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On approximating fixed points of strictly pseudocontractive
mappings in metric spaces

SANI SALISU1,2, VASILE BERINDE3,4,∗ , SONGPON SRIWONGSA1 and POOM KUMAM1

ABSTRACT. In this work, we analyse the class of strictly pseudocontractive mappings in general metric
spaces by providing a comprehensive and appropriate definition of a strictly pseudocontractive mapping, which
serves as a natural extension of the existing notion. Moreover, we establish its various characterizations and ex-
plore several significant properties of these mappings in relation to fixed point theory in CAT(0) spaces. Specif-
ically, we establish that these mappings are Lipschitz continuous, satisfying the demiclosedness-type property,
and possessing a closed convex fixed point set. Furthermore, we show that the fixed points of the mappings can
be effectively approximated using an iterative scheme for fixed points of nonexpansive mappings. The results in
this work contribute to a deeper understanding of strictly pseudocontractive mappings and their applicability
in the context of fixed point theory in metric spaces.

1. INTRODUCTION

The class of strictly pseudocontractive mappings (or strict pseudo-contractions) plays
an important role in the iterative approximation of fixed points of nonexpansive type
mappings.

Strict pseudo-contractions have been introduced by Browder and Petryshyn in 1967 [8]
in the setting of a Hilbert space and since then have been intensively studied by several
authors in linear settings (Hilbert spaces, Banach spaces), see [5], [11], [12], [15], [17], [22],
[24], [26], for a very selective list, and also the references therein.

Let (E, ∥ ·∥) be a normed linear space and let C be a nonempty subset of E. A mapping
T : C → E is said to be a strict pseudocontraction if there exists a nonnegative constant
k < 1 such that

(1.1) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )(x)− (I − T )(y)∥2,
for all x, y ∈ C. To specify the constant k in (1.1), we refer to the mapping as k-strictly
pseudocontractive.

If in (1.1) we have k = 1, then T is called a pseudocontraction.
It is well-known that the class of strictly pseudocontractive mappings strictly includes

the class of nonexpansive mappings, that is, of those mappings satisfying

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ C.

Construction of fixed points of strictly pseudocontractive mappings via iterative algo-
rithms is an important research topic with applications in various current research fields
like variational inequalities [25], [23], split variational inclusion [1], equilibrium problems
[2], [18], [19], split feasibility problems [2] etc.

Starting from the fact that all previous contributions to the study of strictly pseudo-
contractive mappings are obtained in linear settings, our aim in this work is to analyse
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the class of strictly pseudocontractive mappings in general metric spaces by providing a
comprehensive and appropriate definition of strictly pseudocontractive mappings which
is a natural extension from linear to nonlinear settings.

2. STRICTLY PSEUDOCONTRACTIVE MAPPINGS IN METRIC SPACES

In the general setting of metric spaces, T : D → H is known as a strictly pseudocon-
tractive mapping, see [4], if there exists κ ∈ [0, 1) such that

d2(Tu, Tw) ≤ d2(u,w) + κ
[
d(u, Tu) + d(w, Tw)

]2
, ∀ u,w ∈ D(2.2)

where d2(x, y) =
[
d(x, y)

]2 for all x, y ∈ H.
However, the definition above does not coincide with the definition of Browder and

Petryshyn in [8] when H is a Hilbert space with the usual metric. For this sake, we recall
that

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩(2.3)

for two points x and y in a real inner-product space. The identity (2.3) justifies that (1.1) is
equivalent to the following:

∥Tu− Tw∥2 ≤ ∥u− w∥2 + κ
[
∥u− w∥2 + ∥Tu− Tw∥2 + 2⟨w − u, Tu− Tw⟩

]
.(2.4)

Furthermore, in real inner-product spaces, the following identity holds:

⟨x− y, u− w⟩ = 1

2

[
∥x− w∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − w∥2

]
,(2.5)

where x, y, u, w are arbitrary points in the space.
It is natural to extend the identity (2.5) to metric setting by defining

Q(x, y, u, w) :=
1

2

[
d2(x,w) + d2(y, u)− d2(x, u)− d2(y, w)

]
.(2.6)

The quantity Q(x, y, u, w) is known as quasilinearization (see [6]).
Therefore, (2.6) together with (2.4) are yielding the appropriate definition of a strictly

pseudocontractive mapping in general metric spaces as follows.

Definition 2.1. Let (H, d) be a metric space and let D be a nonempty subset of H. A
mapping T : D → H is said to be κ-strictly pseudocontractive if there exists κ ∈ [0, 1)
such that

d2(Tu, Tw) ≤ d2(u,w) + κ
[
d2(u,w) + d2(Tu, Tw) + 2Q(w, u, Tu, Tw)

]
,(2.7)

for all u,w ∈ D.

Example 2.1. Let H = D = R4 be endowed with the metric d defined by

d(u,w) =

√√√√ 3∑
i=1

(ui − wi)2 + (u2
3 + w4 − u4 − w2

3)
2,

for all u = (u1, u2, u3, u4) ∈ R4 and w = (w1, w2, w3, w4) ∈ R4. Then (H, d) is a metric
space. Consider T : R4 → R4 by

Tu = −ℓ(u1, u2, u3,−ℓu2
3), ∀u = (u1, u2, u3, u4) ∈ R4, where ℓ ≥ 2.

Clearly T is not nonexpansive mapping with respect to the both usual metric and (R4, d)
since for any u = (u1, 0, 0, 0), u1 ̸= 0 and w = (0, 0, 0, 0), we have

d(Tu, Tw) = ℓ|u1| > |u1| = d(u,w).
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However, T is κ-strictly pseudocontractive mapping with respect to (R4, d) for κ ∈
[
ℓ− 1

ℓ+ 1
, 1

)
.

Indeed for all u,w ∈ R4, we have

d2(Tu, Tw) = ℓ2
3∑

i=1

(ui − wi)
2,

2Q(u,w, Tu, Tw) = d2(u, Tw) + d2(w, Tu)− d2(u, Tu)− d2(w, Tw)

=

[
3∑

i=1

(ui + ℓwi)
2 + (u2

3 − u4)
2

]
+

[
3∑

i=1

(wi + ℓui)
2 + (w2

3 − w4)
2

]

−

[
3∑

i=1

(ui + ℓui)
2 + (u2

3 − u4)
2

]
−

[
3∑

i=1

(wi + ℓwi)
2 + (w2

3 − w4)
2

]

=

3∑
i=1

[
(ui + ℓwi)

2 + (wi + ℓui)
2 − (ui + ℓui)

2 − (wi + ℓwi)
2
]

= −2ℓ

3∑
i=1

(ui − wi)
2
.

So, we get

d2(u,w) + d2(Tu, Tw) + 2Q(w, u, Tu, Tw)

= d2(u,w) + d2(Tu, Tw)− 2Q(u,w, Tu, Tw)

=

3∑
i=1

(ui − wi)
2 + (u2

3 + w4 − u4 − w2
3)

2

+ ℓ2
3∑

i=1

(ui − wi)
2 + 2ℓ

3∑
i=1

(ui − wi)
2

= (1 + ℓ)2
3∑

i=1

(ui − wi)
2 + (u2

3 + w4 − u4 − w2
3)

2.

Thus, for any κ with
ℓ− 1

ℓ+ 1
≤ κ < 1, we have

d2(Tu, Tw) = ℓ2
3∑

i=1

(ui − wi)
2 =

3∑
i=1

(ui − wi)
2 + (ℓ2 − 1)

3∑
i=1

(ui − wi)
2

=

3∑
i=1

(ui − wi)
2 +

ℓ− 1

ℓ+ 1
(ℓ+ 1)2

3∑
i=1

(ui − wi)
2

≤
3∑

i=1

(ui − wi)
2 + κ(ℓ+ 1)2

3∑
i=1

(ui − wi)
2

≤ d2(u,w) + κ(ℓ+ 1)2
3∑

i=1

(ui − wi)
2

≤ d2(u,w) + κ
[
d2(u,w) + d2(Tu, Tw) + 2Q(w, u, Tu, Tw)

]
.
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Following the results in [7], it is given in [21] that a mapping T : D → H is called
α-enriched nonexpansive if there exists α ∈ [0,+∞) such that

d2(Tu, Tw) + α2d2(u,w) + 2αQ(u,w, Tu, Tw) ≤ (α+ 1)2d2(u,w),(2.8)

for all u,w ∈ H. In the sequel, we discuss significant properties and inequalities asso-
ciated with the class of strictly pseudocontractive mappings in connection to enriched
nonexpansive mappings.

Theorem 2.1. Let (H, d) be a metric space and let D be a nonempty subset of H. Suppose that
T : D → H is a mapping. Then T is κ-strictly pseudocontractive mapping if and only if T is
α-enriched nonexpansive mapping, where α =

κ

1− κ
.

Proof. Let u,w ∈ D. By (2.7), T is κ-strictly pseudocontractive mapping if and only if

(1− κ)d2(Tu, Tw) ≤ (1 + κ)d2(u,w) + 2κQ(w, u, Tu, Tw),

which is equivalent to

d2(Tu, Tw) ≤ 1 + κ

1− κ
d2(u,w) + 2

κ

1− κ
Q(w, u, Tu, Tw).

This can be rewritten as

d2(Tu, Tw) + 2
κ

1− κ
Q(u,w, Tu, Tw) ≤ 1 + κ

1− κ
d2(u,w),

which is equivalent to

d2(Tu, Tw) +
κ2

(1− κ)2
d2(u,w)+2

κ

1− κ
Q(u,w, Tu, Tw)

≤
(
1 + κ

1− κ
+

κ2

(1− κ)2

)
d2(u,w).

This means

d2(Tu, Tw) +
κ2

(1− κ)2
d2(u,w)+2

κ

1− κ
Q(u,w, Tu, Tw)

≤
(
1 +

κ

1− κ

)2

d2(u,w),

which is equivalent to α-enriched nonexpansive mapping with α =
κ

1− κ
. □

Remark 2.1. Theorem 2.1 signifies that the class of strictly pseudocontractive mappings
coincides with the class of enriched nonexpansive mappings in the following sense:

(i) every α-enriched nonexpansive mapping is α
1+α -strictly pseudocontractive.

(ii) every κ-strictly pseudocontractive mapping is κ
1−κ -enriched nonexpansive.

Corollary 2.1. Let H be a real Hilbert space endowed with the usual metric d and D be a nonempty
subset of H. Suppose that T : D → H is a mapping. Then T is κ-strictly pseudocontractive
mapping if and only if T is α-enriched nonexpansive mapping, where α = κ

1−κ .

In the sequel, we shall say that a metric space (H, d) satisfies the Cauchy-Schwarz in-
equality whenever

|Q(u,w, x, y)| ≤ d(u,w)d(x, y), ∀ u,w, x, y ∈ H.(2.9)

In the next corollary, we shall assume this condition.
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Corollary 2.2. Let (H, d) be a metric space that satisfies Cauchy-Schwarz inequality and let D
be a nonempty subset of H. If T : D → H is κ-strictly pseudocontractive mapping, then T is

ℓ-Lipschitz with ℓ =
1 + κ

1− κ
.

Proof. Let u,w ∈ D. Since T is κ-strictly pseudocontractive, we have the last inequality of
the proof of Theorem 2.1, that is,

d2(Tu, Tw) +
κ2

(1− κ)2
d2(u,w)+2

κ

1− κ
Q(u,w, Tu, Tw)

≤
(
1 +

κ

1− κ

)2

d2(u,w).(2.10)

This and (2.9) yield that[
d(Tu, Tw)− κ

1− κ
d(u,w)

]2
= d2(Tu, Tw) +

κ2

(1− κ)2
d2(u,w)

− 2
κ

1− κ
d(u,w)d(Tu, Tw)

≤ d2(Tu, Tw) +
κ2

(1− κ)2
d2(u,w)

+ 2
κ

1− κ
Q(u,w, Tu, Tw)

≤
(
1 +

κ

1− κ

)2

d2(u,w).

Consequently, we get

d(Tu, Tw) = d(Tu, Tw)− κ

1− κ
d(u,w) +

κ

1− κ
d(u,w)

≤
∣∣∣∣d(Tu, Tw)− κ

1− κ
d(u,w)

∣∣∣∣+ κ

1− κ
d(u,w)

≤
(
1 +

κ

1− κ

)
d(u,w) +

κ

1− κ
d(u,w)

=
1 + κ

1− κ
d(u,w),

as desired. □

Remark 2.2. It follows from (2.7) that for any p ∈ Fix(T ), the following inequality holds:

d2(Tu, p) ≤ d2(u, p) + κd2(u, Tu),(2.11)

for all u ∈ D. This guarantees that every strictly pseudocontractive mapping with a
nonempty fixed point set is demicontractive.

3. THE CASE OF CAT(0) SPACES

A special metric space (H, d) has a convex structure in the sense that for every two
points u,w ∈ H, there exists a mapping ϕw

u :
[
0, 1
]
⊂ R → H satisfying the following:

• ϕw
u (0) = u,

• ϕw
u

(
1
)
= w,

• d (ϕw
u (t1), ϕ

w
u (t2)) = |t1 − t2|d(u,w) for every t1, t2 ∈

[
0, 1
]
.
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This kind of metric space is referred to as a geodesic space and the image of ϕw
u is often

called a geodesic segment connecting u and w. If every two points are connected by a
unique segment, then the setting is called a unique geodesic space. Given u,w ∈ H and
t ∈ [0, 1], this setting guarantees the existence of a unique y on the segment connecting u
and w, denoted by (1− t)u⊕ tw, with the following conditions:

d(u, y) = td(u,w) and d(y, w) = (1− t)d(u,w).(3.12)

For this metric, a set is convex if it contains the geodesic segment connecting any pair of
its points. It is known that CAT(0) spaces are unique geodesic spaces. Moreover, we have
the following inequalities (see, for example, [13]) for u, v, w ∈ H and t ∈ [0, 1]:

d((1− t)u⊕ tv, w) ≤(1− t)d(u,w) + td(v, w);(3.13)

d2((1− t)u⊕ tv, w) ≤ (1− t)d2(u,w) + td2(v, w)− t(1− t)d2(u, v),(3.14)

When t = 1
2 , inequality (3.14) reduces to the CN-inequality of Bruhat and Tits [10]. A

complete CAT(0) space is called a Hadamard space. For further details on CAT(0) spaces,
see, for example, [9] and [16].

Following the results in [14, 3] which are based on CAT(0) spaces, T is κ-strictly pseu-
docontractive if there exists κ < 1, such that

d2(Tu, Tw) ≤ d2(u,w) + 4κd2
(
1

2
u⊕ 1

2
Tw,

1

2
w ⊕ 1

2
Tu

)
, ∀u,w ∈ D.(3.15)

We now, discuss the relationship between (2.7) and (3.15).

Remark 3.3. It can be easily shown that in a CAT(0) space, if T satisfies (3.15), then it also
satisfies (2.7). This can be justified by utilizing (3.14) twice. However, for the converse, an
additional condition is required.

Recall that a CAT(0) space is said to be flat if the CN-inequality holds with equality.
Here is an example of a non-linear flat CAT(0) space.

Example 3.2. Let H = Rm (m ≥ 2) be endowed with the metric d defined by

d(x, y) =

√√√√(x1 + y22 − y1 − x2
2)

2 +

m∑
i=2

(xi − yi)2,

for all x = (x1, x2, . . . , xm) ∈ Rm and y = (y1, y2, . . . , ym) ∈ Rm. It is clear that (Rm, d) is a
metric space. Also, the mapping ϕy

x : [0, 1] → R2 defined by

ϕy
x(t) =

(
x1 + t (y1 − x1)− t(1− t)(y2 − x2)

2, (1− t)x2 + ty2, . . . ,

(1− t)xm + tym
)
,

is the geodesic connecting x and y. It follows that,

1

2
x⊕ 1

2
y =

((
x2 + y2

2

)2

− x2
2 − x1

2
− y22 − y1

2
,
x2 + y2

2
, · · · , xm + ym

2

)
.
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Consequently, we obtain

d2
(
1

2
x⊕ 1

2
y, u

)
=

[(
x2 + y2

2

)2

−

((
x2 + y2

2

)2

− x2
2 − x1

2
+ −y22 − y1

2

)
− u2

2 + u1

]2
m∑
i=2

[
xi + yi

2
− ui

]2
=

m∑
i=2

[
xi − ui

2
+

yi − ui

2

]2
+

[
x2
2 − x1 − u2

2 + u1

2
+

y22 − y1 − u2
2 + u1

2

]2
=

m∑
i=2

(xi − ui)
2

2
− (ui − yi)

2

2
− (xi − yi)

2

4
+

(x2
2 − x1 − u2

2 + u1)
2

2

+
(u2

2 − u1 − y22 + y1)
2

2
− (x2

2 − x1 − y22 + y1)
2

4

=
1

2

[
m∑
i=2

(xi − ui)
2
+
(
x2
2 − x1 − u2

2 + u1

)2]
+

1

2

[
m∑
i=2

(ui − yi)
2

+
(
u2
2 − u1 − y22 + y1

)2]− 1

4

[
m∑
i=2

(xi − yi)
2
+
(
x2
2 − x1 − y22 + y1

)2]

=
1

2
d2(x, u) +

1

2
d2(y, u)− 1

4
d2(x, y).

Thus (H, d) is a non-linear flat CAT(0) space.

Proposition 3.1. Let (H, d) be a flat CAT(0) space and D be a nonempty subset of H. Suppose
that T : D → H is a mapping. Then the inequality (3.15) coincides with the inequality (2.7).

Proof. Let u,w ∈ D. Since CN-inequality is equality in this case, then it follows that

d2
(
1

2
u⊕ 1

2
Tw,

1

2
w ⊕ 1

2
Tu

)
=

1

2
d2
(
u,

1

2
w ⊕ 1

2
Tu

)
+

1

2
d2
(
Tw,

1

2
w ⊕ 1

2
Tu

)
− 1

4
d2 (w, Tu)

=
1

4
d2 (u, w) +

1

4
d2 (u, Tu)

− 1

4
d2 (w, Tu) +

1

4
d2 (Tw, w)

+
1

4
d2 (Tw, Tu)− 1

4
d2 (w, Tu)

− 1

4
d2 (w, Tu)

=
1

4

[
d2 (u, w) + d2 (Tu, Tw)

+ 2Q(w, u, Tu, Tw)
]
.

□
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Thus we have the following consequent result.

Corollary 3.3. Let H be a normed linear space endowed with the usual distance d, and let D be
a nonempty subset of H. Suppose that T : D → H is a mapping. The inequality (3.15) coincides
with the inequality (2.7), which can be further simplified to:

∥Tu− Tw∥2 ≤ ∥u− w∥2 + κ∥(I − T )u− (I − T )w∥2, ∀ u,w ∈ D.

The results in Corollary 3.3 follows directly from Proposition 3.1 using the following
facts:

• d2(x, y) = ∥x− y∥2 and Q(x, y, v, w) = ⟨x− y, v − w⟩ for all x, y, v, w ∈ H.
• ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ for all x, y ∈ H.
•
∥∥ 1
2x+ 1

2y
∥∥2 = 1

2∥x∥
2 + 1

2∥y∥
2 − 1

4∥x− y∥2 for all x, y ∈ H.
It follows from [6, Corollary 3] that every CAT(0) space satisfies the Cauchy-Schwarz

inequality. Consequently, we get the following result from Corollary 2.2.

Corollary 3.4. Let (H, d) be a CAT(0) space and let D be a nonempty subset of H. If T : D → H
is κ-strictly pseudocontractive mapping, then T is ℓ-Lipschitz with ℓ =

1 + κ

1− κ
.

Proposition 3.2. Let (H, d) be a CAT(0) space and let D be a nonempty closed convex subset of
H. If T : D → H is κ-strictly pseudocontractive mapping and Fix(T ) ̸= ∅, then Fix(T ) is closed
and convex.

Proof. The proof of Proposition 3.2 follows similar lines with the proof [14, Theorem 2.3]
using (2.11) and Corollary 3.4. Therefore, we skip it. □

Corollary 3.5. Let (H, d) be a complete CAT(0) space and let D be a nonempty bounded closed
convex subset of H. If T : D → D is κ-strictly pseudocontractive mapping, then Fix(T ) is
nonempty closed and convex.

Proof. The proof of Corollary 3.5 follows from the fact in Remark 2.1(ii) and [21, Theorem
4.8(i)]. □

Since every real Hilbert space is a CAT(0) space, the following known result is a conse-
quence of Corollary 3.4.

Corollary 3.6. Let H be a real Hilbert space endowed with the usual distance d and let D be
a nonempty subset of H. If T : D → H is κ-strictly pseudocontractive mapping, then T is

ℓ-Lipschitz with ℓ =
1 + κ

1− κ
.

Let (H, d) be a metric space and {un} be a bounded sequence in H. The asymptotic center
of {un} is defined by

A({un}) :=
{
u ∈ H : lim sup

n→∞
d(u, un) = inf

v∈H
lim sup
n→∞

d(v, un)
}
.

The sequence {un} ∆-converges to a point w in H if {w} is the asymptotic center of every
subsequence of {un} and it converges strongly to w if lim

n→∞
d(un, w) = 0. We write un

∆−→
u to mean {un} is ∆-convergent to u and un → u means {un} converges strongly to
u. Moreover, a map T : D → H is said to have a demiclosedness-type property if for any
sequence {un} ⊆ H,

(3.16)
un

∆−→ u

d(un, Tun) → 0

}
=⇒ u = Tu.
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Corollary 3.7. Let D be a nonempty closed convex subset of a complete CAT(0) space (H, d) and
let T : D → D be κ-strictly pseudocontractive mapping. Then T satisfies demiclosedness-type
property.

The next result is an immediate consequence of Corollary 3.7.

Corollary 3.8. Let H be a real Hilbert space endowed with the usual distance d and let D be a
nonempty closed convex subset of H. Suppose that T : D → D is a κ-strictly pseudocontractive
mapping. Then T satisfies demiclosedness-type property.

Now, we recall a substantial result of [20] which we will use accordingly.

Lemma 3.1. [20, Theorem 3.3] Let D be a nonempty closed convex subset of a complete CAT(0)
space (H, d). Let T : D → H be a mapping with nonempty fixed point set and which satisfies the
demiclosedness-type property (3.16). Suppose {un} is a sequence in D such that
(a) d(un, Tun) → 0,
(b) {d(un, u

∗)} converges in R for every u∗ ∈ Fix(T ),
then {un} ∆-converges to a fixed point of T .

The Krasnoselskii-Mann algorithm is one of the prominent algorithm for approximat-
ing fixed point of nonexpansive type mapping. In the setting of CAT(0) spaces, the algo-
rithm is updated as follows:

(3.17) un+1 = (1− αn)un ⊕ αnTun, n ≥ 1,

where, {αn} ⊆ [0, 1]. To obtain the convergence result, it is required that 0 < lim inf
n→∞

αn ≤
lim sup
n→∞

αn < 1. In the next theorem, we show that slight modification of the conditions on

{αn} will guarantee the convergence for the studied class of mappings.

Theorem 3.2. Let (H, d) be a complete CAT(0) space and D be a nonempty closed convex subset
of H. Suppose that T : D → D is a κ-strictly pseudocontractive mapping with Fix(T ) ̸= ∅ and
{un} is a sequence generated by (3.17) with 0 < a ≤ αn ≤ b < 1 − κ for all n ≥ N ∈ N. Then
{un} ∆-converges to a fixed point of T .

Proof. Let u∗ ∈ Fix(T ). Using (3.14), (3.17) and (2.11), we have

d2 (un+1, u
∗) = d2 ((1− αn)un ⊕ αnTun, u

∗)

≤ (1− αn)d
2(un, u

∗) + αnd
2(Tun, u

∗)

− αn(1− αn)d
2(un, Tun)

≤ (1− αn)d
2(un, u

∗) + αn

[
d2(un, u

∗) + κd2(un, Tun)
]

− αn(1− αn)d
2(un, Tun)

= d2(un, u
∗)− αn(1− αn − κ)d2(un, Tun).

This implies that for all n ≥ N ,

d2 (un+1, u
∗) ≤ d2(un, u

∗)(3.18)

and also

d2(un, Tun) ≤
1

αn(1− αn − κ)

[
d2(un, u

∗)− d2 (un+1, u
∗)
]

≤ 1

a(1− b− κ)

[
d2(un, u

∗)− d2 (un+1, u
∗)
]
.(3.19)

Lemma 3.1(b) follows from (3.18), and Lemma 3.1(a) is achieved as consequence of (3.19)
together with Lemma 3.1(b). Moreover, T satisfies demiclosedness-type property. Hence
by Lemma 3.1, we obtain that {un} ∆-converges to a fixed point of T . □
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In a linear setting, ∆-convergence results yield weak convergence results. Conse-
quently, we have the following corollary, which incorporates the result of Marino and
Xu [17, Theorem 3.1].

Corollary 3.9. Let H be a Hilbert space with the usual distance d and let D be a nonempty closed
convex subset of H. Suppose that T : D → D is a κ-strictly pseudocontractive mapping with
Fix(T ) ̸= ∅ and {un} is a sequence generated by

un+1 = (1− αn)un + αnTun, n ≥ 1,

with 0 < a ≤ αn ≤ b < 1− κ for all n ≥ N ∈ N. Then {un} converges weakly to a fixed point of
T .

Several other results can be deduced from Theorem 3.2. For instance, dispensing with
the condition Fix(T ) ̸= ∅ yields the following corollary.

Corollary 3.10. Let (H, d) be a complete CAT(0) space and D be a nonempty bounded closed
convex subset of H. Suppose that T : D → D is a κ-strictly pseudocontractive mapping and {un}
is a sequence generated by (3.17) with 0 < a ≤ αn ≤ b < 1 − κ for all n ≥ N ∈ N. Then {un}
∆-converges to a fixed point of T .

Corollary 3.10 follows from Theorem 3.2 using the fact stated in Theorem 2.1 and the
result of [21, Theorem 4.8(i)]. Moreover, we have the following result in the case of Hilbert
spaces.

Corollary 3.11. Let H be a Hilbert space with the usual distance d and let D be a nonempty
bounded closed convex subset of H. Suppose that T : D → D is a κ-strictly pseudocontractive
mapping and {un} is a sequence generated by

un+1 = (1− αn)un + αnTun, n ≥ 1,

with 0 < a ≤ αn ≤ b < 1− κ for all n ≥ N ∈ N. Then {un} converges weakly to a fixed point of
T .

For the case when {αn} is a constant sequence, Corollary 3.11 yields the result in Brow-
der and Petryshyn [8, Theorem 12].

Remark 3.4. In contrast to (2.2), (1.1) coincides with (2.7) and (3.15) in general flat CAT(0)
spaces, including Hilbert spaces. Furthermore, (3.15) implies (2.7) in general CAT(0)
spaces and (2.7) is easier to verify since it does not require computations of geodesic seg-
ments. Additionally, (2.7) applies to all metric spaces, unlike (3.15) and (1.1). Therefore,
Definition 2.1 offers the most natural and appropriate definition of strict pseudocontrac-
tion in a general metric space, building on the work of Browder and Petryshyn in 1967
[8].

4. CONCLUSIONS

In this work, we have provided an appropriate definition of a strictly pseudocontrac-
tive mapping in general metric spaces. Based on this definition, we have established that
the class of strictly pseudocontractions coincides with the class of enriched nonexpan-
sive mappings. Furthermore, we have proved that this class of mappings is a subclass
of Lipschitz mappings, and it incorporates existing notions of strictly pseudocontractive
mappings in geodesic spaces. Moreover, we have analysed certain properties of strictly
pseudocontractions in CAT(0) spaces. Specifically, we have shown that strictly pseudo-
contractions satisfy a demiclosedness-type property in CAT(0) spaces. Additionally, we
have proven that the fixed point set of strictly pseudocontractions is closed and convex,
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provided it is nonempty. Finally, we have shown the applicability of the Krasnoselskii-
Mann iteration in approximating fixed points of strictly pseudocontractive mappings.
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