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ABSTRACT. This paper considers the framework of CATp(0) spaces and analyzes coupled best proximity
points for cyclic Kannan and cyclic Chatterjea contractions. The framework is substantial and versatile for em-
ploying metric notions and contractive conditions. For each mapping, we establish the existence and uniqueness
of the coupled best proximity point. The work gives a step toward investigating the best proximity points in
CATp(0) spaces.

1. INTRODUCTION

Fixed point theory plays a crucial role in understanding and solving various physical
phenomena. This deals with the existence, uniqueness and approximation of points that
are mapped onto themselves by a given mapping. The field gained prominence following
the establishment of the Banach contraction mapping theorem, which guarantees the ex-
istence and uniqueness of a fixed point for a contraction self-mapping. Thereafter several
authors analyzed fixed point properties of mappings based on distinct contractive con-
ditions. The prominent contractive mappings whose fixed points are substantial include
the Kannan contraction, introduced by Kannan [11] and the Chatterjea contraction, initiated
by Chatterjea [5]. Several other contractive mappings are studied as detailed in Rhoades
[21], and more recently, the notion of average mappings has been employed to enrich the
classes of such mappings [10].

One significant concept that has emerged from fixed point theory is that of best prox-
imity points, which deals with points closest to a given set. Scholars have extensively
investigated best proximity points and their applications in various fields [16, 18, 19, 27].
In addition to best proximity points, coupled best proximity points have attracted atten-
tion due to their relevance in nonlinear and convex analysis [1, 8, 17, 26].

Additionally, mappings of cyclic contraction play a vital role in the study of dynam-
ical systems, reflecting the behavior of complex systems. These mappings are defined
based on conditions that ensure the distance between the images of any two points is
smaller than the distance between the points themselves. Among the different types of
contraction mappings, Kannan-type cyclic contraction and Chatterjea-type cyclic contrac-
tion mappings have recently captured significant attention due to their interesting prop-
erties and potential applications [6, 14]. Further types of contraction mappings that are
of special interest to scholars more recently, can be found in [20, 23] and the references
therein.
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On the other hand, geodesic metric spaces such as CATp(0) spaces (for p ≥ 2) play a
crucial role in fixed point theory and optimization. The geometry of these spaces pro-
vides flexibility in employing metric notions and contractive conditions, allowing for the
coverage of equivalent contractive conditions across more classes of mappings and prob-
lems. These frameworks have led to the development of powerful tools and techniques
for studying geometry and topology, significantly advancing the study of fixed point the-
ory. As a result, several authors have made immense contributions to this setting (for
detailed discussions regarding this framework, refer to [24, 15, 22, 12] and the references
therein). It is important to mention that these spaces include Hilbert spaces, uniformly
convex metric spaces, Hadamard manifolds, ℓp spaces, and CAT(κ) spaces for κ ≤ 0.

In this paper, we consider the framework of CATp(0) space and analyze coupled best
proximity points of two mappings, namely cyclic Kannan contraction and cyclic Chat-
terjea contraction. For each mapping, we establish the existence and uniqueness of the
coupled best proximity point. Our work is inspired by the research of [9] on best prox-
imity of cyclic contraction in uniformly Banach spaces and the work of [2] in metric-like
spaces. We provide examples in nonlinear CATp(0) and linear CATp(0) spaces to support
our findings.

The paper is organized in such a way that we present basic concepts related to best
proximity points and a CATp(0) space in Section 2, while Section 3 contains the main
results with examples, followed by the conclusion in Section 4.

2. PRELIMINARIES

In this section, we provide an overview of the fundamental notations and terminology
utilized throughout this work.

2.1. Best Proximity Points. Let there be a metric space that is designated by (X, d), and
let C and D be nonempty subsets of X . Define

Dist(C,D) := inf{d(x, y) : x ∈ C, y ∈ D}.

Definition 2.1. Let S : C ∪D → C ∪D. A point x ∈ C is said to be a best proximity point
of S if d(x, Sx) = Dist(C,D).

Definition 2.2. A mapping S : C ∪D → C ∪D is said to be a cyclic mapping if S(C) ⊂ D
and S(D) ⊂ C.

In 2006, Eldred and Veeramani [7] presented the idea of cyclic contraction, which can
be described as a generalized contraction mapping in the following manner:

Definition 2.3. [7] A mapping S : C ∪ D → C ∪ D is called a cyclic contraction if S is a
cyclic mapping and there exists η ∈ [0, 1) such that

(2.1) d(Sx, Sy) ≤ ηd(x, y) + (1− η)Dist(C,D)

for all x ∈ C and y ∈ D.

Let C and D be two nonempty subsets of a metric space X and let S : (C ×D) ∪ (D ×
C) → C ∪D be a mapping. Then (u, v) ∈ C ×D is said to be a coupled best proximity pair
of S if it satisfies

d(x, S(x, y)) = Dist(C,D),

d(y, S(y, x)) = Dist(C,D).
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2.2. CATp(0) Spaces. Let (M, d) be a metric space. A mapping that is continuous from
the interval [0, 1] to M is referred to as a path. If for each pair a, b ∈ [0, 1], d(γ(a), γ(b)) =
|a − b|d(γ(0), γ(1)), then the path γ : [0, 1] → M is a geodesic. We refer to (M, d) as a
geodesic space if every two points x, y ∈ M are connected by a geodesic, in other words,
there exists a geodesic γ : [0, 1] → M such that γ(0) = x and γ(1) = y. In this particular
instance, we mention to such a geodesic as [x, y]. Note that, in general, such geodesic is
not uniquely determined by its endpoints. We then use the notation z = (1 − t)x ⊕ ty to
describe a point z ∈ [x, y]. In this case, we assume that x ̸= y. If there is a unique geodesic
between any two points in M, then the metric space (M, d) is said to be uniquely geodesic.
In this case, we refer to the unique geodesic connecting x and y in M as [x, y]. A subset C
of M is said to be a convex if all geodesic segments connecting any two points of C are in
C.

In a metric space, if the space M is geodesically connected and every geodesic triangle
in M is at least as “thin” as its comparison triangle in the Euclidean plane (that is, the
distance between any two points on the geodesic triangle is no greater than the Euclidean
distance between their corresponding comparison points), then M is considered to be a
CAT(0) space. The term “CAT” was coined by M. Gromov and can be found on page 159
of [3].

The Gromov geometric definition of CAT(0) spaces was extended recently by Khamsi
and Shukri in [13] to include the scenario in which the comparison triangles belong to a
general Banach space, in particular, the situation where the Banach space is ℓp, p ≥ 2.

Recall that a geodesic triangle, denoted by the notation △(x, y, z) in a geodesic metric
space (M, d), is formed by three points in x, y, z in M, denoted as the vertices of △, and a
geodesic segment connecting each pair of vertices, denoted as the edges of △. A comparison
triangle of a geodesic triangle △(x, y, z) is a triangle in the Banach space ℓp, for p ≥ 2
denoted by △̄(x̄, ȳ, z̄) satisfying

d(x, y) = ∥x̄− ȳ∥, d(y, z) = ∥ȳ − z̄∥, and d(x, z) = ∥x̄− z̄∥.
A point w̄ ∈ [x̄, ȳ] is called a comparison point for w ∈ [x, y] if d(x,w) = ∥x̄− w̄∥.

Definition 2.4. [13] Let (M, d) be a geodesic metric space. M is said to be a CATp(0)
space, for p ≥ 2, if for any geodesic triangle △ in M, there exists a comparison triangle △̄
in ℓp such that the comparison axiom is satisfied, i.e., for all x, y ∈ △ and all comparison
points x̄, ȳ ∈ △̄, we have

d(x, y) ≤ ∥x̄− ȳ∥.

Any normed vector space ℓp, for p ≥ 2 is incontrovertibly a complete CATp(0) space.
See [13, 4], for additional information regarding CATp(0) spaces.

Let x, y, z ∈ M, and
y ⊕ z

2
is the midpoint of the geodesic [y, z], then the comparison

axiom implies

(2.2) dp
(
x,

y ⊕ z

2

)
≤ 1

2
dp(x, y) +

1

2
dp(x, z)− 1

2p
dp(y, z).

Khamsi and Shukri [13] developed this inequality, which they called the (CNp) inequality.
The following lemmas that are going to be presented below are extension results of

Eldred and Veeramani’s work [7] to the context of CATp(0) metric spaces.

Lemma 2.1. [25] Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a
nonempty closed and convex subset and D a nonempty closed subset of M. Let {xn} and {zn} be
sequences in C and {yn} a sequence in D satisfying

(i) limn→∞ d(zn, yn) = Dist(C,D).
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(ii) For every ϵ > 0, there exists N0, such that for all m > n ≥ N0,

d(xm, yn) ≤ Dist(C,D) + ϵ.

Then, for every ϵ > 0, there exists N1, such that for all m > n ≥ N1, d(xm, zn) ≤ ϵ.

Lemma 2.2. [25] Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be a
nonempty closed and convex subset and D a nonempty closed subset of M. Let {xn} and {zn} be
sequences in C and {yn} a sequence in D satisfying

(i) limn→∞ d(xn, yn) = Dist(C,D),
(ii) limn→∞ d(zn, yn) = Dist(C,D).

Then, limn→∞ d(xn, zn) = 0.

3. MAIN RESULTS

In this section, we present the idea of p−cyclic Kannan and Chatterjea contractions,
and prove the existence of a unique coupled best proximity point in complete CATp(0)
metric spaces, with p ≥ 2.

3.1. p−cyclic Kannan Contraction. Let us first introduce the p−cyclic Kannan contrac-
tion mapping in CATp(0) spaces.

Definition 3.5. Let (M, d) be a CATp(0) metric space, with p ≥ 2. Let C and D be
nonempty subsets of M. A mapping S : (C × D) ∪ (D × C) → C ∪ D is said to be a
p−cyclic Kannan contraction if it satisfies the following conditions:

(i) S(C,D) ⊂ D and S(D,C) ⊂ C,
(ii) For (x1, y1), (x2, y2) ∈ (C ×D) ∪ (D × C) there exists η ∈ (0, 1/2) such that

(3.3) d(S(x1, y1), S(x2, y2)) ≤ η(d(x1, S(x1, y1)) + d(x2, S(x2, y2)) + (1− 2η)Dist(C,D).

Remark 3.1. The use of p in the term “p-cyclic” is meant to denote “pair cyclic” thereby
indicating the necessity of pair sets and distinguishing it from the existing concept of
cyclic contraction.

The subsequent results depend on the preceding ones to be proven.

Lemma 3.3. Let (M, d) be a CATp(0) metric space, with p ≥ 2. Let C and D be nonempty closed
and convex subsets of M and S : (C ×D) ∪ (D × C) → C ∪D a p-cyclic Kannan contraction
mapping. Then, for any (x0, y0) ∈ C ×D, define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1),
for each n ∈ N, we have

lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D),

lim
n→∞

d(yn, S(yn, xn)) = Dist(C,D),

and
lim
n→∞

d(xn, yn) = Dist(C,D).

Proof. Let (x0, y0) ∈ C ×D, define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1), for each
n ∈ N. In view of (3.3), we obtain

d(x1, y2) = d(S(y0, x0), S(x1, y1))

≤ η(d(y0, S(y0, x0)) + d(x1, S(x1, y1))) + (1− 2η)Dist(C,D)

= η(d(y0, x1) + d(x1, y2)) + (1− 2η)Dist(C,D).

So, we get

(3.4) d(x1, y2) ≤
η

1− η
d(y0, x1) +

1− 2η

1− η
Dist(C,D).
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From the inequality (3.3), we also get

d(y1, x2) = d(S(x0, y0), S(y1, x1))

≤ η(d(x0, S(x0, y0)) + d(y1, S(y1, x1))) + (1− 2η)Dist(C,D)

= η(d(x0, y1) + d(y1, x2)) + (1− 2η)Dist(C,D),

which gives rise to the conclusion that

(3.5) d(y1, x2) ≤
η

1− η
d(x0, y1) +

1− 2η

1− η
Dist(C,D).

In a similar way, we have

d(x2, y3) ≤
η

1− η
d(y1, x2) +

1− 2η

1− η
Dist(C,D).(3.6)

Substituting (3.5) into (3.6), then we have

(3.7) d(x2, y3) ≤
(

η

1− η

)2

d(x0, y1) +

(
1

1− η
+

η

(1− η)2

)
(1− 2η)Dist(C,D).

We further have

d(y2, x3) ≤
η

1− η
d(x1, y2) +

1− 2η

1− η
Dist(C,D).(3.8)

Combining (3.4) and (3.8), we obtain

(3.9) d(y2, x3) ≤
(

η

1− η

)2

d(y0, x1) +

(
1

1− η
+

η

(1− η)2

)
(1− 2η)Dist(C,D).

In the same way, we can deduce that

d(x3, y4) ≤
η

1− η
d(y2, x3) +

1− 2η

1− η
Dist(C,D),(3.10)

and

d(y3, x4) ≤
η

1− η
d(x2, y3) +

1− 2η

1− η
Dist(C,D).(3.11)

By combining (3.10) and (3.11) with (3.9) and (3.7), respectively, we get

d(x3, y4) ≤
(

η

1− η

)3

d(y0, x1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3

)
(1− 2η)Dist(C,D)

and

d(y3, x4) ≤
(

η

1− η

)3

d(x0, y1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3

)
(1− 2η)Dist(C,D).

We are able to demonstrate, through the use of induction, that for every odd integer n,
we possess

d(xn, yn+1) ≤
(

η

1− η

)n

d(y0, x1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D)(3.12)

and

d(yn, xn+1) ≤
(

η

1− η

)n

d(x0, y1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .



348 C. Mongkolkeha et al.

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D),(3.13)

and for all even integer n, we have

d(xn, yn+1) ≤
(

η

1− η

)n

d(x0, y1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D)(3.14)

and

d(yn, xn+1) ≤
(

η

1− η

)n

d(y0, x1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D).(3.15)

According to equations (3.12), (3.13), (3.14), and (3.15), the following holds for every
n ∈ N:

d(xn, S(xn, yn)) = d(xn, yn+1)

≤
(

η

1− η

)n

max{d(x0, y1), d(y0, x1)}

+

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .+

ηn−1

(1− η)n

)
(1− 2η)Dist(C,D).

From the fact that η = (0, 1/2) and taking n → ∞, we obtain

(3.16) lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D).

Similarly,

(3.17) lim
n→∞

d(yn, S(yn, xn)) = Dist(C,D).

Next, we prove that limn→∞ d(xn+1, yn+1) = Dist(C,D). In view of (3.3), we have

Dist(C,D) ≤ d(xn, yn)

= d(S(yn−1, xn−1), S(xn−1, yn−1))

≤ η(d(yn−1, S(yn−1, xn−1)) + d(xn−1, S(xn−1, yn−1))) + (1− 2η)Dist(C,D).

Letting n → ∞ together with (3.16) and (3.17), we get

d(xn, yn) = Dist(C,D).

Therefore, the proof is completed. □

Now, we are ready to prove the existence of coupled best proximity points of p−cyclic
Kannan contraction mapping.

Theorem 3.1. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C and D be
nonempty closed and convex subsets of M and S : (C × D) ∪ (D × C) → C ∪ D a p-cyclic
Kannan contraction mapping. Then S has a unique coupled best proximity point.

Proof. Let (x0, y0) ∈ C × D and define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1) for
each n ∈ N. We can establish the following by using Lemma 3.3:

(3.18) lim
n→∞

d(xn, yn+1) = lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D)
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and

(3.19) lim
n→∞

d(xn+1, yn+1) = Dist(C,D).

In light of (3.18) and (3.19), and utilizing Lemma 2.2, we have

lim
n→∞

d(xn, xn+1) = 0.

The same reasoning process guarantees that

lim
n→∞

d(yn+1, yn+2) = 0.

Let us show that for any ϵ > 0, there is a number N0 ∈ N such that

(3.20) d(xm, yn+1) ≤ Dist(C,D) + ϵ for all m > n ≥ N0.

Assume the opposite is true. Then, for all k ≥ 1, there is an integer ϵ0 > 0 such that there
is a positive integer mk > nk ≥ k such that

d(xmk
, ynk+1) > Dist(C,D) + ϵ0 and d(xmk−1, ynk+1) ≤ Dist(C,D) + ϵ0.

Consider,

Dist(C,D) + ϵ0 < d(xmk
, ynk+1)

≤ d(xmk
, xmk−1) + d(xmk−1, ynk+1)

≤ d(xmk
, xmk−1) + Dist(C,D) + ϵ0.

This implies that limk→∞ d(xmk
, ynk+1) = Dist(C,D) + ϵ0. From S is a p−cyclic Kannan

contraction mapping and the triangle inequality, we can derive

d(xmk
, ynk+1) = d(S(ymk−1, xmk−1), S(xnk

, ynk
))

≤ η (d(ymk−1, S(ymk−1, xmk−1)) + d(xnk
, S(xnk

, ynk
))) + (1− 2η)Dist(C,D).

Letting k → ∞ and using Lemma 3.3, we get

Dist(C,D) + ϵ0 ≤ 2ηDist(C,D) + (1− 2η)Dist(C,D) = Dist(C,D),

which is a contradiction. It follows from (3.18), (3.20) and Lemma 2.1 that there exists a
positive integer N1 ∈ N such that d(xm, xn) ≤ ϵ for all m > n ≥ N1. This means that
{xn} is Cauchy sequence in C. In a similar vein, {yn} is Cauchy sequence in D. Therefore,
{(xn, yn)} has a convergent subsequence in C ×D.

Let {(xnk
, ynk

)} be a of subsequence {(xn, yn)} such that

lim
k→∞

(xnk
, ynk

) = (u∗, v∗)

for some (u∗, v∗) ∈ C ×D. This implies that xnk
→ u∗ and ynk

→ v∗ as k → ∞. Consider

d(u∗, S(u∗, v∗)) ≤ d(u∗, xnk
) + d(xnk

, S(u∗, v∗))

= d(u∗, xnk
) + d(S(ynk−1, xnk−1), S(u

∗, v∗))

≤ d(u∗, xnk
) + η(d(ynk−1, S(ynk−1, xnk−1)) + d(u∗, S(u∗, v∗)))

+ (1− 2η)Dist(C,D)

= d(u∗, xnk
) + ηd(ynk−1, S(ynk−1, xnk−1)) + ηd(u∗, S(u∗, v∗))

+ (1− 2η)Dist(C,D).

Thus, it can be deduced that

(1− η)d(u∗, S(u∗, v∗)) ≤ d(u∗, xnk
) + ηd(ynk−1, S(ynk−1, xnk−1)) + (1− 2η)Dist(C,D)
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and hence

d(u∗, S(u∗, v∗)) ≤
1

1− η
d(u∗, xnk

) +
η

1− η
d(ynk−1, S(ynk−1, xnk−1)) +

1− 2η

1− η
Dist(C,D).

In view of the last inequality and the definition of Dist(C,D), we get

Dist(C,D) ≤ d(u∗, S(u∗, v∗))

≤
1

1− η
d(u∗, xnk

) +
η

1− η
d(ynk−1, S(ynk−1, xnk−1)) +

1− 2η

1− η
Dist(C,D).

By letting k → ∞, we obtain from Lemma 3.3 that

Dist(C,D) ≤ d(u∗, S(u∗, v∗))

≤
η

1− η
Dist(C,D) +

1− 2η

1− η
Dist(C,D)

= Dist(C,D).

Therefore
d(u∗, S(u∗, v∗)) = Dist(C,D).

Similarly, we can obtain
d(v∗, S(v∗, u∗)) = Dist(C,D).

That is (u∗, v∗) is a coupled best proximity of S.
Let (ū, v̄) be another coupled best proximity of S such that u∗ ̸= ū and v∗ ̸= v̄, and we

show that the coupled best proximity of S is unique. So,

(3.21) d(ū, S(ū, v̄)) = Dist(C,D)

and

(3.22) d(v̄, S(v̄, ū)) = Dist(C,D).

Since S is p−cyclic Kannan contraction, we have

d(u∗, S(ū, v̄)) ≤ d(u∗, xnk+1) + d(xnk+1, S(ū, v̄))

= d(u∗, xnk+1) + d(S(ynk
, xnk

), S(ū, v̄))

≤ d(u∗, xnk+1) + ηd(ynk
, S(ynk

, xnk
)) + ηd(ū, S(ū, v̄)) + (1− 2η)Dist(C,D)

= d(u∗, xnk+1) + ηd(ynk
, S(ynk

, xnk
)) + ηDist(C,D) + (1− 2η)Dist(C,D)

= d(u∗, xnk+1) + ηd(ynk
, S(ynk

, xnk
)) + (1− η)Dist(C,D).

Letting k → ∞, we deduce that

d(u∗, S(ū, v̄)) ≤ ηd(v∗, G(v∗, u∗)) + (1− η)Dist(C,D)

= ηDist(C,D) + (1− η)Dist(C,D)

= Dist(C,D).

Therefore, by the definition of Dist(C,D), we have

(3.23) d(u∗, S(ū, v̄)) = Dist(C,D).

Similarly, we also have

(3.24) d(v∗, S(v̄, ū)) = Dist(C,D).

Let
ū⊕ u∗

2
is the midpoint of the geodesic [ū, u∗]. Then by the (CNp) inequality, we have

dp
(
ū⊕ u∗

2
, S(ū, v̄)

)
≤ 1

2
dp(S(ū, v̄), ū) +

1

2
dp(S(ū, v̄), u∗)− 1

2p
dp(ū, u∗).
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We are able to rewrite it as

dp(ū, u∗) ≤ 2p−1dp(S(ū, v̄), ū) + 2p−1dp(S(ū, v̄), u∗)− 2pdp
(
ū⊕ u∗

2
, S(ū, v̄)

)
.

In view of (3.21), (3.23) and the definition of Dist(C,D), we obtain

dp(ū, u∗) ≤ 2p−1Dist(C,D)p,+2p−1Dist(C,D)p − 2pDist(C,D)p

= 2(2p−1)Dist(C,D)p − 2pDist(C,D)p

= 0.

Hence, d(ū, u∗) = 0, this implies that u∗ = ū. Based on equations (3.22) and (3.24), we can
demonstrate in a similar manner that v∗ = v̄. As a consequence, S has a unique coupled
best proximity. □

3.2. p−cyclic Chatterjea Contraction. Now, we introduce the p−cyclic Chatterjea con-
traction mapping in the setting of a complete CATp(0) metric space, with p ≥ 2.

Definition 3.6. Let (M, d) be a CATp(0) metric space, with p ≥ 2. Let C and D be
nonempty subsets of M. A mapping S : (C × D) ∪ (D × C) → C ∪ D is said to be a
p−cyclic Chatterjea contraction if it satisfies the following conditions:

(i) S(C,D) ⊂ D and S(D,C) ⊂ C,
(ii) For (x1, y1), (x2, y2) ∈ (C ×D) ∪ (D × C) there exists η ∈ (0, 1/4) such that

(3.25) d(S(x1, y1), S(x2, y2)) ≤ η(d(x2, S(x1, y1))+ d(x1, S(x2, y2)))+ (1− 4η)Dist(C,D).

The following lemma is going to be very important in proving our main results.

Lemma 3.4. Let (M, d) be a CATp(0) metric space, with p ≥ 2. Let C and D be nonempty closed
and convex subsets of M and S : (C ×D)∪ (D×C) → C ∪D a p-cyclic Chatterjea contraction
mapping. Then, for any (x0, y0) ∈ C ×D, define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1),
for each n ∈ N, we have

lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D),

lim
n→∞

d(yn, S(yn, xn)) = Dist(C,D),

and
lim

n→∞
d(xn, yn) = Dist(C,D).

Proof. Let (x0, y0) ∈ C ×D, define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1), for each
n ∈ N. From S is p−cyclic Chatterjea contraction mapping, we have

d(x1, y2) = d(S(y0, x0), S(x1, y1))

≤ η(d(x1, S(y0, x0)) + d(y0, S(x1, y1))) + (1− 4η)Dist(C,D)

< η(d(x1, S(y0, x0)) + d(y0, S(x1, y1))) + (1− 2η)Dist(C,D)

= η(d(x1, x1) + d(y0, y2)) + (1− 2η)Dist(C,D)

≤ η(d(y0, x1) + d(x1, y2)) + (1− 2η)Dist(C,D).

Consequently, we arrive at

(3.26) d(x1, y2) ≤
η

1− η
d(y0, x1) +

1− 2η

1− η
Dist(C,D).

In view of (3.25), we get

d(y1, x2) = d(S(x0, y0), S(y1, x1))

≤ η(d(y1, S(x0, y0)) + d(x0, S(y1, x1))) + (1− 4η)Dist(C,D)
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< η(d(y1, S(x0, y0)) + d(x0, S(y1, x1))) + (1− 2η)Dist(C,D)

= η(d(y1, y1) + d(x0, x2)) + (1− 2η)Dist(C,D)

≤ η(d(x0, y1) + d(y1, x2)) + (1− 2η)Dist(C,D).

This implies that

(3.27) d(y1, x2) ≤
η

1− η
d(x0, y1) +

1− 2η

1− η
Dist(C,D).

In a similar way, we have

d(x2, y3) ≤
η

1− η
d(y1, x2) +

1− 2η

1− η
Dist(C,D).

Substituting (3.27) into the last inequality, then

(3.28) d(x2, y3) ≤
(

η

1− η

)2

d(x0, y1) +

(
1

1− η
+

η

(1− η)2

)
(1− 2η)Dist(C,D).

We further have
d(y2, x3) ≤

η

1− η
d(x1, y2) +

1− 2η

1− η
Dist(C,D).

Combining (3.26) and the above inequality, we obtain

(3.29) d(y2, x3) ≤
(

η

1− η

)2

d(y0, x1) +

(
1

1− η
+

η

(1− η)2

)
(1− 2η)Dist(C,D).

We are able to show, through the process of induction, that for all even integers n that
are odd, we are in possession of

d(xn, yn+1) ≤
(

η

1− η

)n

d(y0, x1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D)

and

d(yn, xn+1) ≤
(

η

1− η

)n

d(x0, y1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D),

and for all even integers n, we have

d(xn, yn+1) ≤
(

η

1− η

)n

d(x0, y1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D)

and

d(yn, xn+1) ≤
(

η

1− η

)n

d(y0, x1) +

(
1

1− η
+

η

(1− η)2
+

η2

(1− η)3
+ . . .

+
ηn−1

(1− η)n

)
(1− 2η)Dist(C,D).

By analogy with the proof of Lemma 3.3, we can show that

(3.30) lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D)
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and

(3.31) lim
n→∞

d(yn, S(yn, xn)) = Dist(C,D).

Next, we show that limn→∞ d(xn, yn) = Dist(C,D). Based on S is p−cyclic Chatterjea
contraction, we have

d(xn, yn) = d(S(yn−1, xn−1), S(xn−1, yn−1))

≤ η(d(xn−1, S(yn−1, xn−1)) + d(yn−1, S(xn−1, yn−1))) + (1− 4η)Dist(C,D)

= η(d(xn−1, xn) + d(yn−1, yn)) + (1− 4η)Dist(C,D)

≤ η(d(xn−1, yn) + d(yn, xn) + d(yn−1, xn) + d(xn, yn)) + (1− 4η)Dist(C,D)

= 2ηd(xn, yn) + η(d(xn−1, S(xn−1, yn−1)) + d(yn−1, S(yn−1, xn−1)))

+ (1− 4η)Dist(C,D),

and we further have

d(xn, yn) ≤
η

1− 2η
(d(xn−1, S(xn−1, yn−1)) + d(yn−1, S(yn−1, xn−1))) +

1− 4η

1− 2η
Dist(C,D).

Letting n → ∞ together with the definition of Dist(C,D) and (3.30), (3.31), we get

Dist(C,D) ≤ d(xn, yn)

≤ η

1− 2η
(Dist(C,D) + Dist(C,D)) +

1− 4η

1− 2η
Dist(C,D)

=
2η

1− 2η
Dist(C,D) +

1− 4η

1− 2η
Dist(C,D)

= Dist(C,D),

and hence
lim

n→∞
d(xn, yn) = Dist(C,D).

Therefore, the proof is completed. □

Next, we prove the existence of a unique coupled best proximity point of the p−cyclic
Chatterjea contraction mapping.

Theorem 3.2. Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C and D be
nonempty closed and convex subsets of M and S : (C ×D) ∪ (D × C) → C ∪D be a p−cyclic
Chatterjea contraction mapping. Then S has a unique coupled best proximity point.

Proof. Let (x0, y0) ∈ C × D and define xn = S(yn−1, xn−1) and yn = S(xn−1, yn−1) for
each n ∈ N. By making use of Lemma 3.4, we are able to establish the following:

(3.32) lim
n→∞

d(xn, yn+1) = lim
n→∞

d(xn, S(xn, yn)) = Dist(C,D)

and

(3.33) lim
n→∞

d(xn+1, yn+1) = Dist(C,D).

In light of (3.32) and (3.33), and utilizing Lemma 2.2, we have

lim
n→∞

d(xn, xn+1) = 0.

Following the same method, we are able to prove

lim
n→∞

d(yn+1, yn+2) = 0.

We next prove that for any ϵ > 0, there is a number N0 ∈ N such that

(3.34) d(xm, yn+1) ≤ Dist(C,D) + ϵ, and for all m > n ≥ N0.
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Suppose the contrary. Then, for all k ≥ 1, there is an integer ϵ0 > 0 such that there is a
positive integer mk > nk ≥ k such that

d(xmk
, ynk+1) > Dist(C,D) + ϵ0, d(xmk−1, ynk+1) ≤ Dist(C,D) + ϵ0.

Consider,

Dist(C,D) + ϵ0 < d(xmk
, ynk+1)

≤ d(xmk
, xmk−1) + d(xmk−1, ynk+1)

≤ d(xmk
, xmk−1) + Dist(C,D) + ϵ0.

This implies that limk→∞ d(xmk
, ynk+1) = Dist(C,D)+ ϵ0. Since S is a p−cyclic Chatterjea

contraction mapping and by the triangle inequality, we get

d(xmk
, ynk+1) = d(S(ymk−1, xmk−1), S(xnk

, ynk
))

≤ η (d(xnk
, S(ymk−1, xmk−1)) + d(ymk−1, S(xnk

, ynk
))) + (1− 4η)Dist(C,D)

≤ η (d(xnk
, ynk+1) + d(ynk+1, xmk

) + d(ymk−1, xmk
) + d(xmk

, ynk+1))

+ (1− 4η)Dist(C,D)

≤ 2ηd(xmk
, ynk+1) + η(d(xnk

, S(xnk
, ynk

)) + d(ymk−1, S(ymk−1, xmk−1)))

+ (1− 4η)Dist(C,D).

By rearrangement the last inequality, we have

d(xmk
, ynk+1) ≤

η

1− 2η
(d(xnk

, S(xnk
, ynk

))+d(ymk−1, S(ymk−1, xmk−1)))+
1− 4η

1− 2η
Dist(C,D).

Letting k → ∞ together with Lemma 3.4, we get

Dist(C,D) + ϵ0 ≤ d(xmk
, ynk+1)

≤ η

1− 2η
(Dist(C,D) + Dist(C,D)) +

1− 4η

1− 2η
Dist(C,D)

=
2η

1− 2η
(Dist(C,D)) +

1− 4η

1− 2η
Dist(C,D)

= Dist(C,D),

which is a contradiction. It follows from (3.32), (3.34) and Lemma 2.4 that for any ϵ > 0,
there exists N1 ∈ N such that d(xm, xn) ≤ ϵ. Thus, {xn} is Cauchy sequence in C. Sim-
ilarly, {yn} is also Cauchy sequence in D. Therefore, {(xn, yn)} is a convergent subse-
quence in C ×D.

Let {(xnk
, ynk

)} be a subsequence of {(xn, yn)} such that

lim
k→∞

(xnk
, ynk

) = (u∗, v∗) = Dist(C,D)

for some (u∗, v∗) ∈ C ×D. This suggests that xnk
→ u∗ and ynk

→ v∗ as k → ∞. For the
sake of (3.25), we get

d(u∗, S(u∗, v∗)) ≤ d(u∗, xnk
) + d(xnk

, S(u∗, v∗))

= d(u∗, xnk
) + d(S(ynk−1, xnk−1), S(u

∗, v∗))

≤ d(u∗, xnk
) + η(d(u∗, S(ynk−1, xnk−1)) + d(ynk−1, S(u

∗, v∗)))

+ (1− 4η)Dist(C,D)

≤ d(u∗, xnk
) + η(d(u∗, ynk−1) + d(ynk−1, S(ynk−1, xnk−1)) + d(ynk−1, u

∗)

+ d(u∗, S(u∗, v∗))) + (1− 4η)Dist(C,D).



Coupled Best Proximity Points for p−cyclic Kannan and Chatterjea Contraction. . . 355

Accordingly, one can draw the conclusion that

d(u∗, S(u∗, v∗)) ≤
1

1− η
d(u∗, xnk

) +
η

1− η
(d(u∗, ynk−1) + d(ynk−1, S(ynk−1, xnk−1))

+ d(ynk−1, u
∗)) +

1− 4η

1− η
Dist(C,D).

After considering Lemma 3.4 as well as the definition of Dist(C,D), we have

Dist(C,D) ≤ d(u∗, S(u∗, v∗))

≤
1

1− η
d(u∗, xnk

) +
η

1− η
(d(u∗, ynk−1) + d(ynk−1, S(ynk−1, xnk−1)) + d(ynk−1, u

∗))

+
1− 4η

1− η
Dist(C,D).

By taking k → ∞, we obtain

Dist(C,D) ≤ d(u∗, S(u∗, v∗)) ≤
3η

1− η
Dist(C,D) +

1− 4η

1− η
Dist(C,D) = Dist(C,D).

Therefore,
d(u∗, S(u∗, v∗)) = Dist(C,D).

Similarly, we can obtain
d(v∗, S(v∗, u∗)) = Dist(C,D).

That is (u∗, v∗) is a coupled best proximity of S.
Next, we show that the coupled best proximity of S is unique. Let (ū, v̄) be another

coupled best proximity of S such that u∗ ̸= ū and v∗ ̸= v̄. Then, we have

(3.35) d(ū, S(ū, v̄)) = Dist(C,D)

and

(3.36) d(v̄, S(v̄, ū)) = Dist(C,D).

From S is p−cyclic Chatterjea contraction, we get

d(S(ū, v̄), S(v∗, u∗)) ≤ η(d(v∗, S(ū, v̄)) + d(ū, S(v∗, u∗))) + (1− 4η)Dist(C,D)

≤ η(d(v∗, S(v∗, u∗)) + d(S(v∗, u∗), S(ū, v̄)) + d(ū, S(ū, v̄))

+ d(S(ū, v̄), S(v∗, u∗))) + (1− 4η)Dist(C,D),

and we further get

d(S(ū, v̄), S(v∗, u∗)) ≤ 2η

1− 2η
Dist(C,D) +

1− 4η

1− 2η
Dist(C,D)

= Dist(C,D).

Consider,

d(u∗, S(ū, v̄)) ≤ d(u∗, xnk+1) + d(xnk+1, S(ū, v̄))

= d(u∗, xnk+1) + d(S(ynk
, xnk

), S(ū, v̄))

≤ d(u∗, xnk+1) + η(d(ū, S(ynk
, xnk

)) + d(ynk
, S(ū, v̄))) + (1− 4η)Dist(C,D)

≤ d(u∗, xnk+1) + η(d(ū, S(ū, v̄)) + d(S(ū, v̄), S(ynk
, xnk

)) + d(ynk
, u∗)

+ d(u∗, S(ū, v̄))) + (1− 4η)Dist(C,D).
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By rearrangement the last inequality, we obtain

d(u∗, S(ū, v̄)) ≤ 1

1− η
d(u∗, xnk+1) +

η

1− η
(d(ū, S(ū, v̄)) + d(S(ū, v̄), S(ynk

, xnk
)) + d(ynk

, u∗))

+
1− 4η

1− η
Dist(C,D).

Letting k → ∞, we deduce that

d(u∗, S(ū, v̄)) ≤ η

1− η
(Dist(C,D) + d(S(ū, v̄), S(v∗, u∗)) + d(ynk

, u∗)) +
1− 4η

1− η
Dist(C,D)

=
3η

1− η
Dist(C,D) +

1− 4η

1− η
Dist(C,D)

= Dist(C,D).

Therefore, by the definition of Dist(C,D), we have

(3.37) d(u∗, S(ū, v̄)) = Dist(C,D).

Similarly, we also have

(3.38) d(v∗, S(v̄, ū)) = Dist(C,D).

By applying equations (3.35), (3.36), (3.37) and (3.38) and repeating the same process used
in Theorem 3.1, it can be deduced that u∗ = ū and v∗ = v̄. As a result, S has a unique
coupled best proximity. □

3.3. Illustrative Examples. Now, we give examples to support the findings.

Example 3.1. Let M = R2 endowed with the metric d defined by

d(x, y) =
√
(x1 + y22 − y1 − x2

2)
2 + (x2 − y2)2,

for all x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2. It is not difficult to see that (R2, d)
is a metric space. Moreover, for x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2, consider
γy
x : [0, 1] → R2 such that

γy
x(t) =

(
x1 + t (y1 − x1)− t(1− t)(y2 − x2)

2, (1− t)x2 + ty2
)
.

Then simple calculations yield that γ is a geodesic connecting x and y. It follows that,

(1− t)w ⊕ tz = γz
w(t) =

((
(1− t)w2 + tz2

)2 − (1− t)(w2
2 − w1)− t(z22 − z1), (1− t)w2 + tz2

)
.

Moreover, it is easy to see that the (2.2) is satisfied with p = 2. Indeed, for any u =
(x2, x1), v = (y2, y1), u = (u1, u2) ∈ H, we have

1

2
x⊕ 1

2
y =

((
x2 + y2

2

)2

− x2
2 − x1

2
− y22 − y1

2
,
x2 + y2

2

)
.

Consequently, we get

d2
(
1

2
x⊕ 1

2
y, u

)
=

[(
x2 + y2

2

)2

−

((
x2 + y2

2

)2

− x2
2 − x1

2
− y22 − y1

2

)
− u2

2 + u1

]2

+

[
x2 + y2

2
− u2

]2
≤
[
x2 − u2

2
+

y2 − u2

2

]2
+

[
x2
2 − x1 − u2

2 + u1

2
+

y22 − y1 − u2
2 + u1

2

]2
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=
(x2 − u2)

2

2
− (u2 − y2)

2

2
− (x2 − y2)

2

4
+

(x2
2 − x1 − u2

2 + u1)
2

2

+
(u2

2 − u1 − y22 + y1)
2

2
− (x2

2 − x1 − y22 + y1)
2

4

=
1

2

[
(x2 − u2)

2
+
(
x2
2 − x1 − u2

2 + u1

)2]
+

1

2

[
(u2 − y2)

2

+
(
u2
2 − u1 − y22 + y1

)2]− 1

4

[
(x2 − y2)

2
+
(
x2
2 − x1 − y22 + y1

)2]
≤ 1

2
d2(x, u) +

1

2
d2(y, u)− 1

4
d2(x, y).

Thus (M, d) is a non-linear CATp(0) space for p = 2.
Consider C = R ×

[
− 3

2 ,−1
]

and D = R × [1, 2]. Then C and D are nonempty closed
subsets of M. Moreover, it is not difficult to see that Dist(C,D) = 2. Let S : (C × D) ∪
(D × C) → C ∪D be defined by

S(x̄, ȳ) =


(
(1− x2)

2

4
,
1− x2

2

)
, if x̄ = (x1, x2) ∈ C and ȳ = (y1, y2) ∈ D,(

(1− y2)
2

4
,
y2 − 1

2

)
, otherwise.

Next, we show that S is a p−cyclic Kannan contraction mapping. For that, we consider
the subsequent possibilities.
Case 1: Let x̄1 =

(
x̄1
1, x̄

1
2

)
, x̄2 =

(
x̄2
1, x̄

2
2

)
∈ C and ȳ1 =

(
ȳ11 , ȳ

1
2

)
, ȳ2 =

(
ȳ21 , ȳ

2
2

)
∈ D, then

S(x̄1, ȳ1) =

(
(1− x̄1

2)
2

4
,
1− x̄1

2

2

)
and S(x̄2, ȳ2) =

(
(1− x̄2

2)
2

4
,
1− x̄2

2

2

)
.

Thus,

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
= d

((
(1− x̄1

2)
2

4
,
1− x̄1

2

2

)
,

(
(1− x̄2

2)
2

4
,
1− x̄2

2

2

))
=

∣∣∣∣1− x̄1
2

2
− 1− x̄2

2

2

∣∣∣∣ = 1

2

∣∣x̄1
2 − x̄2

2

∣∣
≤ 1 =

(
1− 2

4

)
Dist(C,D)

≤ 1

4

[
d
(
x̄1, S(x̄1, ȳ1)

)
+ d

(
x̄2, S(x̄2, ȳ2)

) ]
+

(
1− 2

4

)
Dist(C,D).

Case 2: Let x̄1 =
(
x̄1
1, x̄

1
2

)
, x̄2 =

(
x̄2
1, x̄

2
2

)
∈ D and ȳ1 =

(
ȳ11 , ȳ

1
2

)
, ȳ2 =

(
ȳ21 , ȳ

2
2

)
∈ C, then

S(x̄1, ȳ1) =

(
(1− ȳ12)

2

4
,
ȳ12 − 1

2

)
and S(x̄2, ȳ2) =

(
(1− ȳ22)

2

4
,
ȳ22 − 1

2

)
.

Thus,

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
= d

((
(1− ȳ12)

2

4
,
ȳ12 − 1

2

)
,

(
(1− ȳ22)

2

4
,
ȳ22 − 1

2

))
=

∣∣∣∣1− ȳ12
2

− 1− ȳ22
2

∣∣∣∣ = 1

2

∣∣ȳ12 − ȳ22
∣∣

≤ 1 =

(
1− 2

4

)
Dist(C,D)

≤ 1

4

[
d
(
x̄1, S(x̄1, ȳ1)

)
+ d

(
x̄2, S(x̄2, ȳ2)

) ]
+

(
1− 2

4

)
Dist(C,D).



358 C. Mongkolkeha et al.

Case 3: Let x̄1 =
(
x̄1
1, x̄

1
2

)
, ȳ2 =

(
ȳ21 , ȳ

2
2

)
∈ C and ȳ1 =

(
ȳ11 , ȳ

1
2

)
, x̄2 =

(
x̄2
1, x̄

2
2

)
∈ D, then

S(x̄1, ȳ1) =

(
(1− x̄1

2)
2

4
,
1− x̄1

2

2

)
and S(x̄2, ȳ2) =

(
(1− ȳ22)

2

4
,
ȳ22 − 1

2

)
.

Thus,

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
= d

((
(1− x̄1

2)
2

4
,
1− x̄1

2

2

)
,

(
(1− ȳ22)

2

4
,
ȳ22 − 1

2

))
=

∣∣∣∣1− x̄1
2

2
− ȳ22 − 1

2

∣∣∣∣ = 1

2

∣∣−x̄1
2 − ȳ22

∣∣
≤ 3

2
=

1

2
+

(
1− 2

4

)
Dist(C,D)

≤ 1

4

[
d
(
x̄1, S(x̄1, ȳ1)

)
+ d

(
x̄2, S(x̄2, ȳ2)

) ]
+

(
1− 2

4

)
Dist(C,D).

Case 4: This case, that is, ȳ1 =
(
ȳ11 , ȳ

1
2

)
, x̄2 =

(
x̄2
1, x̄

2
2

)
∈ C and x̄1 =

(
x̄1
1, x̄

1
2

)
, ȳ2 =(

ȳ21 , ȳ
2
2

)
∈ C, follows similar fashion as in Case 3.

Observe that the point (ū, v̄) given by ū = (1,−1) and v̄ = (1, 1) is the unique couple
best proximity point of S. In fact, it is easy to see that

d
(
ū, S(ū, v̄)

)
= d
(
(1,−1), (1,−1)

)
= 2 = Dist(C,D) and

d
(
v̄, S(v̄, ū)

)
= d
(
(1, 1), (1,−1)

)
= 2 = Dist(C,D).

Example 3.2. Let (M, d) be a space defined as in Example 3.1. Consider C = R × [−1, 0]
and D = R× [0, 1]. Then C and D are nonempty, closed subsets of M. Moreover, it is not
difficult to see that Dist(C,D) = 0. For σ > 5, let S : (C × D) ∪ (D × C) → C ∪ D be
defined by

S(x̄, ȳ) =

(
(x2)

2

σ2
,
−x2

σ

)
, for all x̄ = (x1, x2) and ȳ = (y1, y2).

Then S is a p−cyclic Chatterjea contraction. Indeed, for x̄1 =
(
x̄1
1, x̄

1
2

)
, x̄2 =

(
x̄2
1, x̄

2
2

)
,

ȳ1 =
(
ȳ11 , ȳ

1
2

)
, ȳ2 =

(
ȳ21 , ȳ

2
2

)
, we get

S(x̄1, ȳ1) =

(
(x̄1

2)
2

σ2
,
−x̄1

2

σ

)
and S(x̄2, ȳ2) =

(
(x̄2

2)
2

σ2
,
−x̄2

2

σ

)
.

Thus,

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
= d

((
(x̄1

2)
2

σ2
,
−x̄1

2

σ

)
,

(
(x̄2

2)
2

σ2
,
−x̄2

2

σ

))
=

∣∣∣∣−x̄1
2

σ
− −x̄2

2

σ

∣∣∣∣ = 1

σ

∣∣x̄2
2 − x̄1

2

∣∣
=

1

σ

∣∣∣∣x̄2
2 +

x̄1
2

σ
+

x̄2
2

σ
− x̄1

2

σ
−
(
x̄1
2 +

x̄2
2

σ

)∣∣∣∣
≤ 1

σ

(∣∣∣∣x̄2
2 +

x̄1
2

σ

∣∣∣∣+ ∣∣∣∣ x̄2
2

σ
− x̄1

2

σ

∣∣∣∣+ ∣∣∣∣x̄1
2 +

x̄2
2

σ

∣∣∣∣)
=

1

σ

∣∣∣∣x̄2
2 −

−x̄1
2

σ

∣∣∣∣+ 1

σ
d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
+

1

σ

∣∣∣∣x̄1
2 −

−x̄2
2

σ

∣∣∣∣ .
This implies that

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
≤ 1

σ − 1

(∣∣∣∣x̄2
2 −

−x̄1
2

σ

∣∣∣∣+ ∣∣∣∣x̄1
2 −

−x̄2
2

σ

∣∣∣∣)
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≤ 1

σ − 1

[
d
(
x̄2, S(x̄1, ȳ1)

)
+ d

(
x̄1, S(x̄2, ȳ2)

) ]
=

1

σ − 1

[
d
(
x̄2,S(x̄1, ȳ1)

)
+d
(
x̄1,S(x̄2, ȳ2)

) ]
+

(
1− 4

σ−1

)
Dist(C,D).

Observe that the point (ū, v̄) given by ū = (0, 0) and v̄ = (0, 0) is the unique couple best
proximity point of S. It is easy to see that

d
(
ū, S(ū, v̄)

)
= d
(
v̄, S(v̄, ū)

)
= d
(
(0, 0), (0, 0)

)
= 0 = Dist(C,D).

Example 3.3. For p ≥ 2, consider M = ℓp, C =
∏

i≥1 [−1, 0] and D =
∏

i≥1 [0, 1] and d is
the metric induced by ∥ · ∥p. Then C and D are nonempty, closed and bounded subsets of
M. Moreover, it is not difficult to see that Dist(C,D) = 0. Let S : (C×D)∪(D×C) → C∪D
be defined by

S(x̄, ȳ) = −1

6
x̄, for all x̄ = (x1, x2, x3, . . . ) and ȳ = (y1, y2, y3, . . . ).

Then S is a p−cyclic Chatterjea contraction. Indeed, it is easy to see that

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
= d

(
−1

6
x̄1, −1

6
x̄2

)
=

1

6

∥∥x̄2 − x̄1
∥∥
p

=
1

6

∥∥∥∥x̄2 +
1

6
x̄1 +

1

6
x̄2 − 1

6
x̄1 − x̄1 − 1

6
x̄2

∥∥∥∥
p

≤ 1

6

(∥∥∥∥x̄2 +
1

6
x̄1

∥∥∥∥
p

+

∥∥∥∥16 x̄2 − 1

6
x̄1

∥∥∥∥
p

+

∥∥∥∥x̄1 +
1

6
x̄2

∥∥∥∥
p

)

=
1

6
d
(
x̄2,S(x̄1, ȳ1)

)
+
1

6
d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
+
1

6
d
(
x̄1,S(x̄2, ȳ2)

)
.

This implies that

d
(
S(x̄1, ȳ1), S(x̄2, ȳ2)

)
≤ 1

5

[
d
(
x̄2, S(x̄1, ȳ1)

)
+ d

(
x̄1, S(x̄2, ȳ2)

) ]
+

(
1− 4

5

)
Dist(C,D).

Observe that the point (ū, v̄) given by ū = 0 ∈ ℓp and v̄ = 0 ∈ ℓp is the unique couple
best proximity point of S. It is easy to see that

d
(
ū, S(ū, v̄)

)
= d
(
v̄, S(v̄, ū)

)
= 0 = Dist(C,D).

4. CONCLUSION

This article discusses coupled best proximity points in the framework of generalized
CAT(0) spaces, specifically CATp(0) spaces. In particular, we present and investigate the
p−cyclic Kannan and Chatterjea contraction mappings, focusing on an analysis of the ex-
istence and uniqueness of the coupled best proximity point associated with these intrigu-
ing mappings. To illuminate our findings, we provide a comprehensive example that
illustrates the practical implications of our research. Furthermore, our study builds upon
and enriches the existing body of research in this domain, contributing novel insights and
advancements.
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[20] Panwar, A.; Lamba, P.; Rakočević, V.; Gopal, D. New fixed point results of some enriched contractions in

cat(0) spaces. Miskolc Mathematical Notes 24 (2023), 1477–1493.
[21] Rhoades, B. E. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226

(1977), 257–290.
[22] Salisu, S.; Kumam, P.; Sriwongsa, S.; Abubakar, J. On minimization and fixed point problems in Hadamard

spaces. Comput. Appl. Math. 41 (2022), 1–22.
[23] Salisu, S.; Kumam, P.; Sriwongsa, S.; Gopal, D. Enriched asymptotically nonexpansive mappings with

center zero. Filomat 38 (2024), 343–356.
[24] Salisu, S.; Minjibir, M. S.; Kumam, P.; Sriwongsa, S. Convergence theorems for fixed points in CATp(0)

spaces. J. Appl. Math. Comput. 69 (2023), 631–650.
[25] Shukri, S. Existence and convergence of best proximity points in CATp(0) spaces. J. Fixed Point Theory Appl.,

22 (2020), 1–10.
[26] Sintunavarat, W.; Kumam, P. Coupled best proximity point theorem in metric spaces. Fixed Point Theory

Appl. 2012 (2012), 1–16.
[27] Sintunavarat, W.; Kumam, P. The existence and convergence of best proximity points for generalized prox-

imal contraction mappings. Fixed Point Theory Appl. 2014 (2014), 1–16.



Coupled Best Proximity Points for p−cyclic Kannan and Chatterjea Contraction. . . 361

1DEPARTMENT OF COMPUTATIONAL SCIENCE AND DIGITAL TECHNOLOGY

FACULTY OF LIBERAL ARTS AND SCIENCES

KASETSART UNIVERSITY, KAMPHAENG-SAEN CAMPUS

NAKHONPATHOM 73140, THAILAND

Email address: faascsm@ku.ac.th

2MATHEMATICS, DEPARTMENT OF LEARNING MANAGEMENT

FACULTY OF EDUCATION

BURAPHA UNIVERSITY, CHONBURI CAMPUS

169 LONG HAAD BANGSAEN ROAD, SAEN SUK

MUEANG, CHONBURI 20131, THAILAND

Email address: premyuda.de@buu.ac.th

3DEPARTMENTS OF MATHEMATICS

FACULTY OF SCIENCE

KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT)
126 PRACHA-UTHIT ROAD, BANG MOD

THUNG KHRU, BANGKOK 10140, THAILAND

DEPARTMENTS OF MATHEMATICS

FACULTY OF NATURAL AND APPLIED SCIENCES

SULE LAMIDO UNIVERSITY, KAFIN HAUSA

JIGAWA, NIGERIA

Email address: sani.salisu@slu.edu.ng

4APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING RESEARCH UNIT (AMSERU)
PROGRAM IN APPLIED STATISTICS

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

FACULTY OF SCIENCE AND TECHNOLOGY

RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI (RMUTT)
PATHUM THANI 12110, THAILAND

Email address: konrawut k@rmutt.ac.th


