized type mapping
S : R3 → R3 by S(x) = 1

2x + 1 for all x ∈ R3. Let the mapping A : C → E∗
1 be given by

A(x) = x
2 . Also, we define the bounded linear operator B by

B =

 3 −3 −5
−4 2 −4
−5 −2 3

 ,

then

B∗ =

 3 −4 −5
−3 2 −2
−5 −4 3

 .

For this example, choose αn = 1
150n+1 , µn = 1

n1.1 , θ = 1
2 , τ = 1

5 and λ = 0.001. We
make different choices of the initial points x0 and x1 with u = 0.1 and a stopping criterion
∥xn+1 − xn∥ < 10−3.

Case 1: x0 = (1.01, 1.23, 0.01) and x1 = (1.19,−0.96, 1.01);

Case 2: x0 = (1, 1, 1) and x1 = (3, 0, 4);

Case 3: x0 = (−1, 1,−1) and x1 = (3.1, 0.78, 1);

Case 4: x0 = (0, 0.75, 0.25) and x1 = (0, 2, 0.2).

The report of this example is displayed in Figure 1.
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FIGURE 1. Example 2.1, Top left: Case 1; Top right: Case 2; Bottom left :
Case 3; Bottom right: Case 4.

Example 2.2. Let E1 = E2 = L2([0, 1]) with the inner product and norm given by ⟨x, y⟩ =∫ 1

0
x(t)y(t)dt and ∥x∥ =

∫ 1

0
|x(t)|2dt, respectively. Let C := {x ∈ L2([0, 1]) : ⟨x, a⟩ = b}

where a = 2t2 and b = 1. Then,

PC(x) = max

{
0,

b− ⟨a, x⟩
∥a∥2

}
a+ x.

Let A : C → E∗
1 be given by A(x) = max{0, x(t)} for all x ∈ L2([0, 1]) and t ∈ [0, 1].

Define the bounded linear operator B : E1 → E2 by B(x) = x(t)
2 and T = PC . Also, let

S : E2 → E2 be defined by S(y) = 2y(t) for all y ∈ L2([0, 1]) and t ∈ [0, 1].
For this example, choose αn = 1

150n+1 , µn = 1
3n+1.1 , θ = 1

2 , τ = 1
5 and λ = 0.001. We

make different choices of the initial points x0 and x1 with u = 0.1 and a stopping criterion
∥xn+1 − xn∥ < 10−3.

Case I: x0 = t+ 3 and x1 = 2t;

Case II: x0 = sin(2t) and x1 = cos(t);
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Case III: x0 = e−t and x1 = 2t2;

Case IV: x0 = log(3t) and x1 = 11t+ 1.

The report of this example is displayed in Figure 2.
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FIGURE 2. Example 2.2, Top left: Case I; Top right: Case II; Bottom left :
Case III; Bottom right: Case IV.

3. CONCLUSIONS

We investigated a split variational inequality problem with a pseudomonotone opera-
tor and a fixed point issue in the context of real, uniformly convex, and uniformly real Ba-
nach spaces. To approximatingly solve the split variational inequality, a pseudomonotone
problem, and the common fixed point of Bregman demigeneralized mapping and Breg-
man strongly nonexpansive mapping, we proposed a contraction and projection method,
which is known to be one of the most effective methods for solving variational inequality.
A method called inertial extrapolation was incorporated into our suggested algorithm to
hasten the rate of convergence of our iterative approach which is new in Banach space.
Strong convergence results were achieved by combining our algorithm with Halpern’s
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method, and several numerical examples were used to demonstrate how well our method
performed in comparison with some related ones.

Acknowledgments. The first author is grateful to Department of Mathematics and Ap-
plied Mathematics, Sefako Makgato Health Science University, Pretoria 0204, South Africa
and Department of Mathematics and Statistics, Tshwane University of Technology, Staat-
sartillerie Rd, Pretoria West, Pretoria, 0183, South Africa for supporting this research
work, and third author acknowledge with thanks the bursary and financial support from
Department of Science and Technology and National Research Foundation, Republic of
South Africa Center of Excellence in Mathematical and Statistical Sciences (DSI-NRF COE-
MaSS) Post-Doctoral Bursary. Opinions expressed and conclusions arrived are those of
the authors and are not necessarily to be attributed to the CoE-MaSS.

REFERENCES

[1] Abass, H. A.; Izuchukwu, C.; Mewomo, O. T.; Dong, Q. L. Strong convergence of an inertial forward-
backward splitting method for accretive operators in real Banach spaces. Fixed Point Theory 21 (2020), no. 2,
397–412.

[2] Abass, H. A.; Ugwunnadi, G. C.; Narain, O. K.; V. Darvish, V. Inertial extrapolation method for solving vari-
ational inequality and fixed point problems of a Bregman demigeneralized mapping in a reflexive Banach
space. Optimization 2022, 1–28.

[3] Abass, H. A.; Ugwunnadi G. C.; Narain, O. K. A modified inertial Halpern method for solving split mono-
tone variational inclusion problems in Banach spaces. Rend. Circ. Mat. Palermo II ser. 2 2022, 1–24.

[4] Abass, H. A.; Aremu, K. O.; Jolaoso, L. O.; Mewomo, O. T. An inertial forward-backward splitting method
for approximating solutions of certain optimization problem. J. Nonlinear Funct. Anal. 2020, 2020, Article ID
6.

[5] Alansari, M.; Ali, R.; Farid, M. Strong convergence of an inertial iterative algorithm for variational inequal-
ity problem, generalized equilibrium problem and fixed point problem in a Banach space. J. Inequal. Appl.
2020, 2020:42.

[6] Antipin, A. S. On a method for convex programs using a symmetrical modification of Lagrange function.
Ekonom I Mate Metod. 12 (1976), 1164–1173.

[7] Ali, B.; Ugwunnadi, G. C.; Lawan, M. S.; Khan, A. R. Modified inertial subgradient extragradient method
in reflexive Banach spaces, Boletin de la sociedad Matematica Mexicana. 27 (2021), no. 1, 1–26.

[8] Alvarez, F.; Attouch, H. An Inertial proximal method for maximal monotone operators via discretization of
a nonlinear oscillator with damping. Set-Valued Anal. 9 (2001), 3–11.

[9] Baiocchi, C.; A Capello, A. Variational and Quasi-variational inequalities. Wiley, New York 1984.
[10] Bensoussan, A.; Lions, J. L. Applications of variational inequalities to stochastic control. North-Holland, Ams-

terdam 1982.
[11] Bregman, L. M. The relaxation method for finding the common point of convex sets and its application to

solution of problems in convex programming. U.S.S.R Comput. Math. Phys. 7 (1967), 200–217.
[12] Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algor. 59

(2012), 301–323.
[13] Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities

in Hilbert space. J. Optim. Theory Appl. 148 (2011), 318–335.
[14] Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational

inequality problem in Hilbert space. Optim. Methods Softw. 26 (2011), 827–845.
[15] Cheng, Q.; Su, Y.; Zhang, J. Duality fixed point and zero point theorem and application. Abstr Appl Anal.

Article ID 391301, 2012, 11 pp.
[16] Chidume, C. E. Geometric properties of Banach spaces and nonlinear iterations. Springer Verlag Series, Lecture

Notes in Mathematics, ISBN 978-1-84882-189-7, 2009.
[17] Chidume, C. E.; Ikechukwu, S. I.; Adamu, A. Inertial algorithm for approximating a common fixed point

for a countable family of relatively nonexpansive maps. Fixed Point Theory Appl. 2018, Paper No. 9, 9 pp.
[18] Cholamjiak, P.; Thong, D. V.; Cho, Y. J. A novel inertial projection and contraction method for solving

pseudomonotone variational inequality problems. Acta Applicandae Mathematicae 169 (2020), no. 1, 217–245.
[19] Cholamjiak, P.; Sunthrayuth, P. A Halpern-type iteration for solving the split feasibility problem and fixed

point problem of Bregman relatively nonexpansive semigroup in Banach spaces. Filomat 32 (2018), no. 9,
3211–3227.



Inertial split projection and contraction method... 119

[20] Cioranescu, I. Geometry of Banach spaces, Duality Mappings and Nonlineqar Problems. Kluwer Academic, Dor-
drecht, 1990.

[21] Dong, Q. L. Cho, Y. T. Rassias, T. M. The projection and contraction methods for finding common solutions
to variational inequality problems. Optim. Letter. 12 (2018), 1871–1896.

[22] Dong, Q. L.; Jiang, D.; Gibali, A. A modified subgradient extragradient method for solving the variational
inequality problem. Numer. Algor. 9 9 (2018), 927–940.

[23] Dong, Q. L.; Cho, Y. J.; Zhong, L. L.; Rassias, M. Th. Inertial projection and contraction algorithms for
variational inequalities. J. Glob. Optim. 70 (2018), 687–704.

[24] Fichera, G. Problemi elasstostatici con vincoli unilaterali: II problema di signorini ambigue condizione al
contorno. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Nat. Sez. Ia 7 (1963), no. 8, 91–140.

[25] He, B. S. A class of projection and contraction methods for monotone variational inequalities. Appl. Math.
Optim. 35 (1997), 69–76.

[26] Jia, H.; Liu, S. ; Dang, Y. An inertial iterative algorithm with strong convergence for solving modified split
feasibility problem in Banach spaces. J. Math. Article ID 9974351, 2021, 12 pp.

[27] Jolaoso, L. O. An inertial projection and contraction method with a line search technique for variational
inequality and fixed point problems. Optimization (2021), 1–30.

[28] Jolaoso, L. O.; Alphane, M. Strong convergence inertial projection and contraction method with self adap-
tive stepsize for pseudomonotone variational inequalities and fixed point problems. J. Inequal. Appl. 2020,
Paper No. 261, 22 pp.

[29] Korpelevich, G. M. The extragradient method for finding saddle points and other problems. Ekonom Mate
Metod. 12 (1976), 747–756.

[30] Mashreghi, J.; Nasri, M. Forcing strong convergence of Korpelevich’s method in Banach spaces with its
applications in game theory. Nonlinear Anal. 72 (2010), no. 3-4, 2086–2099.

[31] Martı́n-Márquez, V.; Reich, S.; Sabach, S. Bregman strongly nonexpansive operators in reflexive Banach
spaces. J. Math. Anal. Appl. 400 (2013), 597–614.

[32] Martı́n-Márquez, V.; Reich. S.; Sabach, S. Right Bregman nonexpansive operators in Banach spaces. Nonlin-
ear Anal. 75 (2012), 5448–5465.

[33] Oyewole, O. K.; Mewomo, O. T. A subgradient extragradient algorithm for solving split equilibrium and
fixed point problems in reflexive Banach spaces. J. Nonlinear Funct. Anal. (2020), DOI:10.23952/jnfa.2020.37.

[34] Pang, J. S. Asymmetric variational inequalities over product of sets” applications and iterative methods.
Math. Program 31 (1985), 206–219.

[35] Polyak, B. T. Some methods of speeding up the convergence of iterates methods. U.S.S.R Comput. Math.
Phys. 4(5) (1964), 1–17.

[36] Stampacchia, G. Formes bilinearieres coercitivities sur les ensembles convexes. C. R. Acad. Sci. Paris. 258
(1964), 4413–4416.

[37] Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T. A modified Halpern algorithm for approximating a common so-
lution of split equality convex minimization problem and fixed point problem in Uniformly convex Banach
spaces. Comput. Appl. Math. 38 (2019), no. 2, Paper No. 77, 28 pp.

[38] Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Con-
trol. Optim. 38 (2000), 431–446.

[39] Schopfer, F.; Schuster, T.; Louis, A. K.; An iterative regularization method for solving the split feasibility
problem in Banach spaces. Inverse Probl. 24 (2008), no. 5, 055008.

[40] Shehu, Y.; Ogbuisi, F. U.; Iyiola, O. S. Convergence analysis of an iterative algorithm for fixed point prob-
lems and split feasibility problems in certain Banach spaces. Optimization 65 (2016), 299–323.

[41] Saejung, S.; Yotkaew, P. Approximation of zeroes of inverse strongly monotone operators in Banach spaces.
Nonlinear Anal. 75 (2012), 742–750.

[42] Ugwunnadi, G. C.; Izuchukwu, C.; Khan, A. R.; Dynamical Technique for Split common fixed point prob-
lem in Banach spaces. Comput. Appl. Math. 41 (2022), no. 4, Paper No. 162, 27 pp.

1,2,3,4DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

SEFAKO MAKGATO HEALTH SCIENCE UNIVERSITY

P. O. BOX 94, PRETORIA 0204, SOUTH AFRICA

Email address: 1rosemaluleka@rocketmail.com; malulekar@tut.ac.za
Email address: 3maggie.aphane@smu.ac.za

1DEPARTMENT OF MATHEMATICS AND STATISTICS

TSHWANE UNIVERSITY OF TECHNOLOGY

STAATSARTILLERIE RD, PRETORIA WEST, PRETORIA, 0183, SOUTH AFRICA

Email address: malulekar@tut.ac.za



120 Rose Maluleka, G. C. Ugwunnadi, M. Aphane, H.A. Abass and A. R. Khan

2DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ESWATINI

PRIVATE BAG 4, KWALUSENI, ESWATINI

Email address: ugwunnadi4u@yahoo.com

4 DSI-NRF CENTER OF EXCELLENCE IN MATHEMATICAL AND STATISTICAL SCIENCES (COE-MASS)
Email address: hammedabass548@gmail.com, AbassH@ukzn.ac.za

5DEPARTMENT OF MATHEMATICS AND STATISTICS

INSTITUTE OF SOUTHERN PUNJAB, MULTAN, PAKISTAN

Email address: abdulrahimkhan@isp.edu.pk


