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On Coupled Systems of Hilfer-Hadamard Sequential
Fractional Differential Equations with Three-Point
Boundary Conditions

JAKGRIT SOMPONG', EKKARATH THAILERT"?*, SOTIRIS K. NTOUYAS? and UGYEN
SAMDRUP TSHERING!

ABSTRACT. This paper investigates the existence and uniqueness of solutions for a system of Hilfer-Hadamard
sequential fractional differential equations using standard fixed-point theorems. We apply the Leray-Schauder
alternative and Banach’s contraction mapping principle to obtain the existence and uniqueness results for the
given problem. Additionally, we discuss illustrative examples.

1. INTRODUCTION

The significance of fractional calculus has been discovered in the past few decades due
to its accurate mathematical modeling compared to classical calculus. Fractional differ-
ential equations are widely used in applied science, engineering, technical science, and
more. This inspiration has led mathematicians in the past century to introduce many
new fractional derivatives, including Riemann-Liouville fractional derivative, Caputo de-
rivative, Hadamard derivative, Hilfer derivative, Hilfer-Hadamard derivative, and many
more. Coupled systems of such fractional differential equations provide precise mathe-
matical models for physical phenomena like anomalous diffusion, disease models, secure
communication and control processing, Chua circuit, ecological effects, and others. For
applications of fractional derivatives, please refer to [9], [10], [13], [15], [18], [20],[21], [22],
[24], [26], [27],[28], [31].

The following list includes some of the research articles related to coupled systems of
fractional differential equations. Alsaedi et al. [7] studied the existence of solutions for a
Riemann-Liouville coupled system of nonlinear fractional integro-differential equations

Du(t) = f(t,u(t), v(t), (pru)(t), (Y1v)(2)), t €[0,T7,
DBU(t) = g(t,u(t), U(t)> <¢2u)(t)7 (¢2U)(t))7 I <a, /B <2,

with coupled Riemann-Liouville integro-differential boundary conditions

D*~24(07) =0, D tu(0t) =vI®*tu(n), 0<n<T,
DP=29(0%) =0, D~ (0%) = ulP~tu(o), 0 <o < T,
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where D), I() denote the Riemann-Liouville derivatives and integral of fractional order
(.), respectively, f,g : [0,7] x R* — R are given continuous functions, v, ;1 are real con-
stants and

t

(éru)(t) = / it s)u(s)ds, (dau)(t) = / 7o (t, s)u(s)ds
(10)(t) = / 51(t, 5)o(s)ds, (av)(t) = / b (t, 5)0(s)ds,

with «; and ¢; (i = 1, 2) are continuous function on [0, 7] x [0, T].
Alsulami et al. [8] studied a system of coupled Caputo type fractional differential equa-
tions

{CD“u(t) = f(t,u(t),v(t), t€[0,T], 1<a<?2,
cDPu(t) = g(t,u(t),v(t)), t€[0,T], 1< B <2,

with non-separated coupled boundary conditions

{u(O) = Mo(T), u'(0) = X' (T),
0(0) = pru(T), v'(0) = paed (T),

where ¢D?, ¢D? denote the Caputo fractional derivatives of order a and 3, respectively,
f,9 :[0,7] x R x R — R are appropriate functions and A;, ji;, ¢ = 1,2 are real constants

Ahmad et al. [2] studied a coupled system of nonlinear fractional differential equations
with three-point boundary conditions. Applying the Schauder fixed point theorem, an
existence result is proved for the following system

where 1 < a,8 < 2, pg,vy >0, 0 <n <1l a—-q¢g>1 B-—p>1 wm* ! <
1, Pt < 1,DX (x = o, f,p,q) is the standard Riemann-Liouville fractional deriva-
tiveand f,g: [0,1] x R x R — xR are given continuous functions. It is important to note
that the nonlinear terms in the coupled system involve the fractional derivatives of the
unknown functions, and later [3], they studied the existence and uniqueness of solutions
for nonlinear Caputo sequential fractional differential equations

{(CDO‘ + k1D Hu(t) = f(t,u(t),v(t)), 1<a<?2, te(0,T),
(°D? + k2°DP~Ho(t) = g(t,u(t),v(t)), 1< B <2, te(0,T),

supplemented with coupled boundary conditions

{u(O) = a1v(T), v (0) = axv'(T),
v(0) = biw(T), v'(0) = beu'(T),

where D®,¢ D? denotes the Caputo fractional derivative of order a and f3, respectively,
ki,ke e Ry, T >0, f,g:[0,7T] x R x R — R are given continuous functions and a1, as, b1
and b, are real constants with a1b; # 1, and asboe~ F1T+k2T) £ 1,
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Aljoudi et al. [5] studied a coupled system of Hadamard type sequential fractional
differential equations with coupled strip conditions given by

(D7 + kDT Mu(t) = f(t,u(t),v(t), D*v(t)), k>0, 1<qg<2, 0<a<l,
(DP + EDP~Mo(t) = g(t, u(t), v(t), D°u(t)), 1<p<2, 0<d<1,

u(l) =0, u(e):va(n):%ﬁy)/j(logg)v_l@ds, v>0, 1<n<e,

< —1y(s
o(1) =0, v(e) = 1700 = g5 [ (108 5)" s 50 1< <

where D) and () denote the Hadamard fractional derivative and Hadamard fractional
integral, respectively and f,g : [1,¢] x R?® — R are given continuous functions. For other
recent results we refer to [16, 33, 6, 1] and references cited therein.

Recently, in [30] the authors studied existence and uniqueness of solutions for a class
of system of Hilfer-Hadamard sequential fractional differential equations

(HD(;i’ﬁl + leDfi_l’ﬁl)u(t) = f(t,u(t),v(t)), 1<ar <2, te]l, ¢,
(D% + ko D172 )0(t) = g(t,u(t),v(t), 1<az <2, te€l,e,

with two point boundary conditions

{u(l) =0, u(e) = Ay,
v(1) =0, v(e) = As,

where ;; D?#Fi is the Hilfer-Hadamard fractional derivative of order «; € (1,2] and type
Bi € [0,1] for i € {1,2}, k1,ko,A1,42 € Ry and f,g : [1,e] x R x R — R are given
continuous functions.

Very recently, in [34], the authors studied the existence and uniqueness of solutions
for boundary value problems for sequential Hilfer-Hadamard fractional differential equa-
tions with three-point boundary conditions,

(HD?J’f + kHD?J:l’ﬁ)u(t) = f(tau(t))v 1<a S 27 te [176]7
u(1) =0, u(e) = Au(8), 0 € (1,¢),
where HD?J’F’B is the Hilfer-Hadamard fractional derivative of order o € (1,2] and type
Bel0,1],y=a+nB—aB,n—-1<y<nn=[a]+1,keRT :=[0,00),\ € R\{W}
and f : [1,e] x R — R is a given continuous function. However, it has been observed that
the literature on Hilfer-Hadamard sequential fractional differential equations of order in
(1,2] is scarce and needs to be developed further.

Motivated by the research going on in this direction, in the present paper we extend
the results of [34] to sequential fractional coupled system

{(HD?i"’l +ky gD () = ftu(t),u(t), 1<ar <2, t€ (L],

(1.1) e o s
(aDT2”? 4+ ko u D™ 7)u(t) = g(t, u(t),v(t), 1 <a2 <2, t€[l, ¢,

with three-point coupled boundary conditions
- u(1) =0, ule) = Av(), 1< <e,
-2 o(1) =0, vle) = pula), 1< <e,
where HD?IB * is the Hilfer-Hadamard fractional derivatives of order «; € (1, 2] and type
Bi € 0,1]fori € {1,2}, k1, ke € RT, f,g: [1,e] xRxR — R are given continuous functions
and A and p are real constants.
Concerning the significance of problem (1.1)-(1.2), we recall that the Hilfer fractional
derivative generalize both Riemann-Liouville and Caputo fractional derivatives and in



446 J. Sompong, E. Thailert, S. K. Ntouyas, U. S. Tshering

fact interpolates between them. Analogously, the Hilfer-Hadamard type fractional deriv-
ative covers the cases of the Riemann-Liouville-Hadamard and Caputo-Hadamard frac-
tional derivatives. Therefore, the present study will be useful for improving the works
related to glass forming materials [19], fractional glassy relaxation [23], turbulent flow
model [35], etc. An example of a physical system modeled by means of the Hilfer frac-
tional derivative is described in [19], while the Hilfer fractional advection—diffusion equa-
tion with the power-law initial condition is studied in [4]. In [11, 12], the Hilfer-Prabhakar
and Hilfer fractional derivatives are used to model filtration processes. In a recent work [36],
the authors discussed the attractivity for Hilfer fractional stochastic evolution equations.
One can find the application of Hilfer fractional derivative operator in the cobweb eco-
nomics model in [29]. The concept of the Hilfer-Hadamard fractional derivative operator
is quite a recent one, and it is expected that the models based on the Hilfer fractional de-
rivative operators will be considered with the Hilfer-Hadamard fractional derivatives to
find more insight into these models.

It is well known that the nonlocal conditions are more appropriate than the local con-
ditions to describe several problems in applied mathematics and physics more appropri-
ately, see the survey paper [25]. We emphasize that in the present paper we study cou-
pled systems of Hilfer-Hadamard sequential fractional differential equations of order in
(1,2]. Our results are new and enrich the new research area on Hilfer-Hadamard coupled
systems of the order in (1, 2]. The used method is standard, but its configuration in the
problem (1.1)-(1.2) is new.

The rest of the paper is organized into three sections. In Section 2, we recall some defi-
nitions and notations that will be used throughout the paper. The main results regarding
the existence and uniqueness of solutions for the coupled system (1.1) with the boundary
conditions (1.2) are presented in Section 3. The final section, Section 4, contains examples
that illustrate our main findings.

2. PRELIMINARIES
In this section, some basic definitions and theorems are mentioned.

Definition 2.1 (Hadamard fractional integral [22]). The Hadamard fractional integral of
order a € R for a function f : [a,00) — R is defined as

o L (e 1))
(2.3) I f(t) = m/a (log T) =, (t>a)
provided the integral exists, where log(.) = log,(.).

Definition 2.2 (Hadamard fractional derivative [22]). The Hadamard fractional derivative
of order e > 0, applied to the function f : [a,00) — R is defined as

(2.4) DG f(t) = 0" (u I (1), m—1<a<m, m=[a]+1,

where §"" = (t%)m and [a] denotes the integer part of the real number .

Definition 2.3 (Hilfer-Hadamard fractional derivative [32]). Let m — 1 < a < m and
0<B<1,fe€ LYa,b). The Hilfer-Hadamard fractional derivative of order o and type 8
of f is defined as

(Hngrﬁf) (t) _ (Hlfimfoz)ém HI(STfoz)(lfﬁ)f) (t)
= (uIA" 6™ g I () v =a+mB - o
(g 120" DY, (),
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where HI(EJR and HD((H) are the Hadamard fractional integral and derivative defined by
(2.3) and (2.4), respectively.

The Hilfer-Hadamard fractional derivative interpolates between the Hadamard frac-
tional derivative and Caputo fractional derivative depending on the value of 5. When
B =0, it reduces to Hadamard fractional derivative and when 8 = 1, it reduces to Caputo
fractional derivative.

We utilize certain theorem related to the Hilfer-Hadamard fractional integral and de-
rivative.

Theorem 2.1 ([32]). Leta > 0,0< <1, vy=a+mB—af,m—1<y<m m=|a]+1
and 0 < a <b<oo. If f € L*(a,b) and (g1 " f)(t) € ACY[a,b], then

aly (uDel () = wlly (uDYf)(E)
m—1 —j— m— —j-1
B B (5(m J 1)(H‘[a+ ") (a) . t ¥=3
= 0= e G

3. EXISTENCE AND UNIQUENESS RESULTS

In this section, we prove existence and uniqueness of solutions for system of Hilfer-
Hadamard sequential fractional differential equations (1.1) with the boundary conditions
(1.2).

3.1. An auxiliary lemma. In this subsection we first prove an auxiliary result, concerning
a linear variant of the problem (1.1)-(1.2), that plays a key role in transforming the given
problem into a fixed point problem.

Lemma 3.1. Let hy,hy € AC([1,¢],R) and A # 0. Then u,v € AC?([1, e],R) are solutions of
the system of fractional differential equations

(HDl‘liﬁ1 + leDi‘{l’ﬁl)u(t) =hi(t), 1<a;<2 te[l e,
(Hfo’ﬁ2 + szfo_l’ﬁQ)v(t) =ho(t), l1<as <2, telle]

supplemented with three-point coupled boundary conditions (1.2) if and only if

ut) = i{ [kl /1 “f)ds— F(Ll) /1 hls(s) <log z)al_lds
+/\( — ks /19 @ds + r(i@) /10 hQS(S) <log Z)%_lds)]
Ak [ 5 gs [ (logz>a21d8

b u(s) 1 (" hi(s) AN
(3.6) —kl/l . d8+1"(a1)/1 . <10g8> ds

and

0 = 3 )
+u< _ /j “(j)ds + F(<111) /177 hls(s) <log Z)allds)]

(3.5)
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B [kl /1 “(:) ds — r(;) /1 hls(s) <1og z>al_1ds
YN P Ry L C TR LAY PSS

Otz—l
(3.7) ko /tv(s)ds—i— F(12) /t h2(s)(1ogt) ds,
1 S @] 1 S S

where

A= -\log#)>" !, B=—p(logn)™ 1, A=1—AB.

Proof. Applying the Hadamard fractional integral operator of orders o, s from 1 to ¢ on
both sides of Hilfer-Hadamard fractional differential equations in (3.5) and using Theorem
2.1, we find that

S(uI? " w)(1)(log )71 (17 u)(1) log )7 2

t— — k Iozl Il—al t — Ialh t
“ ['(y) D(y1 — 1) thiadl iy u(t) = g 1+ 1(t),
and

S(u I}y v)()(logt) =~ (I v)(1)(logt)” 2 .

t)— 1 _ 1 [ Il 2 () = o [O2 o (1

o6 I'(y2) (e —1) thop 72 a1 P u(t) = ul{Eha(t),

which can written as

t t 04171
(38) u(t) = co(logt)" " +c1(log )" 2 — ks / u(ss)d” 1 / hl(s)(logf) ds,
1 1

I‘(al) S S
and
t t
- y2—1 . v(s) 1 / ha(s) tyoa-l
(39) v(t) = do(log )" +dy (log 1) "2 — k /1 s s [ (10g 1) as,

where ¢y, ¢1,dp, dq are arbitrary constants. Using the first boundary conditions (u(1) =
0,v(1) = 0) in (3.8), (3.9) yields ¢; = 0,d; = 0 since y; € [a;,2],7 = 1,2. In consequence,
equations (3.8) and (3.9) takes the form:

(3.10) u(t) = colog )"~k /1 u(;)ds + F((ln) /1 hlis) (1o )" s
t t .
(3.11) v(t) = do(log )" — ks /1 v(f) ds + p&g)/l hzs(s) (10g§) ds.

Next, the second boundary conditions of (1.2) together with (3.10) and (3.11) yields the
system

(312) co+doA=J1, coB+dy=J>,

where J, J are defined as follows,

¢ u(s) 1 ¢ hi(s) e\l
= k ds — log - d
1 1/1 s F(al)/l s ( ©8 s) y
0
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Solving the system (3.12), we get
Jy — Ay Jo — BJy
A A

Substituting co and dy back in equations (3.10), (3.11), we get the integral equation (3.6)
and (3.7). The converse of this proof follows by direct computation. This completes the
proof. O

co = and dy =

Let us introduce the Banach space X = C([1, ¢],R) endowed with the norm defined
by |lul] = sup{|u(t)| : ¢ € [1,e]}. The product space X x X equipped with the norm

|(w, v)|| = |Ju|| + ||v| is also a Banach space. In view of Lemma 3.1, we define an operator
T:XxX—=>XxXby
(3.13) T (u,0)(t) = (Ta(w, v)(2), T2(u, v)(¢)),
where
_ 1 fuls) o L[\ L Gu(s),0(s)
Ti(u,v)(t) = A{|:kl/1 . ds F(Oél)/l (10g8> S ds
1

(o [ i [ (et) o)
_A{,Q / v(s) gy _ F(;) / (10g§)”‘19<57“<?vv<8>> s
o [P [ (en) )

o t 1 ¢ t arlf(s,u(s),v(s))
-(logt) 1—k1/1 ?ds—i_F(al)/l (logs> fds
and

Tolu,v)(t) = i{{krz/l vis)dsf F(i@) /1 g(s’“(i)’”(s))<1og§)a21ds
1

—B[kl/leu(s)ds— ! e(1ogz)al_lf(s’“(s)’”(s))ds

S

(o [ e [ (we) )

(log )2t — ko /j %S)ds + F((lyg) /lt g(s,u(i),v(s)) <1og t>a21ds.

We will use the following notations in the proof :

L+ |[pAl + A _ 2N
Al Al

_ 2lu

M, = , W1 Wz_\A|'

3.2. Existence result via Leray-Schauder alternative. First, we will prove the existence
result based on Leray-Schauder alternative ([17]).

Theorem 3.2. Assume that:
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(H1) f,g9:[1,e] x R x R — R are continuous functions for which there exist real constants
mg,n; > 0,(i =1,2)and mg > 0, ng > 0, such that forall t € [1,e], z; e R, i =1,2,
|f(t, 21, 22)| < mo +malz1] + malzal,

lg(t, x1, 22)| < no + nafw1| + nalwal.

(Hs) Q1 <1,Q2 < 1, where

Q1 := ki (My +Ws) + mi(M+Wa) | m(Wh + M)

I(a; +1) Tlag+1)
._ ma(My + Wa)  no(Wy + M)
Q2 :=ko(W1 + M) + T(ar + 1) Tog + 1)

Then, the system (1.1)-(1.2) has at least one solution on [1, e].

Proof. We will prove that 7, defined by (3.13), has a fixed point. We divide the proof into
two steps.

Step I: We show that the operator 7 : X x X — X x X, defined by (3.13), is completely

continuous.
First we note that the continuity of the functions f and g implies that the operator 7 is

continuous.

Now, we show that 7 is compact. Let Q = {(u,v) € X x X : ||(u,v)|| < p} be abounded
subset of X x X. By (H;) for (u,v) € Q we have

|f(tu(t),v(@®)] < mo+malu(t)| +malv(t)]

< mo + (ma +ma)||(u,v)||
S mo + (m1 + mg)p = Ll,
and similarly |g(t, u(t), v(t)| < ng + (n1 + na)p := Lo.

Then, we have:

] < 1{[k / u(s)l 1 6|f<s,u<5>,v<s>>(mgj)m_lds

A s BT T ), ;
e /19 bl L /19 ot (0t e)d)]
P [ g L[t ’”“))'(logj)”_lds
i [ L If(s,uz),v(s))<logz>al_1ds>”
" / g,y 1 / |f<s,u<z>,v<s>>|<logi)“l1ds
< o [t gt + W (Ralol + s )
Al [l + gy il (Rl + s ) bl e
< e e (e )

; )
FIA | Bap+ 22— lul (krp+ —— ) | b+ Fap+
||{2p T(as + 1) |“|<1” T(a; +1) YT T + 1)
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which on taking the norm for ¢ € [1, €], yields

imwol < pxp{ [0+ gy (et v )

Lo 14 L4
A lkap+ —2— S S ) QU P S
*l [”*r( +1>+'“<1"’+r<a1+1>>” P Rl 1 1)

WiLs
= Mikip+ =t Wikop + — 2
VP pi v 1) TP T D, 1)
Similarly, we have
Wolq
< Mk —— + Wk .
[ 72(u, v)]| 1 2P+F( +1) + Ws 1P+F(a1+1)

Hence
Li(My +Ws)  Lo(Wh + M)

T(a; +1) Mlop 1) 1

)

[T (u,0)|| <k1(My + Wa)p + ko (W1 + My)p +

which proves that 7 is uniformly bounded.
Finally, we show that 7T is equicontinuous. Let ¢, ¢y € [1, ¢] with ¢y < t. Then we have

|7'1(u = Ti(u, v)(to)l

7 [/|u ds+ L ))l(logzyqlds
HM(,@ / [v(s)] d”r(i@) / lg(s, u<s8> ”(S>><1og 9)61)}

‘|

+I>\|[k2 1 2l g (;2) /le(logz>”‘1wds

1 |uss>| d8+r(;1) / |f<s,u<z>,v<s>>|<logz>“lldsm

g, / 15, u(s), v(5)|
1

S

IN

e

F(041)

<(logz>m_1 — (logt;) )d +/ ‘f 5, u(s),v(3))] <log i)al_lds
e S+ /1<1g> *

+|)\|(k2||v|/ derF(I(;Q) /fi(logi)arlds)}

Al [lc2|v||/ fds—&-F(LQ) /lei(logi)wlds

Hul ([ Sas 25 [ "i(mg’j)m_lds)]}[<1ogt>%-1—<logto>%-1}
i Bl 2 () o

t

1 AN
+/ <log> ds
t S s

IN
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1 e 1 Ll e 1 e (Xl—l
< — st 2 loe =
B |A|{[k1p/1 3d$+r(a1) /1 8< 8 s) ds

i1 AN
+/ (log) ds
o S s

which tends to zero as t — ¢ and is independed of u,v. Similarly we can prove that
[T2(w, v)(t) — T2(u,v)(to)] — 0 ast — to. Hence 7; and T3 are equicontinuous and so the
operator 7 is equicontinuous. Therefore, by Arzeld-Ascoli’s theorem, we deduce that the
operator 7T is completely continuous.

Step II : We show that the set P={(u,v) € X x X | (u,v) = kT (u,v), 0 < k < 1} is
bounded.

Let (u,v) € ®, then (u,v) = KT (u,v). For any ¢t € [1,¢], we have u(t) = x7i(u,v)(t),
v(t) = KT2(u, v)(t). Then, in view of the assumption (H; ), we obtain

lu@®)] < [Ti(w,0)(

BN / ol L [ o] (Y,
(o [ L el 0]
+A [1@/1 |”(;)|ds+ ! )/le<1og§)a2l|9(5’“(5>ﬂ’<s)>ds
s [ |u<8s>| ds+F(1 [ e (1))
Ny ST Ry O T Rt
il gt

—1
+)\|<k2||v|/ gd8+no+n1||u||+n2||v||/ ( ) ds)]
1

¢ 1 az—1
+A [/mvu [ Lo mormlulsnald (h)ge) .
L3 I'(az)

n 1 n 1 a;—1
1
€ 1 a;—1
1

IN
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< L{ {klllu 4 Mot ?g@'{'iﬁ)m”v” A <k2||v|| 4 Mo +;Ea;‘”:1;‘2””|>}
+A {lmllvll + 1o +;Ea:||++1;12||vl N Iul<k1||u|| L Mo +71?(104|?E)m2||v||>]}
] + T ?;aﬂt)mﬂv“
= b+ 2 ALy g 2ol el
which on taking maximum for ¢ € [1, e], yields

(3.14)
My (mo + maful] + mallv]])
F(Oél + 1)

In the same way, one can obtain

(3.15)
vl < Mikalv]| +

Wi(no + nyljull + nallv])
F(Oég + 1)

[ull < Mk ffull + + Wike|lv]| +

My (no + na|ul| + nz|lv||) Wa(mo + my||ul] + mallv])

+ Wokq||ul| +

(g +1) (o +1)
From (3.14) and (3.15), we have
[ (w, )| =lull + [lv]
mo(M1 +Wa)  ng(W1 + M) my (M + W)
T(ar + 1) Tlap = 1)+ Iel{ k(M4 W2) + ==y
n1 (Wi + M) ma(My + W) n2(W1+M1)>
—_ ko (W1 + M-
T(as + 1) )+||”|( 2(Wi+ M)+ =50 T(as + 1)

and consequently
mo(Mi + W) | no(Wi + M)
I(a; +1) T(as+1)
Qo ’

[(w, 0)| <

where Q) is defined by
Qo = min{l — Q1,1 - Q2}.
Therefore the set ® is bounded. By Leray-Schauder alternative, we get that the operator

T has at least one fixed point. Therefore, the problem (1.1)-(1.2) has at least one solution
on[l,el. O

3.3. Existence and uniqueness result via Banach’s fixed point theorem. Next, we prove
an existence and uniqueness result based on Banach’s contraction mapping principle

([14]).
Theorem 3.3. Assume that f,g : [1,e] x R x R — R satisfy the following condition:
(Hs) There exist positive constants L, L, such that forall t € [1,¢e], u;,v; € R, i =1,2,
|f(t,ur,u2) — f(t,v1,02)[ < L(Jur — vi| 4 |ug — v2l),
l9(t, w1, uz) — g(t,v1,v2)] < L(lur — 1| + |uz — val).
Then the system (1.1)-(1.2) has a unique solution on [1, €], provided that

L(My, +Wy)  L(Wy + M)
F(Oq —|— 1) F(Oég —|— 1)

(3.16) &= |ki(My + Wa) + ko(Wy + M) + <l
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Proof. We will use Banach fixed point theorem to prove that 7, defined by (3.13), has a
unique fixed point. Fixing N; = m[?x] |f(£,0,0)] < oo, Ny = m[zlaux] lg(t,0,0)| < oo and
telle te(l,e

using the assumption (Hs), we obtain

|f (&, u(t), v(@)] = | f(t, ult), v(t) - f(t,O,O) + f(t,0,0)|

< L(lfull + [loll) + Ny = L[ (u, ) ][ + N3,
|9 (&, u(®), v(®))] = |g(t, u(t), v(t)) — (t 0,0) +9(¢,0,0)]
(3.17) < L(|lull + [[ol) + N2 = L||(, v)|| + No.

We consider B, = {(u,v) € X x X : ||(u,v)| < R} with
Ni(My + Wa) | Nao(Wi + M)

R> Mo +1) Flag+1) .

We divide the proof into two steps:
Step I : First we show that T(B,) C Bg. Let (u v) € Bgr. Then, using (3.17), we obtain

T3 (w,0)(t)] < |A{[1f1/ [u(s) ol / 'f“” ))|(logz>a1 s

w(,@ ), +F((112) / l9(s, u(ss> v(s))l(log e) d)}
|v s+ - / |gsu<s>,v<s>>|<loge)a2‘lds

S S

N [k
1

ol [ 2y [ S 1))

t a;—1
+k:1/ )l g + ol / £ (s, uls (8))|<logt) ds
1

LR+N1 LR+ N,
< k + M| & —_—
< [P+ S '(”'” 1)
LR+N2 LR+ N; LR+ N;
A Falloll+ eyl Rallull + =5 ) | Rl gy
A Rallol+ el (Rl + +1>>” ul +
1 LR+ N; LR+ No
= (bl EEEEY Friun ] o (Rl £ oy
|A< [(on +1) [A] [(oz+1)
LR+ Ny LR+ N,
- M My =T e
thful + lf(al +1) +Waksfl] + er(ag +1)’
which on taking the norm for ¢ € [1, ¢], yields
LR+ Ny LR+ N,
< Mk My —— + Wik Wi——
71 (u, v) vk [[ul| + My T+ llvll + Wi Tt 1)’
In the same way, one has
<M My =22 T
[172(u, v)[| < Mikz|lv]| + 1F(a2+1)+W2k1||UH+W2 Mo 7 1)

Hence
L(M; + Ws) E(Wl + M)

ITCw o) B k(M4 Wa) + ko (Wh + M) + === + =
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Ni(My +Ws)  No(Wy + M) <R
F(Oq + 1) F(O[g + 1) - '

Thus || 7 (u,v)|| < R, thatis, T (u,v) € Bg. Hence T(Bgr) C Bg.

Step II : We show that the operator 7 is a contraction.
Let (ug, v2), (u1,v1) € X x X. Then, for any ¢ € [1, ¢], we have

71 (w2, v2)(t) — Ta(u1,v1)(t)]

1 € luz(s) —ui(s)] 1 € |f(s,u2(s), v2(s)) — f(s;u1(s),v1(s))| e\t
< m {kl/l . ds + F(Oq)/1 " (log;) ds
% vz (s) — vi(s)] 1 9 |g(s, u2(s),v2(s)) — g(s,u1(s),vi(s))l AN
+|)\\(k2/1 " ds + () /1 " (log g) ds):|
€ —vi(s € lg(s,uz(s),v2(s)) — g(s,ui(s),vi(s e\ 2!
+A |:k2/1 [v2(s) - 1( )‘ds—k F(i@)/l lg(s, ua(s), va(s)) - g(s,u1(s),vi(s))l (logg) ds
" uz(s)—ui(s) 1 " 1f(s,u2(s), v2(s)) = £ (s, u1(s), v1(s))] 7\t
(i [ e s CHMD|
t |uz(s) — ui(s)] 1 L1 f (s, u2(s),v2(s) = f(s,u1(s), v1(s))l t ot
+k1A . ds + F(al)/1 . (logs) ds
1 I L(fluz — ua || + |lv2 — v1])) . L(|luz — u1]| 4 [Jvz — vi]])
< \A|{[k1” 2 — u1| +_ a1+ 1) +|>\\(k2Hv2 1 + Tas £ 1) )}
1A s = o+ 2=t =D (g 4 2=l e =)
g =+ 22—l e —ul)
_ L(llug — u1 || + [lvz = v1l]) L(|lug = w1l + [lv2 — v1])
= M1<k1||u2—u1||+ Tlar £ 1) ) +W1(k2||v2—v1H+ T(as + 1) )
< [t g + Wik + o | ue =l + ez = ),

which on taking the norm for ¢ € [1, ¢], yields

(3.18) )
175 (z, v2) — Ti (g, v1)]| < [Mllcl + % + Wiks + %} (lus = wal| + oz — o1 ])-
Similarly,
(3.19) )
I73un,02) = TaCun o)l < [Miks + A Wb+ 22 (s =l + on = )

It follows from (3.18) and (3.19) that || 7T (uz, v2) — T (u1,v1)|| < e(||lug — w1 || + [Jva — v1]])-
By (3.16), it shows that the operator 7 is a contraction. Hence, operator 7 has a unique
fixed point by Banach contraction mapping principle. Therefore, the system (1.1)-(1.2) has
a unique solution on [1, e]. O

4. EXAMPLES

In this section, we give two examples to illustrate our main results.
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Example 4.1. Consider the following system

31 1 11 o |u(®)] [v(t)] 1
(0¥ 4 guDH Ju(t) = Togt+50) T Grora+pmn T e L€
101 1 |u(t)] sin(mo(t)) | 1
4.20 21, L o1 _ 1
(420 3 (4D} + uD"F )o(t) Tass T mn e telbed
w(1) = 0, u(e) = 721;(%), (1) =0, w(e) = %u(2).
Here
3 1 1 7 7 1 1 4
aq 27 (0] 561 2762 3371 4372 37 1 57 2 107 , M 9a

0=23n=2 A=0.600, B=—0.337, A =1202, M; = 2.570, W = 3.326, Wy = 0.739.

We see that (H;) holds, since

L Ju@)] | @) L Ju@)] | v@)]
t < — d t < —
|f(t,u,v)| < 64+ 50 + 100 and |g(t,u,v)| < 65+ 5 + o
with
1 1 1 1 1 1
= —_— = —_— = —_— = —_— n = —_— n = —.
M6 ™M T "™ T 1000 "™ T 6 " T 500 T 70

In addition, @; ~ 0.770 and @2 =~ 0.656. Thus, the hypotheses of Theorem 3.2 are satisfied
and hence the system (4.20) has at least one solution on [1, €].

Example 4.2. Consider the following Hilfer-Hadamard system
4.21)

31, 2 14 _ sin(u(t)) lo(t)] logt
(#D*! 4+ 2y DH Jotr) = Grtp T+ 1000 T
51 3 11 (2 + logt)|u(t)| [v(t)] 1
s = > — 1
(Hm Pt 2)“(” 120 TG+ @) Ts0re C 1],
w(1) = 0, u(e) = —20(2), v(1) =0, v(e) = 5u g
Here 5 1 13 2 3 5
= B =1 By =Dy = =2 = L = 2 =2 =
a1 2,0{2 47B1 7ﬂ2 27’71 , V2 83 1 51a 2 237 ga.u“ 57

0=2n= %, A=0.441, B=—-2.554, A =2.128, My = 2.774, Wy = 0.522, W5 = 4.698.
Note that (H3) holds, because

(Jur = v1| + ug — v2])

2=

|f(t, w1, u2) — f(t,v1,02)] <
and

1
‘g(tau17u2) —g(t,’l)l,'l}z)| < E(‘ul —'U1| + |’LL2 _UQ‘)v

. 1 - 1

with L = 61 L= 0 Therefore, we have

L(M; + W) L(Wi + M)
I‘(a1 + 1) F(OZQ -+ ].)

Thus, all the conditions of Theorem 3.3 are satisfied and therefore the system (4.21) has a
unique solution on [1, e].

€= /{il(Ml—i-Wg)—‘rk‘g(Wl—‘er)-i- ~ 0.883 < 1.
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5. CONCLUSIONS

In this paper, we conducted research on the existence and uniqueness of solutions for
a system of Hilfer-Hadamard sequential fractional differential equations with three-point
boundary conditions. Firstly, via a linear variant of the given problem, we have converted
the nonlinear problem into a fixed point problem. Once the fixed point operator were
available, the existence result was established using the Leray-Schauder alternative, while
the Banach contraction principle is applied to achieve the existence and uniqueness result.
Additionally, we provide examples that illustrate the obtained results. Our results are
new in the given configuration and enrich the literature on coupled systems involving
Hilfer-Hadamard fractional derivatives of order in (1, 2].
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