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An intermixed algorithm for solving fixed point problems
of proximal operators in Hilbert Spaces

WONGVISARUT KHUANGSATUNG! and ATID KANGTUNYAKARN?

ABSTRACT. The aim of this paper is to modify proximal operators in Hilbert spaces. We introduce an inter-
mixed algorithm with viscosity technique to find the solution of fixed point problem of two proximal operators
in a real Hilbert space, utilizing the modified proximal operators. Under some mild conditions, a strong conver-
gence theorem is established for the proposed algorithm. We also apply our main result to the split feasibility
problem. Finally we provide numerical examples for supporting the main result.

1. INTRODUCTION

Let H be a real Hilbert space with an inner product (-, -) and an induced norm || - || and
let T'y(H) be a class of convex, lower semicontinuous, and proper functions from a Hilbert
space H to (—oo, +o0]. Let C be closed convex subset of H. Let S : C' — C' be a nonlinear
mapping, a point € C'is called a fixed point of S if Sz = 2. We denote by Fiz(S), the set
of all fixed points of S, i.e. Fiz(S) = {z € C : S(z) = z}. Consider the following convex
minimization problem
(1.1) min(f(z) + g(z)),
where f € T'o(H), g : H — R is convex and differentiable with the Lipschitz continuous
gradient denoted by Vg. The solution set of (1.1) will be denoted by Argmin(f + g). In
2014, Xu [29] presented an important mathematical tool to demonstrate that the solution
set of (1.1) is equivalent to the fixed point equation as follows:

(12) T = Prox, (i — yVg(2)),

where v > 0 and Prox, ¢z := argmin, ¢ {f(u) + %Hu — z||*} is the proximal mapping
of f (see [2] for more informations on the proximal mapping). The most widely used
algorithm for solving the convex minimization problem (1.1) is the so-called proximal-
gradient algorithm. This proximal-gradient algorithm is given by: ; € H and

(1.3) Tpt1 = Proxys(I —yVg)(z,), Vn>1.

where Prox; is the proximal operator of f, v € (0,2/L) and L is the Lipschitz constant
of Vg, then the sequence {z,} generated by algorithm (1.3) converges weakly to an el-
ement of Argmin(f + g) [ see [2], Corollary 28.9]. This method is sometimes called the
forward-backward algorithm. The proximal-gradient algorithm can be used in real-world
applications, for example, in signal recovery, in image deblurring, and in machine learn-
ing (regression on highdimensional datasets) (see, [4], [20], [14], [22]). Recently there are
extensive works in studying proximal gradient algorithm, see [19], [13], [28], [27], [10],
[1], [25] and the references therein. For a set C, we denote by d¢ the indicator function
of the set, that is, ¢ (z) = 0if x € C and oo otherwise. We denote the metric projection
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onto C' as P¢. Clearly, by definition, Pcx = Proxs, . When f = ¢, the algorithm (1.3)
becomes the popular gradient projection algorithm, which is defined as follows. For an
initial guess z; € H,

(1.4) Tui1 = Pl = AVg)(an), ¥n>1.

Recently, Guo and Cui [8] modified the proximal-gradient algorithm with viscosity tech-
nique as follows: For arbitrarily given x, € H, let the sequences {x,} be generated itera-
tively by

(1.5) Tnt1 = anh(zn) + (1 — apn) Prox,, ¢(I — un V) (zn) + e(xy), Vn>1,

where {«,,} is a real number sequence in [0,1], 0 < a = inf,, p, < py, < %, h:H— Ha
p-contractive operator with p € (0,1), and e : H — H represents a perturbation operator
and satisfies Y~ , ||e(z,,)|| < +oco. Under some appropriate conditions, they proved that
the algorithm (1.5) converges strongly to a solution of (1.1) in a real Hibert space.

Currently, one of the best methods for solving the fixed point problem of nonlinear
mapping is to use the intermixed algorithm, proposed by Yao et al.[32]. This algorithm
has the following features: the definition of the sequence {x,, } is involved in the sequence
{yn} and the definition of the sequence {y,} is also involved in the sequence {z,}. In
recent years, the intermixed algorithm has attracted a significant amount of interest from
authors, who improved it in various ways (see, e.g., [26], [23], [11]). In particular, Yao
et al.[32] introduced the intermixed algorithm for two strict pseudo-contractions as fol-
lows: For arbitrarily given z1 € C, y1 € C, let the sequences {z,,} and {y, } be generated
iteratively by

(16) a1 = (1= 0n)xp + 6 Polanhi(yn) + (1 —k — ap)zn + kT 2], VYn>1,
’ Yn+1 = (1 - 5n)yn + 57LPC[0471,h2(In) + (1 —k— an)yn + ksynL Vn > 1,

where {w,}, {0} are two real number sequences in (0,1), S,7 : C — C are A-strictly
pseudo-contractions with & € (0,1 — A), and hq,he : C — H are p;, pa-contractions,
respectively. Moreover, Yao et al. also proved in [32] that the sequence {z,,} generated
by (1.6) weakly converges to a fixed point of two strict pseudo-contractions under some
appropriate conditions.

The Krasnoselskii-Mann algorithm (see, [15], [16], [21]) is one of the most well-known
fixed point algorithms. In recent years, several researchers have increasingly investigated
the Krasnoselskii-Mann algorithm in various directions, for example [24], [7], [33], [9] and
the references therein. In particular, Kanzow and Shehu [12] proposed the following in-
exact Krasnoselskii-Mann algorithm for finding a fixed point of a nonexpansive mapping
T in a real Hilbert space: For arbitrarily given z; € H, let {z,,} be a sequence generated
iteratively by

(1.7) Tyl = QT + BT Ty + 1y, Yn>1,

where T : H — C'is a nonexpansive mapping, 7, denotes the residual vector and {a, },
{6} are two real number sequences in [0, 1] such that o,, + 5, < 1. They proved that if
> B =00, > |Irall < oo,and D07 (1 — @, — ) < 00, then the sequence {x,, }
generated by (1.7) converges weakly to a fixed point of T'.

In this paper, based on the problems (1.1) and (1.2), we modify a proximal operator and
introduce a new mathematical tool relevant to the modified proximal operator in Hilbert
spaces. Inspired and motivated by previous works, we introduce an intermixed algorithm
with viscosity technique to find the solution of fixed point problem of two proximal op-
erators in a real Hilbert space. Using the mathematical tool above, a strong convergence
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theorem for the proposed algorithm is established under some mild conditions. Appli-
cations to the split feasibility problems are also considered. Finally, we provide some
numerical experiments to verify the theoretical results of this paper. In summary,

e Applying the convex minimization problem (1.1) and the fixed point equation
(1.2), we propose a new mathematical tool related to two proximal operators;

e We propose an intermixed algorithm to find the solution of fixed point problem
of two proximal operators in a real Hilbert space and prove a strong convergence
theorem for the proposed algorithm under some mild conditions;

e Our algorithm combine the proximal-gradient algorithm with viscosity technique
in Guo and Cui [8], the intermixed algorithm in Yao et al.[32] and the Krasnosel-
skii-Mann algorithm in Kanzow and Shehu [12].

The organization of our paper is as follows: In section 2, we first recall some basic def-
initions and lemmas. We also give a new lemma related to two proximal operators (see
Lemma 2.4 below). In section 3, we prove the strong convergence theorem of our pro-
posed algorithm under some mild conditions. In section 4, we consider the application of
our main result to solve the split feasibility problems. In section 5, we provide numerical
examples to support the main result.

2. PRELIMINARY

For the purpose of proving our theorem, we provide several definitions and lemmas
in this section. For convenience, the following notations are used throughout the paper:

e H denotes a real Hilbert space with an inner product (-, -) and an induced norm
- 1I;
e ( denotes a nonempty closed convex subset of H;
e I'o(H) denotes a class of convex, lower semicontinuous, and proper functions
from a Hilbert space H to (—oo, +00];
e z, = ¢ (z, — ¢) denote the strong (weak) convergence of a sequence {xz,,} to ¢ in
H, respectively;
e Fiz(S) denotes the set of all fixed points of S.
Recall that the (nearest point) projection Pc from H onto C' assigns to each = € H the
unique point Pcx € C satisfying the property

— Pox|| = min |z — y]|.
2 = Pea] = min o = y]

Lemma 2.1. [18] For given «z € H and let Pc : H — C be a metric projection. Then
(1) w= Pezifand only if (x —w,y —w) <0, VyeC;
(b) w = Poa ifand only if | — w||® < & — yl|? — |y — w|2, Wy e C;
(c) (Pcx — Poy,x —y) = ||[Pex — Peyl?, Vo,y € H.
Definition 2.1. A mapping S : C — C is called nonexpansive, if
[Sz =Syl < [lz =yl Vo,yeC.
Definition 2.2. A mapping A : C' — H is called
(i) Monotone if
(Az — Ay,z —y) >0, Va,y e C,
(if) n-Strongly monotone if there exists a positive real number 7 such that
(Az — Ay,x —y) Z llz —y|?, Vo.yeC;
(iif)y L-Lipschitz continuous if there exists L > 0 such that
[Az = Ayl| < Lljz — yl|, Va,y € C;
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(iv) a-inverse strongly monotone if there exists o > 0 such that
(x —y, Az — Ay) > af| Az — Ay||?, Vaz,y € C.

Clearly, If A is n-Strongly monotone and L-Lipschitz continuous, then A is 75-inverse
strongly monotone. If A is an a-inverse strongly monotone mapping, then L-Lipschitz
continuous.

Lemma 2.2. [12] Let X be a real inner product space.Then

@ |lz+yl? <|z|?+2y,z+y), VYoyeX;
@) |lpx+qull> = p(p + Olzl* + alp + )llylI*> — pallz — ylI?, Va,y € X,Vp,q € R.

The following Lemma, which comes from [17], [30], will be used to prove our strong
convergence result.

Lemma 2.3. [17], [30] Let {a.,} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

An41 S (1 - an)an + 5n + M,y VTL Z 1,

where {,, } is a sequence in (0,1) and {6, } is a real sequence. Assume Y~ |un| < oo. Then,
the following results hold:

(i) If 6, < a, M for some M > 0 then {a,} is a bounded sequence;
(o)

. )
(7i) Ifz o, = 00, and limsup — < 0, then lim,,_ o0 @y, = 0.

n—oo Qp
n=1

Let the function f € T'o(H). The set

Of(x) ={z€ H:{(z,y—x)+ f(z) < f(y), Yy € H}

is called a subdifferential of f at € H. The function f is said to be subdifferentiable at x if
Of(xz) # 0. The elements of df(x) are called the subgradients of f at x. If the function f
is continuously differentiable, then df(xz) = {V f(x)}; this is the gradient of f. It is well
known that the subdifferential 0f is a maximal monotone operator. It is notable that a
point z* € H minimizes f if and only if 0 € Jf(z*). Let  and p be in H. The proximity
operator of f is characterized by the inclusion

p =Prox,;z <z —peyif(p).
In other words,
Prox,; = (I +~9f)~ "
Moreover, the proximity operator of f is firmly nonexpansive, namely,
2.8) (Prox () — Prox, r(y),z — ) > || Prox, s () — Prox, s (y)|?
for all z,y € H, which is equivalent to
(29) || Prox, s (x) — Prox, s (y)[1? < llo — y||2 = Il(Z — Prox, )(z) — (I — Prox,7)(y)|?

forallz,y € H. For general information on proximal operator, see Combettes and Pesquet

[3].
Proposition 2.1. [2] Let the function f € I'o(H) and let z,p € H. Then

p=Prozjz & (y—p,x—p)+ f(p) < fy),
forally € H.
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Lemma 2.4. Let the function f € To(H). Let A, B : C — H be 6" and 6B- inverse strongly
monotone operators, respectively, with § = min{6*,6P} and Fix(Prox,;(I — vA)) N
Fiz(Proz¢(I —vyB)) # 0. Then

(2.10) Fiz(Proxs(I—yA))NFix(Prox,s(I—vyB)) = Fix(Prox,;(I—y(aA+(1—a)B))),
forall a € (0,1) and v € (0,26).

Proof. From Proposition 2.1, it is easy to see that

(211) Fix(Proxys(I—vA))NFiz(Prozs(I—vB)) C Fiz(Prozs(I—v(aA+(1—a)B))).

Let x € Fiz(Prox;(I—y(aA+(1—a)B))) and z* € Fiz(Prox~ (I —yA)) NFiz(Prox s(I—
~B)). So, we have

z* € Fix(Proxys(I —v(aA+ (1 —a)B))).
By the definitions of A, B, we have
|zo — 2*||? =||Prox, (I — y(aA + (1 — a)B))xg — Prox (I — y(aA+ (1 — a)B))z*|?
<||lwo — 2* — y(a(Azy — Az*) 4 (1 — a)(Bxo — Bz™))|)?
=|lzg — 2*||? — 2y(a(Azo — Az*) + (1 — a)(Bxo — Bz*),zo — z*)
+7%[la(Azo — Az*) + (1 — a)(Bxo — Ba”)|*
<zo — 2|2 — 2va(Azg — Az*, zg — z*) — 27(1 — a)(Bxg — Bx*, o — x*)
+ 92 (a||Aa:o — Az*|)* + (1 — a)||Bxg — Bx*HQ)
(2.12) <llwo — 2™ [|* = ya(26 — y)||Azo — Az*|* = v(1 — a)(26 — 7)|| Bzo — Ba™|*.
It implies that
Azxg = Az*, Bxg = Bx™.
Let y € H. By applying Proposition 2.1 and z* € Fiz(Prox~¢(I —vA)), we obtain
{y —a" (I —yA)z™ =) +7f(@") <7f(y),
which implies that

(2.13) fly) = f(@™) +{y — 2", Az") > 0
Since z* € Fix(Prox~¢(I —vB)), we also get
(2.14) fy) = f(@") + {y — =%, Ba™) > 0.

Since zy € Fiz(Proz,s(I —y(aA+ (1 — a)B)) and by Proposition 2.1, we get

(y — o, (I —=v(ad + (1 —a)B))zo — o) +7.f(x0) < 7f(y),
which implies that

(2.15) f(y) = f(zo) + (y — 20, (aA + (1 — a) B)zo) = 0.
From (2.13) and Axg = Ax*, we obtain

{y — o, Azo) + f(y) — flwo) = (y — 27, Az™) + (2" — w0, Awo) + f(y) — f(2")
+ f(@%) = f(zo)
=(y—a" Az") + f(y) — f(2") + (& — o, Azo)
+ f(@") = f(2o)

(2.16) > (a* — xo, Awo) + f(2*) — f(x0).
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From Bz = Bz*, (2.14), and (2.15), we get
(x* — xo,aAxg)+af(z*) — af(xo)
=(z* — xg,aAxg + (1 — a)Bxp) — {(x* — x9, (1 — a)Bxg)
+af(z") —af(xo)
=(z" — 0, aAzo + (1 — a)Bxo) + f(z*) — f(x0)
= f(&") + f(zo) — (" — 2o, (1 — a) Bxo)
+af(z") —af(xo)
>(xo — 2", (1 —a)Bz") + (1 —a) f(xo) — (1 —a)f(z")
=(1—a) ((zo — 2", Ba") + f(x0) — f(z"))
>0.

Since a € (0, 1), we have

(2.17) (@ — @0, Awo) + f(2”) — f(20) 2 0.
From (2.16) and (2.17), we obtain
(2.18) (y — wo, Axo) + f(y) — f(wo) > 0,Vy € H.

It follows from (2.18) and Proposition 2.1,
(y — w0, 20 — (I = yA)zo) +7f(y) —7vf(20) 2 0,Vy € H.

It implies that
(2.19) xo € Fiz(Proxys(I —vA)).
Using the same method as (2.19), we also have

xg € Fix(Prox,¢(I —vB)).
So, we can conclude that
(2.20) Fiz(Proxzy¢(I—v(aA+(1—a)B))) C Fiz(Proxs(I—vA))NFiz(Proxs(I—vB)).
From (2.11) and (2.20), we deduce that
(2.21) Fiz(Proxzys(I—~A))NFiz(Prozys(I—vB)) = Fix(Prozys(I—v(aA+(1—a)B))).

O

Lemma 2.5. [31] Let H be a Hilbert space, C a closed convex subset of H, and T : C — C bea

nonexpansive mapping with Fixz(T) # 0. If {x,} is a sequence in C weakly converging to x and
{(I = T)xy} converges strongly to y, then (I — T)x = y.

3. MAIN RESULTS

In this section, we introduce an intermixed algorithm and prove a strong conver-
gence of the proposed algorithm to find the solution of fixed point problem of two proxi-
mal operators.

For every i = 1,2, let the functions f; € To(H), let A;, B; : C — H be §* and §5-
inverse strongly monotone operators, respectively, with §; = min{5#,5%}. Assume that
Q= Fix(Proxfyf(I —viAp)) ﬂFia:(Proxfyf(I —v:B;)) # 0, foralli =1,2. Let&1,& : H —
H be 01 and o3-contraction mappings with 01,02 € (0,1) and 0 = max{o1,02}.

Now, we introduce an intermixed algorithm with viscosity technique for solving a com-
mon fixed point of proximal operators as follows:
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Algorithm 1: An intermixed algorithm with viscosity technique for solving a com-
mon fixed point of two proximal operators.

Initialization: Given z,,y; € C be arbitrary.

Iterative Steps: Given the current iterate {z,,}, {y,}, calculate {z, 11}, {yn+1} as
follows:

Step 1: Compute

Uy = me?/f(yn —72(a2A2 + (1 — az)B2)yn)
Up = Prox;f(xn —m(a1 A + (1 = a1)Bi)zy)
Step 2: Compute

Yn+1 = UnYn + ﬂnPC(anéé(irn) + (]- - an)vn)
Tntl = PnTn + 5nPC(O‘n§1 (yn) + (1 - an)“n)a
where {un}, {Bn}, {an} C [0,1] with pin, + B, < 1,7 € (0,24;), a; € (0,1) and

Prox’ ;+ H — H is the proximity operator, for all i = 1, 2.
Setn :=n 4+ 1and go to Step 1.

Theorem 3.1. For every i = 1,2, let the functions f; € T'o(H), let A;,B; : C — H be 6{‘
and §B- inverse strongly monotone operators, respectively, with §; = min{s3, 68 }. Assume that
Q; = Fix(Proxﬁ/f(I—’yl-AZ-))ﬂFz':r(Proxiyf(I—%—Bi)) #0, foralli =1,2. Let &1,& : H - H
be o1 and oo-contraction mappings with o1,09 € (0,1) and 0 = max{o1,02}. Let {z,} and
{yn} be the sequences generated by Algorithm 1, satisfying the following conditions:

o0

(i) lim o, = 0and g = 00;
n—oo 1
e

(ii) thereare€,1 > 0 with0 <& < py,, B <1l < 1foralln e N;
oo 00 00 00

(1”) Z |an+1_an‘ < 0, Z |/1*n+1_,u/n| < 0, Z |ﬁn+1_ﬁn| < 00, Z(l_ﬂn_ﬁn) < 0.
n=1 n=1 n=1 n=1

Then {x,,} and {y, } converge strongly to x* = Pq, &1 (y*) and y* = Pq,&2(x*), respectively.

Proof. Putting K; = Proxi/f(l —vi(a;A; + (1 — a;)By))) for all i = 1, 2. First, we will show
that K; is nonexpansive mapping for all i = 1,2. For every i = 1,2, let 2*, 29 € C. Using
the same method as (2.12), we have

|1 EK;x™ — Kxol| =|| Proxif(l —yi(a; A; + (1 — a;)By)))z*
- Proxif(l —yi(a; Ay + (1 — a;) By)))zo||?
<[lz* = woll® + aivi(vi — 26:) [ Aiz* — Aao|?
+ (1 —ai)yi(yi — 26) || Biz™ — Bimol|®
(3.22) <Jla* — o %

Thus, Proxi (I =7i(a;A; + (1 —a;)B;))) is nonexpansive mapping for all i = 1,2. Assume

that 2* € Q; and y* € Q.
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From the definition of z,,, u,, and the nonexpansiveness of K;, we have

[#n1 — 2| =[lpnzn + BnPo(anéi(yn) + (1 — an)un) — 27|

=|lpn(zn — %) + Bn(Po(anéi(yn) + (1 — an)un) — z*)
— (1= pn = Bp)z™||

<pnllzn — 2| + Bullanéi (yn) + (1 — an)u, — 27|
+ (L= pin = B) |||

Stinllzn — 2| + Bu(anll€r(yn) — 2| + (1 = an)|lun — 2*[])
+ (1= pn = Bn) |27

=tinlzn — 27| + Bn(anll€1(yn) — 2| + (1 = an) | K1zn — 27])
+ (L= pin = B) |||

Stinl|zn — 2| + Bn(omll€1(yn) — 27| + (1 — an)llzn — 7))
+ (1= pn = B) |27

<A = Bo)llwn — 2" + Bromll€(yn) — [ + Bu(l — an)llzn — 2|
+ (L= i = B) |||

=(1 = anfn)lzn — 2% + anBnll€1(yn) — =7
+ (1= pn = Bu) [l

< = anfB)llen — 2| + anBu (€ (yn) — &) + 162(y") — ™)
+ (L= pin = Ba) |||

<= anB)llwn — 2| + anBroillyn — y* || + anbullér(y”) — ||
+ (1= pn = Bu) [l

<A = anf)llen — 27| + anbnollyn — y*[| + anBullér(y™) — 27|

(3.23) + (1= pn = Ba)llz™|I.

Similarly, we get

lyni1 — vl <0 = anB)llyn — | + anbBrollz, — || + anBullé2(z”) =y
(3.24) + (1= pn = By |-

Combining (3.23) and (3.24), we have

[Znt1 = 2" + [[Ynt1 — ¥* | @ — anBp)llzn — 2| + anBrollyn — y*||
+ onBullé(y”™) — 27 + (1 = pn = Bn) |2
+ (1 = anfu)llyn =yl + anfrolzn — 27|
+ anfulla(@) —y* I + (1= pn = Ba) 7]l

=(1 = anfn) (lzn — 2" + [lyn —y"[])

+ anfBno ([n — 27| + [lyn — y7)
+ anBn(ll€(y™) — 27| + [1€2(=7) — y7[])
+ (1 = g = Bu) ([l + NIy
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=(1 = anfn(l = ))(lzn — ™[ + lyn — v"I)
+anfn(ll&(y") — 27| + [1€2(2") = y7[1)
+ (1= pn = Ba) (2" + [y 1)
=(1 = anfu(l = 0))(n — 2" + lyn — y7[])
<||£1 — x| + [[€a(27) — y*ll)

+ anﬂn l—o

+ (L= pn = Bu) (2" + ly™[)-

By Lemma 2.3, we get that {z,,} and {y,} are bounded. Next, we will show that {u,},
{vn}, {&1(yn)}, and {&2(z,)} are bounded. From the definition of «,, and the nonexpan-
siveness of K, we have

[un — 2" =[[ Kyzn — 27|

<[wn — 2.

Since {z, } is bounded, then {u,, } is bounded. Using the same method, we establish that
the sequence v, is bounded. Observe that

1€1(yn) — 2" <[1§2(yn) — & (@) + (€2 (z") — 27|
<onflen — 2" 4 [|€(27) — 2.

Since {z,} is bounded, then {&;(y,)} is bounded. Using the same method, we show that
the sequence {&;(z,)} is bounded.

Setting T}, = Po(anéi(yn) + (1 — an)uy) and T = Po(anéa(xn) + (1 — ap)vy,). We will
show that {T,,} and {T*} are bounded. Observe that

1T — =™ =[[Pe(anti(yn) + (1 — an)un) — 27|
<llan&i(yn) + (1 — an)un, — 7|
<onll€1(yn) — 2" + (1 — an) lun — 27|
<an[§1(yn) = & (&) + anll&a(z") — 27| + (1 — an)[Jun — 27|
Sanoiflzn — 2| + anll61 (") — 27| + (1 — an)llzn — 27|
=1 —an(l = o))llzn — 2| + anl|62(z") — 7.

Since {z,,} is bounded, then {7}, } is bounded. Using the same method, we show that the
sequence {7} is bounded.
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Next, we show that ||z,+1 — 2| — 0 and ||yn+1 — yn| — 0as n — occ.
By the nonexpansiveness of K;, we have

1T — To-all =[1Pe(an&i(yn) + (1 — an)un) — Po(an—1&(yn—1) + (1 — an—1)un—1)||
§||(an§1(yn) + (1 - an)un) - (O‘n—lfl(yn—l) + (1 - O‘n—l)un—l)H
=[lané1(Yn) — anb1(Yn—-1) + @1 (Yn-1) + (1 — an)un — (1 — an)un—1
+ (1 —an)un—1—ap_1&(Yn-1) — (1 - an,l)un,1H
=llan (&1 (yn) — &1(yn—1)) + (@0 — an—1)&1(Yn—-1) + (1 — an)(upn — Up—1)
+ (ap—1 — ap)un—1||
o [&1(yn) = &1 (-1l + lan — ana[ll§1(yn-1)|l
+ (1= o) [ K12 — Kizn-a | + [an — an—1||lun—1|]
<ano1||yn — Yn—1ll + lan — an—1 161 (Yn-1)Il + (1 — an) |20 — Tn—1]|
+ lan — a1 |[[tn—1 |
<anol|yn = Yn-1ll + lan — an_1[|&(Yn—1) || + (1 — o) |lzn — 01|
(3.25) + |an — an—1|||tn-1]|-
From the definition of z,, and (3.25), we have
||37n+1 - xn” :H:unxn + BnThn — (/‘nflxnfl + anlTnfl)H
<tnll®n — Tp—1ll + |tn — pr—1ll|2n-1]]
+ Bull T — T—1ll + | Bn — Br—1 || Tn-1|
pinl|Tn — 1|l + | — -1 |||Tn 1|
+ B (@ g = yn-1ll + e = a1l ()|

+ (1= an)lzn — zaoall + lan — o ffans )
+ |Bn = Br—1||Tn-1l
<(I = anfo)llzn = znall + lpn = pn-slllzn—1 |l
+ B0 llyn = yn-1l + o = 1] (161 @) | + l1n-1])
(3.26) +18n = Bn-1l|Tn-1]-
Using the same method as derived in (3.26), we have
[Ynt1 = ynll (1= nfn)l[yn = Yn-all + [0 = pnalllgn-1ll + anfnollzn = zn |
(3.27) + o = an-1l (I€@a-1)ll + llon-1l) + 180 = Bu-al 1Tl
From (3.26) and (3.27), we have
[Znt1 = 2n | + [1ynt1 = ynll (1= (1 = 0)Bnen) ([|2n = znall + [Iyn = yn-1ll)
+ [n = pm—1| (J2n—1 ]l + lyn-1]))
+ 180 = Bt (ITa—a | + 1T 4 1))
+lan — o1 | (182 (Yn—1) I + l[un—1]
+llg2(@n-1)]l + llon-1ll)-
Applying Lemma 2.3 and the condition (iii), we can conclude that

(3.28) Jim [zpg1 — 2| = 0and lim ([yn1 —yal = 0.
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Next, we show that ||z, — U,|| — 0 as n — oo where U, = a,&1(yn) + (1 — an)u,,
lyn — Vo|| = 0 where V,, = an&a(zn) + (1 — ap)vpn, as n — 0.
From the definition of z,,, we obtain

ns1 = 12 =ltnzn + B PoUn — a1
i (n = &)+ Bu(PeUn = ") = (1= gin = B)a" |1
<Ntn (wn = 27) + B (PeUp — 27)|?
=21 =ty = Ba) (@ v — )
<pin(n = @)+ Bu(PeUy — )|
+2(1 = ptn = Bo)lle w1 —
=tin(ttn + Bu)l|en = 2 |2 + Bu(jin + Bo) |PoUn — 2
— tinBulln = PoUnll? +2(1 = in = Bo) 2" llwass — *|
Stin (it + Bl = 2|2+ Bulptn + Bu)l|Un — 2
— tinfulln = PoUnll? +2(1 = in = B) 2" llwas — *|
—tin(ptn + B — 7
o Bt + B) e (€1.(gn) = n) + (1 = 27) 2
= tinBnll2n = PoUn 2 + 21 = ftn = Bl a1 — 2
<ttt + Bu) e = @12 + Bt + B) (I1n — 2
)
)

+ 20, (1 (Yn) — Uny a1 (yn) + (1 — apn)upn — x*>)
= tinfnl|zn = PeUn||* + 2(1 = pin = Bn
<ttt + Ba)llwn =22+ Byt + ) (lun —
— Q) Uy — x*H)

= tnBulltn = PoUnll* +2(1 = pn = Buo)llz” [lzns1 — 27|
Sllan 31 + 2000 61 () — wnlllons () + (1 — ) — 2

(3.29) — ftnBalltn — Pl +2(1 = tn = B)l#” Mlass — 2°]1

It follows from (3.29) that

[ [[[[enta — 2]

+ 200161 (yn) — unlllanés (yn) + (1

pnBnllzn — PeUnl? Sllzn — 2| = llzngr — «*||?
+ 200 B0 [1€1 (Yn) — unlllloméa (yn) + (1 — o )un — 7|
+2(1 = pn = Bp) l2"[[|n g1 — 27
Slzn = znpal|(lzn — 27 + lzne —27()

+ 200 Bu 161 (Yn) — un | lan&i (yn) + (1 — an)un — 2|
+2(1 = pn = Bu) Iz [ln1 — 27

By (3.28), the condition (i)- (iii), we get

(3.30) nl;rgo |PcU, — x,|| = 0.

From definition of y,, and applying the same method as (3.30), we have

(3.31) Jim |[PeVi, = yall = 0.
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From Lemma 2.1, we obtain

(3.32) |PcU, — z*||* < ||Un — 2*||? — |Up — PoUy|?.
From the definition of U,,, we get

1Un = 2" 1* =llam (€1 (yn) — &) + (1 = an) (ug — 27|
Sanllér(yn) — 2 * + (1 = ) up — 2*||?
(3.33) Som|€1(yn) — 2" * + (1 = an) lzn — 27|

From (3.32), (3.33), and Lemma 2.2, we obtain

|Znt1 — 2*° =|lpnzn + BnPcUn — z*|?

Zptn (pn + B |20 — 2> + Bu(pin + Bn) | PoUn — 2|2
— tnBnllZn — PoUnl® +2(1 = pn = B)[J2*|[l| 241 — ||

Zpn (i + Br) [0 — 2|1 + Bu(pin + Bn) (|Un — ¥ = U — PoUn|1?)
— tnBnllzn — PoUnl® +2(1 = pn = B)|l2*|[l| 241 — ||

g (ptn + Br) |20 — 21> + Bu (i + Bn) (an |61 (yn) — =¥
+ (1= an)lzn — 2*|* = [|Un — PcUnl?) = pinBullzn — PcUnl?
+2(1 = gy = Bo)llz™[[[|zn41 — 27

=pinllzn — 2*|* + Buanll€i(yn) — 2*|1° + Bu(1 — an) |z — 2*|?
= Bualpn + Bu)llUn — PeUn|® = nful|zn — PoUsl|®
+2(1 = pn = Bu)llz* [lens1 — 2|

=(pin + Bn(1 = @) |zn — 2*|* + Buewa €1 (yn) — =¥
— Bu(ptn + Bn)|lUn = PoUnl|* = pinBn |20 — PoUn|?
+2(1 = pn = Bl | |zns1 — 2™

Lwn = 2% + B lé1(yn) — 2*[1° = Bulpin + Ba) |[Un = PoUs|?
+2(1 = py = Bu)llz™[[[|zn1 — 2",

it follows that

Br(tin + Bu)|Un — PcUn||2 <llzn — 517*”2 = llnt1 — z*HQ + anBnll&1(yn) — JC*”2
+2(1 = pn = Bu) lz" [n41 — 27|
Slzn = zngall(lzn — 2% + lzne —2*])
+ anBnll€1(yn) — $*||2
+2(1 = pn = Bl [lzn 1 — 27

From ||z, 11 — || — 0 as n — oo and the condition (i), (ii), we have
(3.34) lim ||U, — PoU,| = 0.

n—oo
Applying the same argument as (3.34) to the definition of V,, also yields

(3.35) lim [V, — PoVa| = 0.
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Consider
[2n = Unll =llen — PcUn + PoUn — Un||
<||zn — PeUn| + [|[PcUn — Un|.
From (3.30) and (3.34), we have
(3.36) Jim ||z, = Up|| = 0.
Using the same methodology as (3.36) and the definition of y,,, we also have

(3.37) Tim [lyn — Val = 0.
Next, we show that ||z,, — u,|| — 0asn — co and ||y, — v, || — 0 as n — oo. Observe that

Un —Tp = an(&l(yn) - xn) + (1 - an)(un - l‘n);
this implies that

(3.38) (1 —an)llun — a0l < |Un — znl| + anll&1(yn) — nll-

From (3.36), (3.38), and the condition (i), we have

(3.39) nh_)n;o [, — xn || = nh_)IIolo I Prox}Yf(I —7(a141 + (1 —a1)By))xy, — 2] = 0.
Applying the same argument as (3.39), we also obtain

(3.40) Jim o, =yl = Tim || Prox? (I — y2(az Az + (1 — az) B2))yn — yn| = 0.

Next, we show that limsup(¢; (y*) — 2*,U,, — z*) < 0, where z* = Py, & (y*) and

n—oo

limsup(§2(z*) — y*, V, — y*) < 0, where y* = Pg,62(2*). Indeed, take a subsequence

n—oo

{Un,} of {U,} such that
limsup(&: (") — 2, Up = 2) = lim (&(y") = 2", U, — ")

n— oo
Since {x,}, {yn} are bounded, without loss of generality, we may assume that z,,, — =
and y,, — ¥ as k — oo, respectively. Since C' is closed and convex, C' is weakly closed.
So, we obtain z,y € C.
Since Prong(l —vi(a;A; + (1 — a;)B;)) is nonexpansive, for all i = 1,2, (3.39), and (3.40),
it follows from Lemma 2.5 that & € Fix(Prox,lyf(I —v(a141 + (1 —a1)By))) and 5 €
FZLL‘(PI‘OX?”:(I — ’)/Q(CLQAQ + (1 — ag)BQ))).
By Lemma 2.4, we have

(3.41) T € Fix(Pro:U;f(I —1141))N Fix(Prox}/f(I —m1DB1)) =Q.
and
(3.42) g e Fiw(Pro:c,zyf(I —7242)) N Fix(Prox,ny(I —72B3)) = Qs.

From (3.36), we obtain U,,, — z as k — oo. Since U,,, — T as k — 00, T € {23 and Lemma
2.1, we can derive that

limsup(&1(y*) — 2", Up — 2%) = lim (& (y") — 27, Up, — %)
n— o0 k—o00
(3.43) <0.
Similarly, indeed, take a subsequence {V,, } of {V,,} such that
limsup(Es(a*) — 4", Vo~ y*) = lim (62(2") ", Vi — 7).

n—oo
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From (3.37), we obtain V,,, — yas k — oc.
Following the same method as (3.43), we easily obtain that

(3.44) lim sup(£2(a*) — y*, Vu — y*) < 0.

n—oo

Finally, we show that {z,,} converses strongly to z*, where z* = P, {1 (y*) and {y,}
converses strongly to y*, where y* = Pg, {2 (x*).

Since U,, = a,&1(yn) + (1 — an)uy, and V,, = a&a(xy,) + (1 — ay)v, and the definition of
Tn, We get

Hxn-i-l - x*HQ :H,U'nxn + /BTLPCU’VL - x*”Q
St (pon + Bn) |20 — x*HQ + Bu(tn + Bu)lln(§1(yn) — %)
+ (1 = o) (un — 2*)|> +2(1 = pn — Bn)|z*||[|@n 41 — 2|
<ptn(pin + Bl = 1+ Bt + B) (1 = )l — 22

+ 2an<§l (yn) — ", U, — x*>>
+2(1 = pin = B)llz" [ |zn41 — 2|
<tin(pn + Bu) |0 — x*H2 + B (pin + Bn)((l —ap)||Tn — x*HQ

+ 200 (61 (yn) = 2", U — 7))
+2(1 = pn = Bu) Iz [n 41 — 27|
<tnllzn — $*||2 + B (1 — an)lzn — m*HQ
+ 200 Bn (pin + B ) (€1 (yn) — 2", Un — 27)
+2(1 = pn = Bu) Iz [ln 41 — 27
=(pn + B (L = @)z — 2*||* + 200 B0 (ptn + Bu) (€1 (yn) — 2", Un — %)
+2(1 = pon = Bu) Iz [n41 — 27|
=((kn + Bn) — anfn)l|lzn — z*|>

o+ 20 Bt + B) (€1 (gm) = €1(07), U — &) + (E0(y") — 2*, U — "))
+2(1 = pin = Ba) 2" 741 = 2°
<(1 = ann)lan — 2"
+ 200 B (st + B0) (11 (9n) = &MU = *l| + (25") — 2", Un — 7))
+2(1 = pin = Ba) 2" 741 = 2°
<(1 = ann)lan — a*|?
+ 200 Bl () = &GN = 2| + ns1 =2}
200 B (jin + Ba) (61 (57) — 27, U — )
+2(1 = pin = Ba) 2" 741 — 2"
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<(1 = anf)lwn — 2|
+ 200800 |yn = Y7 [[IlUn = 2nga| + 200800 lyn — y" ||| €01 — 27|
+ 20 B (pn + Bn) (61 (y") — 2%, Un — 27)
+2(1 = pn = Bu)lz" ([ en 1 — 27|
<(1 = anf)lwn — 2|
+ 200 B0y =y 1Un = sl + @B (lyn =y II° + lznsr — 2%
+ 200 Bn (pn + Bn) (§1(y") — 2%, Un — 27)
+2(1 = pn = Bl |[[[n 1 = 2],

which yields that
fonss =" P <7 g, — 0| 2y, — U — ]
e L OIS RN
+ 20t ) - o
—(1- 2P B o, o 2y, U ]
b2y g 2l )y 0, -
+ 20t ) - 0|
(1= 2B o, — ot 2y U, ]
[0y oy 2 ) ) 0, )
e [

there exists M > 0, such that

apfBn(l —0o 200, fno .
Rt P A L [ [ A

1-— aanU 1-—- anﬂna
anﬁna * |12 2anﬁn (/J,n + /Bn) * * *
(3.45) + (1 = pin — Bo)M||z*|||2ns1 — z*|.

Similarly, as previously stated, there exists M > 0, such that

1-o0) 200, Bno
n 7*2<(17anﬂn( ) n - *||12 nER n - * V'n*n
[yn+1 —y*[I" < I —o.bo0 lyn —y"II° + l—anﬁnaHx’ z*[[[[Vee = Y1
nBno * 2 20, Bn, (Mn + ﬁn) * * *
e [ ZnPnlfn T 0n) — " Vi —
+ 17anﬂnal\x z*||* + I —onbo (&(z") —y y)

(3.46) + (1= = Bn) M |ly*[[Nlyns1 — " |-

321
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From (3.45), (3.46), and choose M = max{M, M}, we get

e = 212 + s — o[

<(1- 22 L2 o — a7 2+ g — 7 IP)
22T g =y = sl + = 2" 1Vi = s )
P (= I + g o IP)
20l L) (6, 4) — 2,0 = ) + ale") — " Vo =)

+ (1= pn = Bu)M ([l2" 1241 — 2" + 1y Hynta — v

(1 B2 (a2 4 — )

1 —opfno
200, Bn0 « *
+ m(”yn =y Un = zngall + lzn — 2" [V = ynall)
200 Bn (pn + Bn) * * * * * *
+W(<fl(y ) =2t Uy —2") + (&) —y", Vi —y")

(3.47) + (= pn = Bo) M ([l [z 1 — 2" + y* ynt2 — v7 ) -
By (3.28), (3.36), (3.37), (3.43), (3.44), the condition (i), (iii) and Lemma 2.3, we have

li_>m (len — | + llyn, — y*|l) = 0. It implies that the sequences {x,}, {y,} converge
n—oo
to z* = Po,&1(y*), v* = Pa,&2(x*), respectively. This completes the proof. O

Remark 3.1. We have the following observations for the offered Algorithms 1.

(1) It should be noted that we use a new mathematical tool (Lemma 2.4) related to
two proximal operators that exploits the information of v,, and u,,, which actually
draws inspiration from Xu [29] and Guo and Cui [8].

(2) By combining the proximal-gradient algorithm with viscosity technique in Guo
and Cui [8], the intermixed algorithm in Yao et al.[32] and the Krasnoselskii-Mann
algorithm in Kanzow and Shehu [12], the algorithm presented in this paper pro-
vide a strong convergence theorem in real Hilbert spaces.

4. APPLICATIONS

In this section, we reduce our main problem to the following the split feasibility
problems.

4.1. The Split Feasibility Problem. Let C' and () be nonempty closed convex subsets of
Hilbert spaces H; and Hy, respectively. The split feasibility problem is to find a point

(4.48) x € C such that Az € Q,

where A : Hy — Hj is a bounded linear operator. The set of all solution (SFP) is de-
noted by I' = { € C; Az € Q}. The split feasibility problem is the first example of the
split inverse problem, which was first introduced by Censor and Elfving [5] in Euclidean
spaces.

Proposition 4.2. ([6]) Given x* € H, the following statements are equivalent.

(i) x* solves the T';
(ii) Po(I — MNA*(I — Pg)A)x* = a*, where A* is the adjoint of A;
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(iii) x* solves the variational inequality problem of finding x* € C such that
(4.49) (VO(x*),x —a*) >0, Vo € C,
where VQ = A*(I — Pg)A.
If C is a closed convex subset of H and the function f is the indicator function of C then
it is well known that Prox,; = Pc, the projection operator of H, onto the closed convex

set C and putting A; = B; for all ¢ = 1,2 in Theorem 3.1. Consequently, the following
result can be obtain from Theorem 3.1.

Algorithm 2: An intermixed algorithm with viscosity technique for solving the
split feasibility problems.

Initialization: Given z1,y; € C be arbitrary.

Iterative Steps: Given the current iterate {x,,}, {y,}, calculate {z, 41}, {yn+1} as
follows:

Step 1: Compute

Un = PC(I - ’Y2VQ2)yn)
Uy, = Po(I =V Qi)xy,)
Step 2: Compute
Yn+1 = UnUn + ﬁnPC(O‘ngQ(xn) + (1 - O‘n)vn)
Tn4+1 = UnTn + BWPC(O‘nfl (yn) + (1 - an)un);
where VQ; = A} (I — PQ)Air 7 € (0, HA 2 z) s {nt, {Bn}, {an} C [0,1], with

fin + Bn < 1.
Set n :=n+ 1 and go to Step 1.

From Proposition 4.2, it is clear that the solution of the problem (4.49) is the same as
the problem (4.48). By applying the aforementioned technique, it is possible to find the
solution to the two-split feasibility problem, as demonstrated in the following theorem.

Theorem 4.2. Let Hy and H, be real Hilbert spaces and let C, () be two nonempty closed convex
subsets of real Hilbert spaces Hy and Hs, respectively. Let A;, Ay : Hy — Hj be bounded linear
operators with Af, A% are adjoint of Ay and A, respectively. Assume that Ty = {z* € C; Ajz* €
Q£ Dand Ty = {y* € C; Ajy* € Q} # 0. Let &1,& : H — H be oy and oo-contraction
mappings with 01,092 € (0,1) and 0 = max{o1,02}. Let {x,} and {y,} be the sequences
generated by Algorithm 2, satisfying the following conditions:

(i) Hm ay, :OandZan = 00;
(ii) thereares l>0w1th0<5<,un,5n <l< lforalln€N+,

(iii) Z |otn 11— | < oo, Z |fin1—pin| < 00, Z |Bns1—PBnl < o0, Z < 0.

n=1 n=1 n=1

Then {x,,} and {y,} converge strongly to x* = Pr & (y*) and y* = Pr,&(x*), respectively.

Proof Let 2*, 20 € Cand VQ,; = A}(I — Py)A;, for all i = 1,2. First, we show that VO,

” A ”2 -inverse strongly monotone for all ¢ = 1, 2. Since P, is firmly nonexpansive, then
i
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Pg is L-averaged mapping, thus I — Py is 1-inverse strongly monotone. Observe that
(VQi(x™) = VQ;(x0), 2" —xo) =(Aj (I — Pg)Aix™ — A (I — Pg)A;xo, 2" — x0)
:<(I PQ A it — (I PQ)A Jio,A z* AlSL'()>
>|(I = Po)Aiz™ — (I — Pg)Awol|”

1 * * *

AT A7 (I — Pg)Aiz* — A (I — Pg)Aizol?
1 *

=T 1VeE) - Vi@l

Then VQ; is W—inverse strongly monotone, for all ¢ = 1,2. So, we can conclude of
Theorem 4.2 from Proposition 4.2 and Theorem 3.1. O

5. NUMERICAL EXAMPLES

In this section, we give some numerical examples to support our main theorem. All
the numerical results are completed on Apple MacBook Pro with 2 GHz Quad-Core Intel
Core i5. The program is implemented in Python 3.10.4.

Example 5.1. We consider our problem in the infinite-dimensional Hilbert space H =
L,([0, 1]) with the inner product defined by

(x,y) == /0 x(t)y(t)dt, VY, y € H

1 }
lzll2 == (/ Ix(t)Ith> , Yz € H.
0

Let C := {z € Ly([0,1]) : ||z|| < 1} be the unit ball. Then, we have

and the induced norm by

x(t), if [lz(t)]2 < 1,
(5:50) Po(e(t) =4 a(t)
if [|z(¢)]]2 > 1.
e a0l
Now take f = || - ||2, the norm in L5([0, 1]). Then, the proximal operator is given by
1- z(t), if =)z >,
(5.51) Prox., (x(t)) = {( ||x( o > () [l(8)][2
0, if [|lz()|]2 <7

This proximal operator is also known as the block soft thresholding operator.
Foreveryi =1,2,let A;, B; : C — H defined by

A (1) = 2(1), As(a(t) = =0}

forallt € [0,1], z € C. For every i = 1,2, we take the operator &; : H — H to be defined
_ =) _ =)
600 = 5 and (1) = g

50T )2 (1)

,B1(2(t)) = 5x(t) and B (a(t)) =

,forallt € [0,1], z € H. In Algorithm 1, choose

an = = 0.70 and as = 0.20, for all

1
7 nzl_i/
17 CESE
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n € N. So our Algorithm 1 has the following form:
(5.52)
v = Prox? ; (yn — 72(0.242 + 0.8B2)yn)

Up = Prox,lyf(:vn —71(0.7A1 + 0.3B1)xn)

o= (G ) (- ) e (gt + (157 )

o= (e ) ™ () 7 (oo + (150w )

We test the Algorithm 1 for three different starting points and use ||z,,41 — Zy |2 < 10710
and ||yn+1 — Ynll2 < 10710 as stopping criterion.

t

Case1: z; = 3 and y; = =
2

Case2:z; =e andy, = —;
Case 3: 21 = sin(2t) and y; = cos(2t).
According to the definition of A;, B;, f;, for all i = 1,2, then the solution of the problem
is z*(t) = {0}. The computational experiments, using our Algorithm 1, for each case
are reported in Tables 1, 2, 3, and Figures 1, 2, 3. The convergence behavior of the error
lzn, — n—1]l2 and ||y, — yn—1]|2 for each case is shown in Figure 4.

TABLE 1. Computational result of Case 1 for Example 5.1.

n_ wa(t) Yn(t) ||xn+1 - xn||2 ||yn — Yn—1ll2

1 0.2t 0.14286t - -

2 0.038357t 0.027619¢ 0.093325 0.066533

3 0.0038866t 0.0028225t 0.019902 0.014316

4 0.00023478¢t 0.00017213t 0.0021084 0.0015302

5 9.3462-107% 6.9228-1075¢ 0.00013016 9.5382-107°

6 2.6317-10"7t 1.9705-10"7t 5.2441-10"% 3.8831 .10

7 5.5187-107% 4.1782-1079% 1.4876-10~7 1.1136-10~"

8 895821011t 6.8575-10"11¢t 3.1345-107° 2.3727-107°

9 1.16-1012¢ 8.976-10~13¢ 5.1051-10—'' 3.9074-10~1!

TABLE 2. Computational result of Case 2 for Example 5.1.

n In(t) yn(t) an - In—l”Z ”yn - yn—1||2
1 et 0.2¢2 - -
2 0.0012¢2 4 0.1875¢ % 0.0375t% + 0.0041667¢~° 0.25688 0.072554
3 0.00025185¢% + 0.018533¢~° 0.0037067t> + 0.00087449¢ 5 0.053474 0.015251
4 24024 -107°#% 4+ 0.0010881e~" 0.00021762t% + 8.3415 - 10 5¢ 5 0.0055276 0.0016045
5 1.3403-1075¢% 4 4.1944 - 107 %"  8.3888 - 107642 4 4.654 - 106> 0.00033198  9.9186-10~°
6 4.9247 10782 4+ 1.14 - 1076~ 2.28 1072 +1.71- 107 7~% 1.2973-107° 4.044-107¢
7 1.2823-107%t2 +2.3014 - 107%™ 4.6027 - 1072 4+ 4.4525 - 107%™ 3.5598- 10" 1.1746-107"
8 24901 -107"¢2 + 3.5898 - 107102 7.1796 - 10~11¢2 4+ 8.6463 - 10~ e~ 7.2412-107° 2.5624-107°

9 3.7454 - 1071342 + 4.4625 - 10727 8.925- 107132 4+ 1.3005 - 10~12e~%  1.1372-107° 4.3587-10!
10 4.4933 - 1071542 4 4.5323 - 10~ e=5 9.0647 - 107192 + 1.5602 - 10~ Me~% 1.4228-10"2 5.9411-10~13
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TABLE 3. Computational result of Case 3 for Example 5.1.

Zn(t)

Yn(t)

lzn — zn1ll2

lvn — yn-1ll2

© 0 N G W N =S

sin (2t)

0.1875sin (2t) + 0.006 cos (2t)
0.018533 sin (2t) + 0.0022552 cos (2t)
0.0010891 sin (2t) + 0.00035263 cos (2t)

4.2022 -
1.1434 -
2.3112-
3.6101 -
4.4943 -

10 4.5716

~5sin (2t) + 2.347 - 1075 cos (2t)
~6sin (2t) + 9.4349 - 1077 cos (2¢)
108 sin (2t) + 2.5917 - 1078 cos (2t)
1079 sin (2t) 4 5.2106 - 10710 cos (2t)
1072 sin (2t) + 8.0267 - 1072 cos (2t)

10
10

<10~ ™ sin (2¢) +9.7958 - 10~ cos (2t)

cos (2t)

0.0041667 sin (2t) + 0.4676 cos (2t)
0.0012487 sin (2t) + 0.088194 cos (2t)
0.00010534 sin (2¢) + 0.0051715 cos (2t)

5.4972 -
1.9385 -
4.9126 -
9.3615 -
1.3891 -
1.6498 -

1075 sin (2¢) + 0.00019906 cos (2¢)
107 sin (2t) + 5.4012 - 1076 cos (2t)
1079 sin (2t) + 1.0883 - 1077 cos (2t)
10~ sin (2¢) + 1.6942 - 1079 cos (2t)
102 sin (2¢) + 2.1015 - 10~ cos (2¢)
10~ sin (2¢) + 2.1296 - 10713 cos (2¢)

0.62492
0.13131
0.014005
0.00091556
3.975-107°
1.2299 - 10~
2.8427-10°8
5.0783 - 10710
7.1996 - 1012

0.33764
0.24253

0.053239
0.0031992
0.00012508

3.4336 -
6.9863 -
1.0972 -
1.3724 -

1076
1078
1079
10—11

1074

10-114

10-13 4

0.0

0.2 0.4 0.6 0.8

t

(A)Casel:z1 = é forn=1,2,3,...,8.

and

yn(t)

10774

10-14

10-13 4

|

0.0 0.2

(B) Case1: y1

0.4

_t
o7

0.6 0.8

forn=1,2,3,...

FIGURE 1. The convergence behavior of {z,(¢)} and {y,(¢)} with Case 1
in Example 5.1 and y-axis is illustrated in Log scale.

0.0

0.2 0.4 0.6 0.8

t

(A) Case2:z; =e Sforn=1,23,..,9.

,8.

0.4

0.6
t

L0

t2
(B) Case2:y; = 5 forn=1,2,3,...,9.

FIGURE 2. The convergence behavior of {z,(¢)} and {y,(¢)} with Case 2
in Example 5.1 and y-axis is illustrated in logscale.
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10° 100
1072 10~
10 10-4
10-% 10-6
% 10~ E 10-8
- Lo
Lo 1012
1071 ﬁ Lot

!)‘.(! (!‘.2 (!‘.'1 . (!‘.b (\‘8 1‘[\ (!‘.U (\‘2 U‘ 4 s U‘f» 0.8 1‘0
(A) Case 3: 21 =sin(2t) forn =1,2,3,...,9. (B) Case 3: y; = cos(2t) forn =1,2,3,...,9.

FIGURE 3. The convergence behavior of {x,,(¢)} and {y,,(¢)} with Case 3
in Example 5.1 and y-axis is illustrated in logscale.

0.25 0= lan(t) — znsa(t)]|
—o— [lon(t) - 2ns ()] =y () = yna (]|
= llyn®) =y (0]
0.08 0.20
0.06 ’ 0.15
2
d: 0.10
0.04
0.05
0.02
0.00
0.00 2 3 1 5 6 7 s 9 10
Number of Iterations n
2 3 4 5 6 7 8 9
Number of Iterations n
+2
. _ 2t —
(A)Casel:x; = 0.2t and y; = 0.8¢. (B) Case2: a1 =e ~ and y1 = 5"
o = [za(t) - zusa (8)]
’ = gl = O]
0.5
0.4
é 0.3
0.2
0.1
0.0
2 3 4 5 (‘: 7 8 9 10

Number of Iterations n

(C) Case 3: z1 = sin(2t) and y1 = cos(2t)

FIGURE 4. Error plotting of ||z,, — zn—1]|2 and ||y, — yn—1]|2 in Example
5.1.

Moreover, we also provide the comparison (in terms of convergence and the CPU time)
of the sequences (i, and 3, on Algorithm 1 by choosing different y,, and 3,, with pi,+ 5, <
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1 satisfying the conditions (ii), (iii) in the following choices.

Ch i 1: n — — d n = ]_ — 7;
oice L fin = Ty ~ gyt 2P (n+1)?
n 1
Choice 2: i, = — dB,=1— ——;
oice 2 tin = gu ) (21 P (n? + 1)
. 1 1
Choice 3: p,, = e CESIE and 3, =1 — T
1
Choice 4: 11, = T and 3, =1 — FONTER

Itis empha51zed that all these sequences of y,, and j3,, are to satisfy conditions (ii) and (iii).
The results are reported in Table 4.

TABLE 4. Comparison of Algorithm 1 for Example 5.1 with different
cases of ji,, and S3,,.

Starting point Choice 1 Choice2  Choice3  Choice 4
T = 5 No. of Iter. 9 10 14 16
Y1 == CPU Time (s) 0.56213975 0.69141006 0.92488122 1.04418993

Remark 5.2. By testing the convergence behavior of Algorithm 1, we see in Example 5.1
that
(1) Tables 1, 2, 3 and Figures 1, 2, 3, 4 show that {z,,} and {y, } converge to z(t) = 0,
where 0 € Fiz(Proxy¢(I — vA)) N Fiz(Prox,;(I — vB)), for all ¢ = 1,2. The
convergence of {x,} and {y,, } of Example 5.1 can be guaranteed by Theorem 3.1.
(2) From the discussion of Tables 1, 2, and 3, we see that the sequences {z,,} and {y,}
in Case 1 on algorithm 1 Converge the fastest.
(3) The sequences p,, = m — (n+1)4 and 3, =1 —
the conditions (ii), (iii) in Theorem 3.1.
(4) From the discussion of Table 4, we see that the sequences {xz,,} and {y,,} in Choice
1 on algorithm 1 converge the fastest and the least time.

(n+1)2 with p,, + 8, < 1 satisfy

Next, we use the Algorithm 2 in Theorem 4.2 to solve a system of linear equations.
Systems of linear equations are used in a wide range of fields, including traffic analysis,
economics, and electrical engineering.

Example 5.2. We assume that H; = H, = R Solving a system of linear equations
A;x = b; for all i = 1, 2. In the following, we take:

2 -1 3 -1 1

1 -2 1 -3 -15
Ai=1y 4 4 | b= 7

2 0 -2 3 10

and

-1 -3 0 -3 —22

1 -1 2 -2 —6
Ade=11 9  g|=]

2 -2 8 6 36

Then the split feasibility problem can be formulated as the problem of finding a point x*
with the property x* € C and A;x* € Q, where C = R*, Q = {b;}, for all i = 1,2. That is,
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x* is the solution of the system of linear equations 4;x = b;, and

For every i = 1,2, we take the operator ¢; : R* — R* to be defined as & (x) = X and

49
X . 1 1 1
& (x) = o1 In Algorithm 2, choose o, = = Ly = CESIE — 1) and 8, =

1
Trie for all n € N. So our Algorithm 2 becomes
1

Vo =y, — 1542(1 — Po)Azy,

U = Xn — 155 AT(I — Pg)Aixn

59 Vo1 = ((n Ji 02 (n j 1)4) Yot (1 - ﬁ) (i&(x") * (1 - $> v")

s = (G~ ) (0 ) (3000 + (125w

According to the definition of A4;, for all i = 1,2, then the solution of the problem
is x* = (1,3,2,4)”. From Theorem 4.2, we can conclude that the sequences z,, and y,
converge strongly to x*. The numerical results, using our Algorithm 2, for the sequences
{xn} and {y, } are reported in Tables 5 and 6.

TABLE 5. The numerical results for the sequence {x,,} of Example 5.2.

n Xn = (x%,x%,x%xi)ip ||xn - xn71||2
1 (10, 10, 10, 10)

100 (1.01101939, 2.96006399, 1.9079274, 3.93186252)  2.0827e-03
500 (0.99900056, 2.98427758, 1.98454128, 3.9924486)  4.7872e-05
1000  (0.99952084, 2.99227651, 1.99233583, 3.99621442) 1.1675e-05
5000  (0.99990674, 2.99847538, 1.99847759, 3.9992422)  4.5827e-07
10000 (0.99995351, 2.99923891, 1.99923946, 3.99962108) 1.1430e-07

TABLE 6. The numerical results for the sequence {y, } of Example 5.2.

n Y, = (y}L,y%,ny,yﬁ)T ||yn 7Yn—1||2
1 (-10, -10, -10, -10) -

100 (0.74657296, 3.05961817, 2.10596020, 3.95701678) 1.9015e-03
500 (0.97220178, 3.00338976, 2.01114426, 3.99416767) 2.3602e-04
1000  (1.02507278, 2.98613767, 1.98783547, 4.00236647) 5.3877e-05
5000 (1.01697453, 2.99245005, 1.99212248, 4.00209563) 4.7330e-06

10000 (1.00763210, 2.99656705, 1.99645073, 4.00093167) 1.0058e-06
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Remark 5.3. By testing the convergence behavior of Algorithm 2, we see in Example 5.2
that

(1) Tables 5 and 6 show that {x,,} and {y, } converge to x* = (1,3,2,4)”. The conver-
gence of {x,,} and {y, } of Example 5.2 can be guaranteed by Theorem 4.2.

(2) Tables 5 and 6, we see that x10000 = (0.99995351, 2.99923891, 1.99923946, 3.99962108) T

is an approximation of the system of linear equations with an error 1.1430e — 07
and y, 000 = (1.00763210,2.99656705, 1.99645073, 4.00093167)” is an approxima-
tion of the system of linear equations with an error 1.0058¢ — 06, respectively.

6. CONCLUSION

In this paper, we introduce an intermixed algorithm with viscosity technique for solv-
ing a common fixed point of two proximal operators in a real Hilbert space. The strong
convergence theorem of our proposed algorithm, Theorem 3.1, has been established and
proven under some mild conditions. However, we should like remark the following:

(1) We modify the results of Yao et al.[32] from strict pseudo-contraction mappings to
proximal operators of in Hilbert spaces. Further, we also give the new mathematical
tool related to proximal operators by using the concept of the convex minimization
problem and the fixed point equation (1.2) (see Lemma 2.4).

(2) Our result is proved with a new assumption on the control conditions {u,} and {3, }
such that p, + 8, < 1.

(3) We apply our theorem to solve the split feasibility problem by using an intermixed
algorithm with viscosity technique.

(4) We give a numerical example that shows the efficiency and implementation of our
main result in the space Ly as shown in Example 5.1. Moreover, we present a numer-
ical example of the algorithm 2 for solving the system of linear equations in Example
5.2.
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