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On multi-inertial extrapolations and
forward-backward-forward algorithms

PAPATSARA INKRONG and PRASIT CHOLAMJIAK

ABSTRACT. In this work, we propose inclusion problems based on a novel class of forward-backward-
forward algorithms. Our approach incorporates multi-inertial extrapolations and utilizes a self-adaptive tech-
nique to eliminate the need for explicitly selecting Lipschitz assumptions to enhance the speed convergence of
the algorithm. We establish a weak convergence theorem under suitable assumptions. Furthermore, we con-
duct numerical tests on image deblurring as a practical application. The experimental results demonstrate that
our algorithm surpasses some existing methods in the literature, which shows its superior performance and
effectiveness.

1. INTRODUCTION

Let H be a real Hilbert space. We assume F : H → H and G : H → 2H are monotone
operators. The monotone inclusion problem is to seek u∗ ∈ H such that

(1.1) 0 ∈ Fu∗ + Gu∗.

The set of all solutions to (1.1) is denoted as (F + G)−1(0) and consistently assume that
this set is nonempty. Problems (1.1) hold significant importance in resolving diverse chal-
lenges, including variational inequalities, minimization problems, machine learning, con-
vex programming, and split feasibility problems. These problems have applications in
various fields where monotone inclusion problems are fundamental for discovering solu-
tions and tackling optimization challenges. (see [1, 4, 12, 13, 17, 22, 23, 28, 32, 34]).

A fascinating particular instance of problem (1.1) corresponds to a nonsmooth convex
minimization problem. Let f, g : H → R ∪ {+∞} be proper, convex and lower semicon-
tinuous that f is differentiable on H. The nonsmooth convex minimization can be stated
as follows:

(1.2) min
u∈H

{f(u) + g(u)}.

By substituting F = ∇f and G = ∂g into problem (1.1), where ∇f denotes the gradient
of the function f , and ∂g denotes the subdifferential of g, then problem (1.1) reduces to
problem (1.2).

The forward-backward algorithm is the most widely recognized approach for solving
(1.1). The classical one was initially suggested by Passty [28] and later extended by Lions
and Mercier [20]. It is described as follows:

(1.3) un+1 = (I + αnG)−1(I − αnF)(un), n ≥ 1,

where αn > 0, u1 ∈ H, F is L-Lipschitz and G is maximally monotone. If αn ∈ (0, 2
L ),

then (1.3) exhibits weak convergence to a solution of (1.1).
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Tseng [34] introduced a modification to (1.1) by integrating a two-step method within
the forward-backward algorithm. It can be represented in the following manner: u1 ∈ H,

wn = (I + αnG)−1(I − αnF)(un),
un+1 = wn − αn(Fwn −Fun),

where αn = αltn and tn is the smallest non-negative integer satisfying

αn∥F(un+1)−F(un)∥ ≤ µ∥un+1 − un∥,

where µ, l ∈ (0, 1) and α > 0. It has been proven that {un} converges weakly to a point in
(F + G)−1(0). This is often called the forward-backward-forward algorithm.

The origin of inertial-type algorithms can be traced back to the heavy ball method,
an implicit discretization of a second-order time dynamical system [2, 29]. These algo-
rithms have recently gained increasing attention from researchers due to their ability to
speed up the convergence of algorithms (see [14, 16]). A vital characteristic of these al-
gorithms is that the next iterate is determined by using the previous two iterates. In the
context of solving the structured monotone inclusion problem (1.1), several researchers
have introduced inertial operator splitting methods. Notable examples include the in-
ertial forward-backward methods [3, 23], the inertial Douglas-Rachford methods [8], the
inertial proximal ADMM [10], and the inertial forward-backward-forward primal-dual al-
gorithm [7]. These methods aim to effectively address the problem by incorporating iner-
tia and leveraging the benefits of operator splitting techniques. In 2009, Beck and Teboulle
[6] introduced a highly efficient iterative shrinkage-thresholding algorithm called FISTA
(Fast Iterative Shrinkage-Thresholding Algorithm). They demonstrated the convergence
rate and applied it to image processing.

As reported in [19], it was observed that the inclusion of more than two points, namely
un and un−1, has the potential to improve acceleration. This enhancement can be demon-
strated by employing a two-step inertial extrapolation as follows:

zn = un + θ(un − un−1) + λ(un−1 − un−2),

with θ > 0 and λ > 0 can bring about acceleration. In reference [31], the limitations of
one-step inertial acceleration in ADMM were investigated, leading to the introduction of
an alternative approach known as adaptive acceleration for ADMM.

Ortega and Rheinboldt [26] introduced a comprehensive iterative process as follows:

(1.4) un+1 = θn(un, un−1, . . . , un−k+1).

The given iterative process (1.4) is called as the k-step method, where n ≥ 1 and θn(·)
represents the extrapolation onto xn, xn−1, . . . , xn−k+1. Polyak [30] also explored the po-
tential of multi-step inertial methods in enhancing optimization speed, even though no
established convergence or rate outcomes were presented in [30].

Liang [19] introduced two multi-step inertial methods. The first one is the multi-step
inertial forward-backward method and another one is the multi-step inertial primal-dual
method. Moreover, Liang introduced the multi-step inertial Douglas-Rachford method,
although its convergence has yet to be investigated. Similar to Polyak’s k-step method,
the update xn+1 in Liang’s methods using at most k + 1 iterations xn, xn−1, . . . , xn−k+1.
Recent studies have explored multi-step inertial methods, and specific results have been
presented in [11, 15, 35, 36].

Motivated by previous research, this study introduces a novel class of forward-backward-
forward algorithms designed explicitly for monotone inclusion. The proposed algorithms
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achieve weak convergence through a self-adaptive technique that updates αn. Addition-
ally, we incorporate multiple inertial extrapolations into our algorithm to expedite con-
vergence.

In this research, Section 2 contains the basic concepts. For the proof of our algorithm,
we show it in Section 3. Section 4 demonstrates numerical tests on image deblurring to
show the algorithm’s performance.

2. PRELIMINARIES

Given that ⟨·, ·⟩ represents the usual inner product and ∥ · ∥ denotes the norm defined
on H, the graph of G : H → 2H can be defined by [5]:

Graph(G) = {(p, q) ∈ H ×H : p ∈ dom(G), q ∈ G(p)}.

The operator G is considered to be monotone [4] if

⟨p− q, r − s⟩ ≥ 0, for all (p, r), (q, s) ∈ Graph(G).

The operator G is said to be maximally monotone if it is monotone, and its graph is not
strictly contained within the graph of any other monotone operator. An operator F : H →
H is L-Lipschitz if

∥F(u)−F(z)∥ ≤ L∥u− z∥, for all u, z ∈ H.

For α > 0, the resolvent operator of G : H → 2H can be defined as [24]:

JG
α (u) = (I + αG)−1(u), for all u ∈ H.

It is known that JG
α is firmly nonexpansive, single-valued and Dom(JG

α ) = H.
For α > 0, let Tα = (I + αG)−1(I − αF). It is also known that [5]

Fix(Tα) = (F + G)−1(0),

where Fix(T ) = {u ∈ H : u = Tu}.

Lemma 2.1. [33] We know that
(i) ∥cu + (1 − c)w∥2 = c∥u∥2 + (1 − c)∥w∥2 − c(1 − c)∥u − w∥2, for all c ∈ [0, 1] and

for all u,w ∈ H;
(ii) ∥u± w∥2 = ∥u∥2 ± 2⟨u,w⟩+ ∥w∥2, for all u,w ∈ H.

Lemma 2.2. [9] Assuming F : H → H is Lipschitz continuous, and G : H → 2H is a maximally
monotone operator, it follows that the operator F + G is also maximally monotone.

Lemma 2.3. [27] Let {bn}, {φn} and {an} be nonnegative sequences with the following condition

bn+1 = (1 + an)bn + φn, n ≥ 1.

If
∞∑

n=1

an < +∞ and
∞∑

n=1

φn < +∞, then lim
n→∞

bn exists.

Lemma 2.4. [25] Let Ω be a subset of H and {un} ⊆ H such that:
(i) for every u ∈ Ω, lim

n→∞
∥un − u∥ exists;

(ii) each weak cluster point of {un} is in Ω.
Then {un} converges weakly to a point in Ω.



296 Papatsara Inkrong and Prasit Cholamjiak

3. ALGORITHM AND CONVERGENCE RESULTS

Next, we propose a new type of forward–backward–forward algorithm for solving
(1.1). Given F : H → H be monotone and L-Lipschitz, and G : H → 2H be maximally
monotone. We denote the set (F +G)−1(0) as Ω which is nonempty. We begin by present-
ing the following crucial lemma which is motivated by [18].

Lemma 3.5. Let k ∈ {1, 2, ..., b} for some b ∈ N. Let Ψ1−b,Ψ2−b, ...,Ψ0 be non-negative real
numbers. Let {Ψn}∞n=1 and {θk,n}∞n=1 be non-negative real sequences. If

Ψn+1 ≤ Ψn +

b∑
n=1

(Ψn−k+1 +Ψn−k)θk,n, n ∈ N,

then

Ψn+1 ≤ K ·
n∏

j=1

(1 + 2θ1,j + 2θ2,j + ...+ 2θb−1,j + 2θb,j), n ∈ N,

where K = max{Ψ1−b,Ψ2−b, ...,Ψ0,Ψ1}. Moreover, if for each k,
∞∑

n=1

θk,n < +∞ then {Ψn} is

bounded.

Proof. Let K = max{Ψ1−b,Ψ2−b, ...,Ψ0,Ψ1}. We show that it is true for n = 1.

Ψ2 ≤ (1 + θ1,1)Ψ1 + (θ1,1 + θ2,1)Ψ0 + ...+ (θb−1,1 + θb,1)Ψ2−b + θb,1Ψ1−b

≤ (1 + 2θ1,1 + 2θ2,1 + ...+ 2θb−1,1 + 2θb,1)K.

Assume that it is true for n = m where m ∈ N. Then we have

Ψm+1 ≤ K(1 + 2θ1,1 + 2θ2,1 + ...+ 2θb−1,1 + 2θb,1)(1 + 2θ1,2 + 2θ2,2 + ...

2 + θb−1,2 + 2θb,2) · · · (1 + 2θ1,m + 2θ2,m + ...+ 2θb−1,m + 2θb,m)

= M.

Considering n = m+ 1, we obtain

Ψm+2 ≤ (1 + θ1,m+1)Ψm+1 + (θ1,m+1 + β2,m+1)Ψm + ...+ (θb−1,m+1 + θb,m+1)Ψm+2−b

+θb,m+1Ψm+1−b

≤ (1 + θ1,m+1)M+ (θ1,m+1 + θ2,m+1)Ψm + ...+ (θb−1,m+1 + θb,m+1)Ψm+2−b

+θb,m+1Ψm+1−b

≤ (1 + θ1,m+1)M+ (θ1,m+1 + θ2,m+1)M+ ...+ (θb−1,m+1 + θb,m+1)M
+θb,m+1M

= (1 + 2θ1,m+1 + 2θ2,m+1 + ...+ 2θb−1,m+1 + 2θb,m+1)M
= K(1 + 2θ1,1 + 2θ2,1 + ...+ 2θb−1,1 + 2θb,1)(1 + 2θ1,2 + 2θ2,2 + ...

+2θb−1,2 + 2θb,2) · · · (1 + 2θ1,m + 2θ2,m + ...+ 2θb−1,m + 2θb,m)(1 +

2θ1,m+1 + 2θ2,m+1 + ...+ 2θb−1,m+1 + 2θb,m+1).

By mathematical induction, we can conclude that

Ψn+1 ≤ K ·
n∏

j=1

(1 + 2θ1,j + 2θ2,j + . . .+ 2θb−1,j + 2θb,j), n ∈ N.

Moreover, the sequence {Ψn} is bounded if
∞∑

n=1

θk,n < +∞ for all k = 1, 2, ..., b. □
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Algorithm 3.1. Multi-inertial forward–backward–forward algorithm
Initialization : Let α1 > 0, µ ∈ (0, 1) be arbitrarily. Fix b ∈ N and for each k ∈ {1, 2, ..., b},
let {θk,n}∞n=1 be a real non-negative sequence. Let u1−b, u2−b, ..., u0, u1 ∈ H. Let {βn} be a
non-negative sequence.
Step 1. Compute

zn = un +

b∑
k=1

θk,n(un−k+1 − un−k),

wn = (I + αnG)−1(I − αnF)zn.
If wn = zn then stop and wn ∈ Ω. Otherwise, go to Step 2.
Step 2. Compute

un+1 = wn − αn(Fwn −Fzn),

where

αn+1 =

 min

{
µ∥zn − wn∥

∥Fzn −Fwn∥
, αn + βn

}
if ∥Fzn −Fwn∥ ≠ 0;

αn + βn otherwise.

Then set n = n+ 1 and go back to Step 1.

Remark 3.1. We define Algorithm 3.1 based on Tseng’s algorithm and multi-inertial ex-
trapolations. Moreover, the step size using a self-adaptive technique can eliminate the
need to select L-Lipschitz constant and enhance the convergence speed of the proposed
algorithm.

Lemma 3.6. [21] Let {αn} be generated by Algorithm 3.1. If
∞∑

n=1

βn < +∞, then

lim
n→∞

αn = α ∈
[
min

{
α1,

µ

L

}
, α1 + β

]
where β =

∞∑
n=1

βn and

(3.5) ∥Fzn −Fwn∥ ≤ µ

αn+1
∥zn − wn∥.

Theorem 3.1. Let {un} be defined by Algorithm 3.1. For each k ∈ {1, 2, ..., b}, if
∞∑

n=1

θk,n < +∞

and
∞∑

n=1

βn < +∞, then

(i) for each x∗ ∈ Ω, we have ∥un+1−x∗∥ ≤ K ·
n∏

j=1

(1+2θ1,j +2θ2,j + . . .+2θb−1,j +2θb,j),

where K = max{∥un0−b−x∗∥, ∥un0−b+1−x∗∥, . . . , ∥un0−1−x∗∥, ∥un0−x∗∥} for some n0 ∈ N.
(ii) {un} converges weakly to a point in Ω.

Proof. (i) Let x∗ ∈ Ω. Putting wn = (I + αnG)−1(I − αnF)zn, we can deduce that (I −
αnF)zn ∈ (I + αnG)wn. Since G is a maximal monotone operator, there is vn ∈ Gwn with

(I − αnF)zn = wn + αnvn.

Therefore

(3.6) vn =
1

αn
(zn − wn − αnFzn).
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In addition, we have 0 ∈ (F +G)x∗ and Fwn + vn ∈ (F +G)wn. Since F +G is monotone,
we obtain

(3.7) ⟨Fwn + vn, wn − x∗⟩ ≥ 0.

By combining equations (3.6) and (3.7), we have

(3.8)
1

αn
⟨zn − wn − αnFzn + αnFwn, wn − x∗⟩ ≥ 0.

It can be observed that

∥un+1 − x∗∥2 = ∥wn − αn(Fwn −Fzn)− x∗∥2

= ∥wn − x∗∥2 + α2
n∥Fwn −Fzn∥2 − 2αn⟨wn − x∗,Fwn −Fzn⟩

= ∥zn − x∗∥2 + ∥zn − wn∥2 + 2⟨wn − zn, zn − x∗⟩+ α2
n∥Fwn −Fzn∥2

−2αn⟨wn − x∗,Fwn −Fzn⟩
= ∥zn − x∗∥2 + ∥zn − wn∥2 − 2⟨wn − zn, wn − zn⟩+ 2⟨wn − zn, wn − x∗⟩

+α2
n∥Fwn −Fzn∥2 − 2αn⟨wn − x∗,Fwn −Fzn⟩

= ∥zn − x∗∥2 − ∥zn − wn∥2 + 2⟨wn − zn, wn − x∗⟩
+α2

n∥Fwn −Fzn∥2 − 2αn⟨wn − x∗,Fwn −Fzn⟩
= ∥zn − x∗∥2 − ∥zn − wn∥2 − 2⟨zn − wn − αn(Fzn −Fwn), wn − x∗⟩

+α2
n∥Fwn −Fzn∥2.(3.9)

Using (3.5), (3.8) and (3.9), we obtain

∥un+1 − x∗∥2 ≤ ∥zn − x∗∥2 − ∥zn − wn∥2 +
(
µ2α2

n

α2
n+1

)
∥wn − zn∥2

= ∥zn − x∗∥2 −
(
1− µ2α2

n

α2
n+1

)
∥wn − zn∥2.(3.10)

Moreover, we have

∥zn − x∗∥ =

∥∥∥∥∥un +

b∑
k=1

θk,n(un−k+1 − un−k)− x∗

∥∥∥∥∥
≤ ∥un − x∗∥+

b∑
k=1

θk,n∥un−k+1 − un−k∥.(3.11)

Since lim
n→∞

(
1− µ2 α2

n

α2
n+1

)
= 1− µ2 > 0, we can choose n0 ∈ N such that 1− µ2 α2

n

α2
n+1

> 0

for all n ≥ n0.
By using (3.10) and (3.11), we can deduce

∥un+1 − x∗∥ ≤ ∥zn − x∗∥

≤ ∥un − x∗∥+
b∑

k=1

θk,n∥un−k+1 − un−k∥(3.12)

≤ ∥un − x∗∥+
b∑

k=1

θk,n[∥un−k+1 − x∗∥+ ∥un−k − x∗∥].
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By Lemma 3.5, we obtain

(3.13) ∥un+1 − x∗∥ ≤ K ·
n∏

j=1

(1 + 2θ1,j + 2θ2,j + . . .+ 2θb−1,j + 2θb,j), n ≥ n0.

where K = max{∥un0−b − x∗∥, ∥un0−b+1 − x∗∥, . . . , ∥un0−1 − x∗∥, ∥un0
− x∗∥}.

(ii) We next establish that {un} converges weakly to a point in Ω. Because
∞∑

n=1

θk,n <

+∞, the sequence {un} is bounded according to Lemma 3.5 and (3.13). Consequently, we

have
∞∑

n=1

θ1,n∥un − un−1∥ < +∞,
∞∑

n=1

θ2,n∥un−1 − un−2∥ < +∞, ...,
∞∑

n=1

θb−1,n∥un−b+2 −

un−b+1∥ < +∞, and
∞∑

n=1

θb,n∥un−b+1 − un−b∥ < +∞. Applying Lemma 2.3 in (3.12), we

conclude that lim
n→∞

∥un − x∗∥ exists.
Now, we see that

∥zn − x∗∥2 =

∥∥∥∥∥un +

b∑
k=1

θk,n(un−k+1 − un−k)− x∗

∥∥∥∥∥
2

= ∥un − x∗∥2 +

∥∥∥∥∥
b∑

k=1

θk,n(un−k+1 − un−k)

∥∥∥∥∥
2

+2

〈
un − x∗,

b∑
k=1

θk,n(un−k+1 − un−k)

〉

≤ ∥un − x∗∥2 +

(
b∑

k=1

θk,n∥un−k+1 − un−k∥

)2

+2

b∑
k=1

θk,n∥un − x∗∥∥un−k+1 − un−k∥.(3.14)

Replacing (3.14) into (3.10), we get

∥un+1 − x∗∥2 ≤ ∥un − x∗∥2 +

(
b∑

k=1

θk,n∥un−k+1 − un−k∥

)2

+2

b∑
k=1

θk,n∥un − x∗∥∥un−k+1 − un−k∥

−
(
1− µ2α2

n

α2
n+1

)
∥zn − wn∥2.(3.15)
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This gives(
1− µ2α2

n

α2
n+1

)
∥zn − wn∥2 ≤ [∥un − x∗∥2 − ∥un+1 − x∗∥2]

+

(
b∑

k=1

θk,n∥un−k+1 − un−k∥

)2

+2

b∑
k=1

θk,n∥un − x∗∥∥un−k+1 − un−k∥.(3.16)

Since limn→∞ ∥un − x∗∥ exists, and
∞∑

n=1

θk,n < +∞, we can deduce from (3.16) that

(3.17) lim
n→∞

∥zn − wn∥ = 0.

Observe that

∥zn − un∥ =

∥∥∥∥∥un +

b∑
k=1

θk,n(un−k+1 − un−k)− un

∥∥∥∥∥
≤

b∑
k=1

θk,n∥un−k+1 − un−k∥

→ 0.(3.18)

From (3.17) and (3.18), we have

∥un − wn∥ = ∥un − zn∥+ ∥zn − wn∥
→ 0.

If (s, t) ∈ Graph(F + G), then t−Fs ∈ Gs. For nk ⊂ n, we have

wnk
= (I + αnk

G)−1(I − αnk
F)znk

,

which implies
(I − αnk

F)znk
∈ (I + αnk

G)wnk
.

This shows that
1

αnk

(znk
− wnk

− αnk
Fznk

) ∈ Gwnk
.

By the monotonicity of G, we get〈
s− wnk

, t−Fs− 1

αnk

(znk
− wnk

− αnk
Fznk

)

〉
≥ 0.

It is therefore

⟨s− wnk
, t⟩ ≥

〈
s− wnk

,Fs+
1

αnk

(znk
− wnk

− αnk
Fznk

)

〉
= ⟨s− wnk

,Fs−Fznk
⟩+

〈
s− wnk

,
1

αnk

(znk
− wnk

)

〉
= ⟨s− wnk

,Fs−Fwnk
⟩+ ⟨s− wnk

,Fwnk
−Fznk

⟩

+

〈
s− wnk

,
1

αnk

(znk
− wnk

)

〉
≥ ⟨s− wnk

,Fwnk
−Fznk

⟩+
〈
s− wnk

,
1

αnk

(znk
− wnk

)

〉
.(3.19)
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From (3.17) and the L-Lipschitz continuity of F , we obtain lim
k→∞

∥Fznk
− Fwnk

∥ = 0.

Since {un} is bounded, there is a subsequence {uni
} of {un} and ẑ ∈ H such that uni

⇀ ẑ.
Moreover, yni

⇀ ẑ. Therefore, from (3.19), we have

⟨s− ẑ, t⟩ ≥ 0.

Hence, by the maximal monotonicity of F + G, we have 0 ∈ (F + G)(ẑ), i.e., ẑ ∈ (F +
G)−1(0) = Ω. By Lemma 2.4, it is concluded {un} converges weakly to a point in Ω. We
finish the proof. □

Our Contributions
We apply the forward-backward-forward algorithm with multi-inertial extrapolations

to solve the monotone inclusion problem (1.1). The convergence need a simple condition

that
∞∑

n=1

θk,n < +∞. This is quite different from those in [15].

4. NUMERICAL EXPERIMENTS

Next, we present numerical results to evaluate the performance of Algorithm 3.1 and
to compare it with DHLCR Algorithm as suggested in ([15], Algorithm 43, P. 816), ZDC
Algorithm as proposed in ([35], Algorithm 3.1 with self-adaptive), ZDCL Algorithm ([35],
Algorithm 3.1 with L-Lipschitz), and ZZT Algorithm as presented in ([36], Algorithm 1).
The experiments were conducted by MATLAB R2022A on an HP Laptop with an Intel(R)
Core(TM) i7-1165G7 processor and 16.00 GB RAM.

Next, we address the problem of image recovery, which can be formulated as follows:

(4.20) b = Dx+ υ,

where an original image is denoted as x ∈ RM×1, a degraded image is represented by
b ∈ RM×1, a noise term is given by υ ∈ RM×1, and D ∈ RM×M is a blurring matrix. It
is worth noting that the problem (4.20) can be formulated equivalently as the subsequent
convex minimization model:

min
x∈RN

1

2
∥b−Dx∥22 + ρ∥x∥1

This example considers the case where ρ > 0. We define F = Dt(Dx−b) and G = ∂(ρ∥x∥1)
as the operators involved. To evaluate the quality of the restored images, we utilize two
values: the peak signal-to-noise ratio (PSNR) and the structural similarity index measure
(SSIM). These formulas are defined by:

PSNR := 20 log10

(
2552

∥xn − x∥22

)
,

and

SSIM :=
(2θxθxr

+ c1)(2σxxr
+ c2)

(θ2x + θ2xr
+ c1)(σ2

x + σ2
xr

+ c2)
.

In these equations, x represents the original image, xr represents the recovery image, θx
and θxr

are the mean values of the original and restored images respectively, σ2
x and σ2

xr

are the variances, σ2
xxr

is the covariance of the two images, c1 and c2 are constants defined
as c1 = (0.01L)2 and c2 = (0.03L)2, and L is the dynamic range of pixel values.

In this example, the initial points u−2, u−1, u0, and u1 are set to be the blurred image.
All parameters are selected as follows:
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• Algorithm 3.1 if 1 ≤ n ≤ 500, we set s1 = 1, θ1,n =
sn − 1

sn+1
where sn+1 =

1 +
√
1 + 4s2n
2

and set θ1,n =
1

(5n+ 1)2
if n > 500, θ2,n =

1

(10n3 + n)5
, θ3,n =

1

(5n+ 1)2
, βn =

1

(n+ 1)2
, λ1 = 2.0 and µ = 0.95;

• DHLCR: a1,n = 1.1, a2,n = 1.8, a3,n = 1.5, b1,n = 0.1, b2,n = 0.8, b3,n = 0.5, λn =
0.05 and γ = 1.2;

• ZDC: a1,k = 0.1, a2,k = 0.6, a3,k = 0.2, η = 0.88, σ = 0.35, µ = 0.5 and γ = 1.5;
• ZDCL: a1,k = 0.1, a2,k = 0.6, a3,k = 0.2, λk = 0.9, µ = 0.5 and γ = 1.5;
• ZZT: a1,k = 0.1, a2,k = 0.6, a3,k = 0.2 and γk = 0.1.

Firstly, we will use three types of blur to reduce the quality of the original image (Bee,
Dog and Cat, and View images) in Figure 1. The details are as follows:

• Out-of-focus blur (disk): radius 6;
• Motion blur: a motion length 10 and an angle 180;
• Gaussian blur: filter size [5, 5] with standard deviation 5.

In the following sections, we will show the restored images at 1000 iterations for each al-
gorithm, as depicted in Figure 2. Additionally, we will provide performance evaluations
for each algorithm’s restoration of the original image, which is expressed as PSNR and
SSIM values to determine the absolute error between the pixels and to measure the dif-
ferences between the properties (luminance, contrast, and structure) of the pixels of the
recovered images, respectively. The reports are shown in Table 1 and Figure 3.

(A) Bee (B) Dog and Cat

(C) View

FIGURE 1. The original images
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TABLE 1. The numerical PSNR and SSIM values of each algorithm in dif-
ferent blurs

Bee Dog and Cat View
Blur (640*853) (820*1093) (1280*960)

PSNR SSIM PSNR SSIM PSNR SSIM
Disk 37.2126 0.9474 35.4521 0.9270 38.7077 0.9407

Algorithm 3.1 Motion 34.7877 0.9251 38.5623 0.9644 40.5999 0.9771
Gaussian 40.2976 0.9743 37.9386 0.9559 41.7718 0.9715
Disk 26.8375 0.7887 24.5920 0.7322 28.2109 0.8318

DHLCR Motion 30.9980 0.8923 28.7540 0.8769 33.6119 0.9490
Gaussian 31.0900 0.9208 28.9823 0.8880 33.3727 0.9362
Disk 31.8220 0.9054 29.8296 0.8655 33.0769 0.9122

ZDC Motion 34.1055 0.9221 34.7845 0.9520 38.2283 0.9729
Gaussian 35.4449 0.9601 33.5516 0.9381 37.5319 0.9605
Disk 33.9348 0.9304 32.0118 0.8999 35.3048 0.9337

ZDCL Motion 34.5973 0.9251 36.3975 0.9592 39.6169 0.9771
Gaussian 37.1349 0.9688 35.0776 0.9470 39.0032 0.9645
Disk 28.8385 0.8486 26.7033 0.7980 30.2904 0.8741

ZZT Motion 32.7644 0.9104 31.3271 0.9148 35.9033 0.9633
Gaussian 32.9683 0.9424 31.0054 0.9155 35.3439 0.9480

From Table 1, we see the image recovery performance of our algorithm using different
blurs. When measured with PSNR values, it was the highest among all algorithms. The
View image has the highest PSNR value of 41.7718 if using Gaussian blur. If using motion
and disk blur, the values are 40.5999 and 38.7077, respectively. Moreover, we also found
that the SSIM values of our algorithm are higher than those of other algorithms. The
recovered image with the highest SSIM value is the View image.

(A) Degraded image (B) Algorithm 3.1 (C) DHLCR

(D) ZDC (E) ZDCL (F) ZZT

FIGURE 2. The View images blurred by gaussian and recovered by each
algorithm
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(A) PSNR Value (B) SSIM Value

FIGURE 3. PSNR and SSIM in recovery for View image using Gaussian
blur

Based on the numerical experiments, our proposed algorithm exhibits superior conver-
gence performance compared to DHLCR Algorithm, ZDC Algorithm, ZDCL Algorithm,
and ZZT Algorithm in terms of PSNR and SSIM. It reveals that multi-inertial extrapola-
tions defined in our algorithm can speed up its convergence behavior.

5. CONCLUSIONS

In this study, we have presented a novel forward-backward-forward algorithm for in-
clusion problems. Our approach incorporates a self-adaptive technique to eliminate the
need for explicit Lipschitz assumptions and employs multi-inertial extrapolations to ac-
celerate the convergence of the algorithm. Furthermore, we have established a weak con-
vergence theorem under reasonable assumptions. Additionally, we have conducted nu-
merical tests in image deblurring, demonstrating the superiority of our algorithm over
existing methods in the literature. The experimental results validate the effectiveness and
improved performance of our proposed approach.
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