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Characterizations of ε-Approximate Solutions for Robust
Convex Semidefinite Programming Problems

RABIAN WANGKEEREE1 and PAKKAPON PREECHASILP2

ABSTRACT. In this article, we explore the characterizations of ε-approximate solutions for convex semidef-
inite programming problems that involve uncertain data. It first reviews essential findings regarding the op-
timality condition and duality of robust convex semidefinite programming problems. Then, we establish the
optimality and duality conditions concerning the problem by assuming specific constraint qualifications. The
study investigates ε-Kuhn-Tucker vectors and their relationships with the optimal solutions, maximizers of the
corresponding Lagrangian dual problem, saddle points of the Lagrangian, and Kuhn-Tucker vectors. Finally, the
article establishes the characterization of ε-approximate solution sets for the problem by studying the connection
among three sets: the set of Lagrange multipliers corresponding to ε-approximate solutions, the set of ε-Kuhn-
Tucker vectors, and the set of approximate solutions for their Lagrangian dual problems. The characterization
is illustrated with several examples.

1. INTRODUCTION

Robust convex semidefinite programming is a type of mathematical optimization that
aims to solve semidefinite programming problems with uncertain data. The objective is
to minimize a convex function subject to the constraint that an affine combination of sym-
metric matrices is positive semidefinite, where these symmetric matrices are only known
to belong to some uncertainty sets. The applications of semidefinite programming prob-
lems under data uncertainty are extensive, including fields like engineering, computer sci-
ence, finance, control theory, signal processing, quantum information theory, and machine
learning [3, 4, 19, 20]. Many studies have focused on robust semidefinite programming
from both theoretical and practical perspectives, including works such as [1, 2, 28, 29] and
their respective references.

Approximate solutions are widely studied in robust optimization because finding the
exact solution to a problem may be challenging or impractical. Even though an ap-
proximate solution is not necessarily optimal, it can provide useful insights and inform
decision-making in many situations. Approximate solutions can also strike a balance be-
tween computational cost and solution quality. For example, a good enough answer can
be obtained in a shorter amount of time using an approximate solution, while a more pre-
cise solution may require more computing time and resources. Many papers have con-
tributed to the development of approximate solutions for robust optimization, including
[11, 13, 14, 15, 17, 22, 26, 27].

In the past decade, the characterization of robust optimal solutions has been one of
the most interesting and intensively studied areas, as evidenced by [8, 10, 18, 23, 25, 27].
The reason for this interest is that the characterization of the solution set can aid in iden-
tifying the problem’s structure, thereby leading to more efficient algorithm design. This
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can also help identify the limitations of existing methods and develop new approaches
capable of addressing more complex and realistic problems. In recent years, there has
been a significant amount of research focused on characterizing robust optimal solutions.
The initial research on characterizing the solution sets of convex optimization problems
with uncertain data was conducted by Jeyakumar et al. [10], who assumed the presence
of the robust Slater constraint qualification. Li and Wang [18] provided a characterization
of the features of the robust solution sets of convex optimization problems with data un-
certainty by using the less restrictive robust Farkas-Minkowski constraint qualification.
Sun et al. [24] introduced certain descriptions of robust optimal solutions for a convex op-
timization problem that experiences data uncertainty in both the objective function and
constraints. Sun and colleagues [26] proposed novel characterizations of robust ε-quasi
Pareto efficient solutions for semi-infinite multiobjective programming problems that are
nonconvex and subject to data uncertainty in both the objective functions and constraints.
For more related findings, refer to [12, 23, 25].

Our observation indicates that there are no existing findings that discuss the charac-
terization of approximate solutions for convex semidefinite programming problems in
the presence of data uncertainty. However, some initial outcomes have been reported
that pertain to the identification of approximate solutions for general problems, includ-
ing convex or semi-infinite problems, under uncertain data conditions. The importance of
studying convex semidefinite programming problems with uncertain data lies in their op-
timization over positive semidefinite matrices, which leads to the introduction of unique
structures and constraints that are absent in other convex optimization problems. Due to
the focus on positive semidefinite matrices, there exist specialized techniques and algo-
rithms that are specific to semidefinite programs with uncertain data. In what follows, we
consider the following robust convex semidefinite programming problem.

Minimize φ(x),

subject to Q(x) := Q0 +

m∑
i=1

xiQi ⪰ 0,(RSDP)

∀Qi ∈ Ui, i ∈ I := {0, 1, 2, . . . ,m},
x := (x1, x2, . . . , xm) ∈ K,

where φ : Rm → R is a convex function, K is a nonempty closed convex subset of Rm and
for each i ∈ I , Qi is uncertain and belongs to the uncertainty set Ui which is closed and
convex subset of n× n symmetric matrices.

We will use the notation F(K) to refer to the feasible set of problem RSDP, i.e.,

F(K) = F ∩K :=

{
x ∈ Rm : Q0 +

m∑
i=1

xiQi ⪰ 0,∀Qi ∈ Ui, i ∈ I

}
∩K,

and by inf (RSDP) the optimal valued of (RSDP). For any given ε ≥ 0, x̃ ∈ F(K) is said to
be an ε-approximate solution of (RSDP), if φ(x̃) ≤ φ(y) + ε, ∀y ∈ F(K). We will denote
Solε(RSDP) as the ε-approximate solution for RSDP.

The aim of this paper is to present characterizations of ε-approximate solutions for
RSDP. To begin with, we will review some fundamental findings related to the optimal-
ity condition and duality of robust convex semidefinite programming problems. Specif-
ically, we establish the optimality and duality conditions within the context of problem
RSDP by assuming certain constraint qualifications. Taking inspiration from [21], the idea
of ε-Kuhn-Tucker vectors is investigated for robust versions of convex semidefinite pro-
gramming problems, and the relationships between the optimal solutions, maximizers
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of the corresponding Lagrangian dual problem, saddle points of the Lagrangian, and
Kuhn-Tucker vectors are investigated. Our findings reveal that if strong duality holds,
the collection of ε-Kuhn-Tucker vectors for RSDPs is equivalent to the assortment of ε-
approximate solutions for their respective Lagrangian dual problems. Furthermore, we
observe that there is a connection between the set of ε-solutions for RSDPs and the La-
grange multipliers that correspond to these ε-solutions, provided that the reviewed ap-
proximate optimality condition is satisfied. Using this observation, we use the optimality
conditions for ε-approximate solutions of RSDPs to construct the set of all ε-solutions that
correspond to Lagrange multipliers satisfying the particular optimality condition. To sum
up, we establish the characterization of ε-approximate solution sets for RSDPs by above
studying the relationships among three sets: the set of Lagrange multipliers correspond-
ing to ε-approximate solutions for RSDPs, the set of ε-Kuhn-Tucker vectors for RSDPs,
and the set of approximate solutions for their Lagrangian dual problems.

This paper is organized as follows: Section 2 provides basic notations and essential
tools that will be used in this article. Additionally, we review some ε-approximate opti-
mality and duality conditions. Section 3 characterizes the ε-approximate solution set of a
convex semidefinite programming problem in terms of the ε-subdifferential of the convex
objective and the structure of semidefinite matrices. We provide an example to illustrate
these results. In Section 4, we discuss the robust semidefinite programming problem. As
a practical application, we examine the characterization of ε-approximate solution sets
for semidefinite linear programming problems with uncertain data. We provide several
examples to illustrate our characterization results.

2. PRELIMINARIES

In this article, we have gathered several notations and tools that will be used later on.
The Euclidean space of n dimensions is denoted by Rn, while the non-negative orthant
is denoted by Rn

+. The inner product of two vectors x and y belonging to Rn is repre-
sented by ⟨x, y⟩, which is equal to the summation of the products of their corresponding
elements, i.e.,

∑n
i=1 xiyi.

Let Sn be the set of all n × n symmetric matrices. For any A,B ∈ Sn, their inner
product is represented by ⟨A,B⟩, which is defined as the trace of their matrix product,
i.e., tr[AB]. Here, tr[M ] is the sum of diagonal entries of the matrix M = [mij ]n×n. A
matrix A belonging to Sn is said to be positive semidefinite (denoted by A ⪰ 0) if for
any x ∈ Rn, xtAx ≥ 0. A matrix A is said to be positive definite (denoted by A ≻ 0)
if for any 0 ̸= x ∈ Rn, xtAx > 0. The set of all n × n positive semidefinite (positive
definite) symmetric matrices is denoted by Sn+ (Sn++), respectively. The linear operator
Q̂(x) : Rm → Sn is defined by

Q̂(x) =

m∑
i=1

xiQi.

A subset K ⊆ Rn is convex if for every α ∈ [0, 1], αx + (1 − α)y ∈ K for all x, y ∈ K.
Let cl(K) and conv(K) denote the closure of subset K and convex hull of subset K of Rn.
A function ϕ : K → R is said to be convex if for each α ∈ [0, 1], ϕ(αx + (1 − α)y) ≤
αϕ(x)+ (1−α)ϕ(y) for all x, y ∈ K. For a convex function ϕ : Rn → R, the subdifferential
of a function ϕ at u ∈ dom(ϕ) is defined by

∂ϕ(u) := {v ∈ Rn : ϕ(y) ≥ ϕ(u) + ⟨v, y − u⟩, ∀y ∈ Rn} .

For ε ≥ 0, the ε-subdifferential of a function ϕ at u ∈ dom(ϕ) is defined by

∂εϕ(u) := {v ∈ Rn : ϕ(y) ≥ ϕ(u) + ⟨v, y − u⟩ − ε, ∀y ∈ Rn} .
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It is conventionally agreed that ∂εϕ(a) = ∅ if a /∈ dom(ϕ). For a function ϕ : Rn → R ∪
+∞, we define its conjugate function ϕ∗ : Rn → R∪+∞ as ϕ∗(v) = supy∈Rn {⟨v, y⟩ − ϕ(y)}.
Furthermore, we define the epigraph of ϕ as

epiϕ := {(x, α) ∈ Rn × R : ϕ(x) ≤ α} .
It should be noted that the epigraph of a positively homogeneous function is a cone, and
the epigraph of a convex and lower semi-continuous function is a closed and convex set.

The indicator function IK : Rn → R∪ {+∞} is defined for a nonempty subset K of Rn

as follows:

IK(z) =

{
0 if z ∈ K,

+∞ if z /∈ K.

Similarly, for the subset K, the support function SK : Rn → R ∪ {+∞} is defined by
SK(w) = sup {⟨w, z⟩ : z ∈ K}. It is evident that the support function is the conjugate of
the indicator function, i.e., I∗

K = SK . Moreover, the epigraph of the support function,
epiSK , is a closed convex cone.

Let K ⊆ Rn be a closed convex set. The normal cone to K at u, N(K,u), is defined by
N(K,u) = {v ∈ Rn : ⟨v, y − u⟩ ≤ 0 for all y ∈ K} . For ε ≥ 0, the ε-normal set to K at u is
defined as Nε(K,u) = {v ∈ Rn : ⟨v, y − u⟩ ≤ ε for all y ∈ K} .

The proposition below explains how the epigraph of a conjugate of a sum of functions
is related to the sum of the epigraphs of conjugate functions.

Proposition 2.1. [7] Let ϕ1, ϕ2 : Rn → R ∪ {+∞} be proper lower semicontinuous convex
functions. If domϕ1 ∩ domϕ2 ̸= ∅, then epi(ϕ1 + ϕ2)

∗ = cl(epiϕ∗
1 + epiϕ∗

2). Moreover, if one
of the functions ϕ1 and ϕ2 is continuous, then epi(ϕ1 + ϕ2)

∗ = epiϕ∗
1 + epiϕ∗

2.

We are now prepared to provide the following sum rule for approximating subdiffer-
entials of convex functions, which is used in the optimality theorem.

Proposition 2.2. [5, 6] Let ϕ : Rn → R be a convex function and K ⊆ Rn be a closed convex
set. Then,

∂ε(ϕ+ IK)(z) =
⋃

ε0≥0,ε1≥0
ε0+ε1=ε

{∂ε0ϕ(z) + ∂ε1IK(z)} .

2.1. ε-approximate optimality theorem. In this section, we recall some approximate op-
timality and duality conditions for RSDP. Before presenting the approximate optimality
theorem for the solution of (RSDP), it is important to review the conditions for constraint
qualification that are utilized to characterize ε-approximate solutions.

For the problem (RSDP), the robust characteristic cone is defined as follows:

D(K) :=
⋃

Qi∈Ui,i∈I
(Λ,δ)∈Sn

+
×R+

{(
(tr[Q1Λ], tr[Q2Λ], . . . , tr[QmΛ])

− tr[Q0Λ]− δ

)
− epiSK

}
.

Remark 2.1. In [11, 17], the authors investigated the problem (RSDP) in the case where
K = Rm. They introduced the following characteristic cone D and gave the optimality
and duality theory for (quasi) approximate solution in (RSDP);

D :=
⋃

Qi∈Ui,i∈I
(Λ,δ)∈Sn

+
×R+

{(
(tr[Q1Λ], tr[Q2Λ], . . . , tr[QmΛ])

− tr[Q0Λ]− δ

)}
.

According to Jeyakumar and Li’s findings in [9], the set D forms a cone provided that Ui is
a closed and convex set for all i ∈ I . Additionally, they establish the closed and convexity
of the characteristic cone D under appropriate conditions as follows.
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Proposition 2.3. [9] For each i ∈ I , let Ui ⊆ Sn be compact and convex. Assume that
{x ∈ Rm : Q0 +

∑m
i=1 xiQi ≻ 0,∀Qi ∈ Ui, i ∈ I} ≠ ∅. Then the robust characteristic cone D is

closed.

Proposition 2.4. [9] For any i ∈ I , let Qi ∈ Ui :=
{
A0

i +
∑l

j=1 v
j
iA

j
i , (v

1
i , . . . , v

l
i) ∈ Vi

}
,

where Vi is compact convex set in Rl, Aj
0 ∈ Sn and Aj

i ∈ Sn+, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , l}.
Then the robust characteristic cone D is a convex subset of Rm+1.

Moreover, if for any, i ∈ I , Ui is compact and convex, then cl(conv(D)) = − epi I∗
F =

− epiSF , (see [17]).
The following robust version of Farkas’s Lemma for convex semidefinite programming

is now gathered.

Lemma 2.1. Suppose that F(K) ̸= ∅ and Ui is a compact and convex subset of Sn for all i ∈ I .
Then, the following are equivalent:

(i) F(K) ⊂ {x ∈ Rm : ⟨c, x⟩ ≥ γ}.

(ii)
(
c
γ

)
∈ cl

conv

 ⋃
Qi∈Ui,i∈I

(Λ,α)∈Sn
+

×R+

{(
(tr[Q1Λ], tr[Q2Λ], . . . ,− tr[QmΛ])

− tr[Q0Λ]− δ

)}
− epiSK


.

Proof. (=⇒) We see that F(K) ⊂ {x ∈ Rm : ⟨c, x⟩ − γ ≥ 0}. We define real-valued function
Γ : Rm → R as Γ(x) = ⟨c, x⟩ − γ. Thanks to continuity of Γ and proposition 2.1, one has

(0, 0) ∈ epi(Γ + IF(K))
∗ = epi Γ∗ + epi I∗

F(K) = (c, γ) + {0} × R+ + epi I∗
F(K).

This implies that

(c, γ) ∈ − epi I∗
F(K) − {0} × R+.(2.1)

It follows from cl(conv(D)) = − epi I∗
F that

− epi I∗
F(K) = − epiSF∩K = − cl(epiSF + epiSK)

= cl(− epi I∗
F − epiSK) = cl (cl(conv(D))− epiSK)

= cl (conv(D)− epiSK) = cl (conv(D − epiSK))

= cl(conv(D(K))).

Applying (2.1), this gives that

(c, γ) ∈ D(K) := cl (conv(D − epiSK)) .

(⇐=) Let z ∈ F(K). Since (c, γ) ∈ cl (conv(D − epiSK)) = − epiSF(K), one has

(−c,−γ) ∈ epiSF(K) =⇒ sup
y∈F(K)

⟨−c, y⟩ ≤ −γ

=⇒ ⟨c, z⟩ ≥ γ.

□

Remark 2.2. If K = Rm in Lemma 2.1, then epiSK = {0}×R+. Thus, Lemma 2.1 reduces
to Lemma 2.1 in [17].

Using Lemma 2.1, we can derive the ε-approximate optimality condition for robust
convex semidefinite programming, given that D(K) is a closed and convex cone.
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Lemma 2.2. [Optimality Theorem for ε-Approximation Robust Solutions] Let x̃ ∈ F(K)
and ε > 0. We suppose further that D(K) is closed and convex cone. Then, x̃ ∈ Solε(RSDP) if
and only if there exist ε0 ≥ 0, ε1 ≥ 0, ṽ ∈ ∂ϵ0φ(x̃) + Nε1(K, x̃), Λ̃ ∈ Sn+ and Q̃i ∈ Ui, ∀i ∈ I
such that

ṽ =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and(Condition R)

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

Proof. Let ε ≥ 0. Since x̃ ∈ Solε(RSDP), one has

φ(x̃) ≤ φ(y) + ε, for all y ∈ F(K).

That is, φ(x̃) + IF(K)(x) ≤ φ(x) + IF(K)(x) + ε, for all x ∈ Rm. By the concept of ε-
subdifferential, it can be rewritten as, 0 ∈ ∂ε

(
φ+ IF(K)

)
(x̃) . Then, by Proposition 2.2,

there exist non-negative real numbers ε0, ε
′ with ε = ε0 + ε′, ṽ ∈ ∂ε0φ(x̃) and −ṽ ∈

∂ε′IF(K)(x̃). Then, by Lemma 2.1 and D(K) is closed and convex cone one has(
ṽ

⟨ṽ, x̃⟩ − ε′

)
∈

⋃
Qi∈Ui,i∈I

(Λ,α)∈Sn
+

×R+

{(
(tr[Q1Λ], tr[Q2Λ], . . . , tr[QmΛ])

− tr[Q0Λ]− δ

)}
− epiSK .

Thus there exists (Λ̃, δ̃) ∈ Sn+ × R+, Q̃i ∈ Ui, i ∈ I and c̃ ∈ dom SK such that

ṽ =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
− c̃

⟨ṽ, x̃⟩ − ε′ = − tr[Q̃0Λ̃]− δ̃ − SK(c̃).

We then have that

ε′ = ⟨ṽ, x̃⟩+ tr[Q̃0Λ̃] + δ̃ + SK(c̃)

=
〈(

tr[Q̃1Λ̃], tr[Q̂2Λ̃], . . . , tr[Q̂mΛ̃]
)
, x̃
〉
− ⟨c̃, x̃⟩

+ tr[Q̃0Λ̃] + δ̃ + SK(c̃)

= tr

[(
m∑
i=1

x̃iQ̃i

)
Λ̃

]
+ tr[Q̃0Λ̃]− ⟨c̃, x̃⟩+ δ̃ + SK(c̃)

= tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
+ ε1,

where ε1 = SK(c̃)− ⟨c̃, x̃⟩+ δ̃ ≥ 0. It means that, for any y ∈ K

⟨c̃, y − x̃⟩ = ⟨c̃, y⟩ − ⟨c̃, x̃⟩ = ⟨c̃, y⟩+ ε1 − SK(c̃)− δ̃ ≤ ε1.

This implies that c̃ ∈ Nε1(K, x̃), hence we have desired.
On the other hand, we assume there exist ε0 ≥ 0, ε1 ≥ 0, ṽ ∈ ∂ϵ0φ(x̃) + Nε1(K, x̃),

Λ̃ ∈ Sn+, and Q̃i ∈ Ui, ∀i ∈ I such that

ṽ =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.
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Then ṽ = u+ w for some u ∈ ∂ε0φ(x̃) and w ∈ Nε1(K, x̃). We have that

φ(y)− φ(x̃) ≥ ⟨u, y − x̃⟩ − ε0, ∀y ∈ Rm,

⟨w, y − x̃⟩ ≤ ε1, ∀y ∈ K.

Thus, for any y ∈ K,

φ(y)− φ(x̃)− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]

≥ ⟨u, y − x̃⟩ − tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− ε0

=
〈
−w +

(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
, y − x̃

〉
− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− ε0

= ⟨−w, y − x̃⟩+
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, y − x̃

〉
− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− ε0

≥ −ε1 +
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, y − x̃

〉
− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− ε0

=
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, y
〉
− ε0 − ε1

−
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, x̃
〉
− tr

[
Q̃0Λ̃

]
− tr

[(
m∑
i=1

yiQ̃i

)
Λ̃

]

= tr

[(
m∑
i=1

yiQ̃i

)
Λ̃

]
− tr

[(
m∑
i=1

x̃iQ̃i

)
Λ̃

]

− tr[Q̃0Λ̃]− tr

[(
m∑
i=1

yiQi

)
Λ̃

]
− ε0 − ε1

= − tr

[(
Q̃0 + Λ̃

m∑
i=1

x̃iQi

)
Λ̃

]
− ε0 − ε1 = −ε.

(2.2)

Thus

φ(x̃) + tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≤ φ(y) + ε for all y ∈ K.

Thanks to tr
[(

Q̃0 +
∑m

i=1 yiQ̃i

)
Λ̃
]
≥ 0, ∀y ∈ F(K), Hence,

φ(x̃) ≤ φ(y) + ε, ∀y ∈ F(K).

Hence, x̃ is a minimizer of ε-approximate solution of (RSDP). □

Remark 2.3. (1) When K = Rm in Lemma 2.2, the set epiSK = {0} ×R+ and for any
ε ≥ 0 and u ∈ Rm, the set Nε(K,u) = {0}. Hence, Lemma 2.2 covers Lemma 3.1
from [17].
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(2) For any i ∈ I , suppose Ui is a singleton set contained in Sn. Problem (RSDP)
covers convex semidefinite programming, as studied by Lee and Lee in [16], which
examines approximate duality conditions.

2.2. ε-approximate duality for RSDP. We provide a robust strong duality theorem for
the primal problem RSDP and its Lagrangian dual problem, which is formulated in terms
of the robust characteristic cone D(K). Specifically, The concept of strong duality asserts
that the optimal solutions for both the primal and dual problems are equivalent in value.

Let U := U0 × U1 × . . . × Um =

m∏
i=0

Ui and Q ∈ U means that for each i ∈ I , Qi ∈ Ui,

Q = (Q1, Q2, . . . , Qm). We define mapping Φ : Sn+ × U → R as

Φ (Λ, Q) = inf

{
φ(z)− tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
: z ∈ K

}
.

The Lagrangian dual problem of RSDP is given as follows.

(RSDD) max
{
Φ (Λ, Q) : (Λ, Q) ∈ Sn+ × U

}
,

The notation sup (RSDD) represents the maximum achievable value of problem RSDDs.
We say that strong duality holds for problem (RSDP) if inf (RSDP) = sup (RSDD)

The following lemma demonstrates that when the characteristic cone D(K) satisfies
the conditions of being a closed and convex cone, the strong duality between RSDP and
RSDD is valid.

Proposition 2.5. [Strong duality theorem] Assume that F(K) ̸= ∅ and D(K) is a closed and
convex cone. Then, inf (RSDP) = sup (RSDD).

Proof. [Weak duality] Let x := (x1, . . . , xm) ∈ F(K). Then

Q0 +

m∑
i=1

xiQi ⪰ 0, ∀Qi ∈ Ui, i ∈ I.

For each (Λ, Q) ∈ Sn+ × U , we see that tr [(Q0 +
∑m

i=1 xiQi) Λ] ≥ 0. This implies that

φ(x)− tr

[(
Q0 +

m∑
i=1

xiQi

)
Λ

]
≤ φ(x).

Thus,

Φ (Λ, Q) = inf
x∈K

{
φ(x)− tr

[(
Q0 +

m∑
i=1

xiQi

)
Λ

]}
≤ inf

x∈K
φ(x).

Hence, sup (RSDD) ≤ inf (RSDP).
[Strong duality] If inf (RSDP) = −∞, then inf (RSDP) ≤ sup (RSDD) holds. Since

F(K) ̸= ∅, inf (RSDP) < ∞. Let Φ(x) = φ(x)− inf (RSDP) for all x ∈ Rm. This means that
x ∈ F(K) ⇒ Φ(x) ≥ 0. From our hypothesis,

(0, 0) ∈ epiΦ∗ − cl(conv(D(K)))

= (0, inf (RSDP)) + epiφ∗ − cl(conv(D(K)))

= (0, inf (RSDP)) + epiφ∗ −D(K)

= (0, inf (RSDP)) + epiφ∗ + epi I∗
F(K).



Characterizations of ε-Approximate Solutions for Robust Convex Semidefinite Programming Problems 501

Thus, there exist (z, δ) ∈ epiφ∗ and (−z,−δ − inf (RSDP)) ∈ epi I∗
F(K). This gives us that,

there exist (Λ, Q) ∈ Sn+ × U such that, for each y ∈ K,

−φ(y) + tr

[(
Q0 +

m∑
i=1

yiQi

)
Λ

]
= ⟨z, y⟩ − φ(y) + ⟨−z, y⟩+ tr

[(
Q0 +

m∑
i=1

yiQi

)
Λ

]

= ⟨z, y⟩ − φ(y) + ⟨−z, y⟩ − tr

[
−

(
Q0 +

m∑
i=1

yiQi

)
Λ

]
≤ φ∗(z) + I∗

F(K)(−z)

≤ δ + (−δ − inf (RSDP)) = − inf (RSDP).

This implies that

max
(Λ,Q)∈Sn+×U

{
inf
y∈K

{
φ(y)− tr

[(
Q0 +

m∑
i=1

yiQi

)
Λ

]}}
≥ inf (RSDP).

Therefore, sup (RSDD) ≥ inf (RSDP). □

Before we move to the next section let’s recall some concepts of ε-Kuhn-Tucker vector
which will be used in our main result. Building upon the concept of ε-Kuhn-Tucker vector
introduced by Scovel et al. [21] for convex optimization problems, we adapt its use to the
case of robust convex semidefinite programming problems. We also introduce the concept
of ε-approximate solutions for RSDD and ε-saddle points for RSDP, and investigate the
relationship between these solution sets.

Let ε > 0. An array (Λ̃, Q̃) ∈ Sn+ × U is said to be ε-Kuhn-Tucker vector for (RSDP) if

Φ(Λ̃, Q̃) ≥ inf (RSDP) − ε.

An array (Λ̃, Q̃) ∈ Sn+ × U is said to be ε-approximate solution of (RSDD) if

Φ(Λ̃, Q̃) ≥ sup (RSDD) − ε.

An array (x̃, Λ̃, Q̃) ∈ K × Sn+ × U is said to be ε-saddle point for (RSDP) if

φ(x̃)− tr

[(
Q0 +

m∑
i=1

x̃iQi

)
Λ

]
− ε ≤ φ(x̃)− tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]

≤ φ(y)− tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
+ ε,(RSPε)

for all (y,Λ, Q) ∈ K × Sn+ × U .
The set of ϵ-approximate solutions for (RSDD), the set of all robust ε-Kuhn-Tucker vec-

tors for (RSDP), and the set of all robust ε-saddle points are denoted by Solε(RSDD), RKTε,
and RSadε, respectively.

Remark 2.4. Verifying that RKTε ⊆ Solε(RSDD) is not difficult, as weak duality holds.

The following lemma establishes an equality relationship between Solε(RSDD) and
RKTε, assuming that strong duality holds.

Lemma 2.3. Assume that strong duality for RSDP and RSDD holds. Given ε > 0. Then,

Solε(RSDD) = RKTε.
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Proof. It suffices to show that Solε(RSDD) ⊆ RKTε. Let (Λ, Q) ∈ Solε(RSDD). Then we
have

sup (RSDD) ≤ Φ(Λ, Q) + ε.

Strong duality implies that inf (RSDP) = sup (RSDD) ≤ Φ(Λ, Q) + ε. Therefore, (Λ, Q) ∈
RKTε. □

Proposition 2.6. Assume that (Λ̃, Q̃) ∈ Sn+ × U satisfies the Condition R corresponding to the
ε-approximate solution x̃ of (RSDP). Suppose further that strong duality holds. Then, (Λ̃, Q̃) ∈
RKTε.

Proof. Since (Λ̃, Q̃) satisfies the Condition R corresponding x̃, there exist ε0 ≥ 0, ε1 ≥ 0
and ṽ ∈ ∂ϵ0(x̃) +Nε1(K, x̃) such that

ṽ =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

Thus, there exists u+ ṽ ∈ ∂ϵ0φ(x̃) such that −u ∈ Nε1(C, x̃). We get

φ(y)− φ(x̃) ≥ ⟨u+ ṽ, y − x̃⟩ − ε0, ∀y ∈ K.

This argues that

φ(y)− φ(x̂)− ⟨ṽ, y − x̃⟩ ≥ ⟨u, y − x̃⟩ − ε0, ∀y ∈ K.

Since −u ∈ Nε1(K, x̃), we have that

φ(y)− φ(x̃)− ⟨ṽ, y − x̃⟩ ≥ −ε0 − ε1, ∀y ∈ K.

Hence,

φ(y)− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− φ(x̃) ≥ − tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
− ε0 − ε1

= −ε, ∀y ∈ K.

Therefore,

φ(x̃) ≤ φ(y)− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
+ ε for all y ∈ K.

By the virtue of weak duality, one has

Φ (Λ, Q) ≤ inf
x∈K

φ(x) = φ(x̃), for all (Λ, Q) ∈ Sn+ × U .

This gives that

Φ (Λ, Q)− ε ≤ φ(x̃) ≤ φ(y)− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
for all y ∈ K.

Then, for all (Λ, Q) ∈ Sn+ × U ,

Φ(Λ̃, Q̃) = inf
y∈K

{
φ(y)− tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]}
≥ Φ(Λ, Q)− ε.

Thus, (Λ̃, Q̃) is an ε-solution of (RSDD). It follows from Lemma 2.3 that (Λ̃, Q̃) is also a
point in RKTε. □
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3. CHARACTERIZATION FOR ε-APPROXIMATE SOLUTION SETS

This section focuses on characterizing ε-approximate solutions for robust convex
semidefinite programming problems. To achieve this, we introduce a following lemma
that will be instrumental in the characterization process.

Lemma 3.4. Let ε ≥ 0 and x̃ be an ε-solution of (RSDP). Assume that Condition R holds. Then,
there exists an array (Λ̃, Q̃) ∈ Sn+ × U such that

(3.3) φ(x̃) + tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≤ φ(y) + ε for all y ∈ K.

Proof. We assume that the Condition R holds, there exist ε0 ≥ 0, ε1 ≥ 0 and array (Λ̃, Q̃) ∈
Sn+ × U such that(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
∈ ∂ε0φ(x̃) +Nε1(K, x̃),

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

Applying the equation (2.2) of Lemma 2.2, the result is complete. □

Remark 3.5. (i) It follows from inequality (3.3) that

0 ≤ tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
≤ ε.

(ii) For any x̃ ̸= x̂ ∈ Solε(RSDP), inequality (3.3) implies

φ(x̃)− φ(x̂) + tr

[(
Q̃0 +

m∑
i=1

x̂iQ̃i

)
Λ̃

]
≤ ε.

Therefore, 0 ≤ tr
[(

Q̃0 +
∑m

i=1 x̂iQ̃i

)
Λ̃
]
≤ 2ε.

Lemma 3.5. Let x̃ ∈ F(K). If there exists an array (Λ̃, Q̃) ∈ Sn+ × U such that

φ(x̃) + tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≤ φ(y) + ε, ∀y ∈ K,

then x̃ ∈ Solε(RSDP).

Proof. For feasible solution x̃ = (x̃1, x̃2, . . . , x̃m) ∈ F(K) ⊆ K, we get

Q̃0 +

m∑
i=1

x̃iQ̃i ⪰ 0 ⇒ tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
≥ 0.

Thus, for any y ∈ F(K) ⊆ K,

φ(x̃) ≤ φ(x̃) + tr

[(
F̃0 +

m∑
i=1

x̃iF̃i

)
Λ̃

]
≤ φ(y) + ε.

Hence, x̃ ∈ Solε(RSDP). □

It’s important to note that the array (Λ̃, Q̃) mentioned above is not the only possible
array for an ε-approximate solution x̃. The collection of all arrays (Λ̃, Q̃) that correspond
to x̃ and satisfy the Condition R will be referred to as RMε(x̃).
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Lemma 3.6. Assume that x̃ ∈ Solε(RSDP) and (Λ̃, Q̃) ∈ RMε(x̃). Then an array (x̃, Λ̃, Q̃) is a
solution of (RSPε).

Proof. Let (Λ̃, Q̃) ∈ RMε(x̃). It follows from Lemma 3.4 that

(3.4) φ(x̃) + tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≤ φ(y) + ε, ∀y ∈ K.

Since

{(
Q̃0 +

m∑
i=1

x̃iQ̃1

)
, Λ̃

}
⊂ Sn+, one has tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃1

)
Λ̃

]
≥ 0.

Thus, for any y ∈ K,

(3.5) φ(x̃) + tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≤ φ(y) + ε+ tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
.

Remark 3.5 (i) gives that, 0 ≤ tr

[(
Q̃0 + x̃i

m∑
i=1

Q̃i

)
Λ̃

]
≤ ε. Combining with (3.4) and

(3.5), one has for each (y,Λ, Q) ∈ K × Sn+ × U ,

φ(x̃)− tr

[(
Q0 +

m∑
i=1

x̃iQi

)
Λ

]
− ε ≤ φ(x̃)− ε

≤ φ(x̃)− tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]

≤ φ(y)− tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
+ ε.

□

We will introduce a technique for deriving the set of ε-approximate solutions of (RSDP).
To define the set of ε-approximate solutions for the positive semidefinite matrix Λ, we will
utilize the following lemmas.

Lemma 3.7. Given ε > 0.

(i) Let x̃ ∈ Solε(RSDP). Then, there exist ε0 ∈ [0, ε], ũ ∈ ∂ε0f(x̃) and array (Λ̃, Q̃) ∈ Sn+ × U
such that

⟨ũ, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, ∀y ∈ K.

(ii) For ε0 ∈ [0, ε] and x̃ ∈ F(K). If there exist ũ ∈ ∂ε0f(x̃) and array (Λ̃, Q̃) ∈ Sn+ × U such
that

⟨ũ, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, ∀y ∈ K,

then x̃ ∈ Solε(RSDP).
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Proof. (i) Let x̃ ∈ Solε(RSDP). It follows from Condition R, there exist ε0 ≥ 0, ε1 ≥ 0

and array (Λ̃, Q̃) ∈ Sn+ × U such that

ṽ :=
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
∈ ∂ε0φ(x̃) +Nε1(K, x̃) and

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

So, there exist ũ ∈ ∂ε0f(x̃) with −ũ+ ṽ ∈ Nε1(K, x̃). This implies that

⟨ũ− ṽ, y − x̃⟩ ≥ −ε1 = ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
,

for all y ∈ K. Since ṽ :=
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
, the above inequality is

equivalent to

⟨ũ, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, for all y ∈ K.

(ii) Let ε0 ∈ [0, ε] and x̃ ∈ A. By our hypothesis, there exist ũ ∈ ∂ε0f(x̃) and array
(Λ̃, Q̃) ∈ Sn+ × U such that

⟨ũ, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, for all y ∈ K.

Since ũ ∈ ∂ε0φ(x̃), one has

φ(y)− φ(x̃) ≥ ⟨ũ, y − x̃⟩ − ε0, for all y ∈ K.

Notice that tr
[(

Q̃0 +
∑m

i=1 yiQ̃i

)
Λ̃
]
≥ 0, for each y = (y1, y2, . . . , ym) ∈ F(K). This

gives that

φ(y)− φ(x̃) ≥ ⟨ũ, y − x̃⟩ − ε0

≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
− ε0

= −ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
≥ −ε, for all y ∈ F(K).

Therefore, x̃ ∈ Solε(RSDP).
□

Given ε > 0 and ε′ ∈ [0, ε]. The ε-approximate solution set of (RSDP) corresponding to
(Λ̃, Q̃, ε′) is denoted Sol(Λ̃, Q̃, ε′). That is,

Sol(Λ̃, Q̃, ε′) =


x̃ ∈ F(K)

∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ ∂ε′f(x̃),

⟨u, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, ∀y ∈ F(K),

0 ≤ tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
≤ 2ε


.
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Set

Solε(Λ̃, Q̃) :=
⋃
ε′≥0

0≤ε′≤ε

Sol(Λ̃, Q̃, ε′).

It is clear that Solε(Λ̃, Q̃) ⊆ Solε(RSDP).

Theorem 3.1. Assume that strong duality between RSDP and RSDD holds. Let ε > 0, then

Solε(RSDP) =
⋃

(Λ,Q)∈RKTε

Solε (Λ, Q) ,

where

Solε (Λ, Q) =
⋃

0≤ε′≤ε

Solε (Λ, Q, ε′) .

That is,

Solε(RSDP) =

(3.6)

⋃
(Λ,Q)∈RKTε

⋃
0≤ε′≤ε


z ∈ F(K)

∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ ∂ε′f(z),

⟨v, y − z⟩ ≥ ε0 − ε+ tr

[(
Q0 +

m∑
i=1

yiQi

)
Λ

]
, ∀y ∈ F(K),

0 ≤ tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
≤ 2ε


.

Proof. Let x̃ ∈ Solε(RSDP). It follows from Lemma 3.7 (i) that there exist ε0 ∈ [0, ε],
ṽ ∈ ∂ε0f(x̃) and (Λ̃, Q̃) ∈ Sn+ × U such that

⟨ṽ, y − x̃⟩ ≥ ε0 − ε+ tr

[(
Q̃0 +

m∑
i=1

yiQ̃i

)
Λ̃

]
, ∀y ∈ K.

Thus, x̃ ∈ Sol(Λ̃, Q̃, ε0) and then Solε(Λ̃, Q̃). By Proposition 2.6, one has (Λ̃, Q̃) ∈ RKTε.
This implies that

Solε(RSDP) ⊂
⋃

(Λ,Q)∈RKTε

Solε (Λ, Q) .

Conversely, let x̃ ∈
⋃

(Λ,Q)∈RKTε
Solε (Λ, Q). Then, then there exist (Λ̃, Q̃) ∈ RKTε and

0 ≤ ε′ ≤ ε such that x̂ ∈ Sol(Λ̃, Q̃, ε′). Since (Λ̃, Q̃) ∈ RKTε = Solε(RSDD), one has

(Λ̃, Q̃) ∈ Sn+ × U .

By Lemma 3.7 (ii), x̂ is an ε-solution of (RSDP). □

Remark 3.6. Since the problem (RSDP) is finite, for any minimizing sequence {xk} ∈
F(K) such that φ(xk) → inf (RSDP), the formula (3.6) can be rewritten by the following
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formula.

Solε(RSDP) =

⋃
(Λ,Q)∈RKTε

⋃
0≤ε′≤ε


z ∈ F(K)

∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ ∂ε′f(z),

⟨v, xk − z⟩ ≥ ε0 − ε+ tr

[(
Q0 +

m∑
i=1

x(i,k)Qi

)
Λ

]
, ∀k ∈ N,

0 ≤ tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
≤ 2ε


.

Example 3.1. Consider the following robust convex semidefinite programming:

Minimize x1 + x2
2,(P1)

subject to Q0 + x1Q1 + x2Q2 ⪰ 0,∀Qi ∈ Ui, i = 0, 1, 2,

(x1, x2) ∈ R2
+,

where

U0 =


u0 0 0

0 0 0
0 0 0

 : u0 = 1

 , U1 =


0 0 0
0 0 u1

0 u1 0

 : u1 ∈ [−1, 1]

 and

U2 =


u2 0 0

0 0 0
0 0 0

 : u2 ∈ [0, 1]

 .

Thus, we have that

Q0 + x1Q1 + x2Q2 =

1 + u2x2 0 0
0 0 u1x1

0 u1x1 0

 .

We observe that the set of robust feasible solutions for the convex semidefinite problem
(P1) is given by

{x := (x1, x2) ∈ R2 : x1 = 0 and x2 ≥ 0},
from which we can immediately conclude that inf (P1) = 0. Furthermore, we have that

Solε(P1) :=
{
(0, x2) : 0 ≤ x2 ≤

√
ε
}
.

We can express the dual problem of (P1) in the following manner, where Λ := [λij ] ∈ S3+
and Qi ∈ Ui for i = 0, 1, 2.

Φ(Λ, Q0, Q1, Q2)

= inf
(x1,x2)∈R2

+

{f(x)− tr [(Q0 + x1Q1 + x2Q2) Λ]}

= inf
(x1,x2)∈R2

+

{
x1 + x2

2 − [λ11(1 + u2x2) + λ23u1x1 + λ32u1x1]
}

= inf
(x1,x2)∈R2

+

{
x1 + x2

2 − λ11(1 + u2x2)− 2λ23u1x1

}
= inf

(x1,x2)∈R2
+

{
(1− 2λ23u1)x1 + x2

2 − λ11u2x2 +
(λ11u2)

2

4
− (λ11u2)

2

4
− λ11

}

= inf
(x1,x2)∈R2

+

{
(1− 2λ23u1)x1 +

[
x2 −

(λ11u2)
2

2

]2
− (λ11u2)

2

4
− λ11

}
.
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This implies that

Φ(Λ, Q0, Q1, Q2) =

{
− (λ11u2)

2

4 − λ11, if λ11 ≥ 0 and 0 ≤ λ23 ≤ 1
2 ,

−∞, if otherwise.

The following Lagrangian dual problem of (P1) is

max
(Λ,Q0,Q1,Q2)∈S3+×

∏2
i=0 Ui

Φ(Λ, Q0, Q1, Q2).(D1)

Hence, sup (D1) = 0, so we have that the strong duality holds. Moreover,

Sol(D1) =
{
(Λ, Q0, Q1, Q2) ∈ S3+ × U0 × U1 × U2 : λ11 = 0 and 0 ≤ λ23 ≤ 1

2

}
,

where Λ =

λ11 λ12 λ13

λ12 λ22 λ23

λ13 λ23 λ33

.

Let ε = 1
4 , the ε-appproximate solution set of (D1) is

Sol 1
4

(D1) =

(Λ, Q0, Q1, Q2) ∈ S3
+ × U0 × U1 × U2

∣∣∣∣∣∣∣∣
0 ≤ λ23 ≤ 1

2
and

λ11 ∈

0, −2+2

√
1+

u2
2
4

u2
2

 , where u2 ∈ (0, 1].

 .

Lemma (2.3) gives that Sol 1
4

(D1) = RKT 1
4

. For minimizing sequence {(x(1,k), x(2,k))} :=

{(0, 1
k )}, one has

Sol 1
4

(P1) =

(3.7)

⋃
(Λ,Q0,Q1,Q2)∈RKT 1

4

⋃
0≤ε′≤ 1

4


z ∈ F(K)

∣∣∣∣∣∣∣∣∣∣∣∣

v ∈ ∂ε′f(z),

⟨v, xk − z⟩ ≥ ε′ − ε+ tr

[(
Q0 +

m∑
i=1

x(i,k)Qi

)
Λ

]
∀k ∈ N,

0 ≤ tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
≤ 1

2


.

For z = (0, z2) ∈ F(K), we notice that

∂ε′f(z1, z2) = {1} ×
[
2z2 − 2

√
ε′, 2z2 + 2

√
ε′
]
.

If we take any v = (1, 2z2+2t
√
ε′) ∈ ∂ε′f(z1, z2), where t ∈ [−1, 1], then the first inequality

in (3.7) can be inferred

(2z2 + 2t
√
ε′)(x(2,k) − z2) = (1, v2)

(
0− 0

x(2,k) − z2

)
= ⟨v, xk − z⟩

≥ ε′ − ε+ tr

[(
Q0 +

2∑
i=1

x(i,k)Qi

)
Λ

]
= ε′ − ε+ 2λ23u1x(1,k) + λ11(1 + u2x(2,k))

= ε′ − ε+ λ11(1 + u2x(2,k)).
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Consequently,

(2z2 + 2t
√
ε′)(x(2,k) − z2) ≥ ε′ − 1

4
+ λ11(1 + u2x(2,k)).

For minimizing
{
(0, 1

k )
}

give that

(2z2 + 2t
√
ε′)

(
1

k
− z2

)
≥ ε′ − 1

4
+ λ11

(
1 + u2

1

k

)
.

Taking k → +∞ gives us

(2z2 + 2t
√
ε′)(−z2) ≥ ε′ − 1

4
+ λ11.

It implies that

2z22 + 2t
√
ε′z2 − ε′ +

1

4
− λ11 = (2z2 + 2t

√
ε′)(z2)− ε′ +

1

4
− λ11 ≤ 0.

From above inequality, one has

z2 ∈

[
−2t

√
ε′ − α

4
,
−2t

√
ε′ + α

4

]
, where α =

√
(2t

√
ε′)2 − 4(2)(−ε′ +

1

4
− λ11).

So that

z2 ∈

[
0,

−4t
√
ε′ +

√
16t2ε′ − 8 + 32ε′ + 32λ11)

8

]
.(3.8)

The second inequality in (3.7) implies that

0 ≤ tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
= 2λ23u1z1 + λ11(1 + u2z2) ≤

1

2
,

and so

0 ≤ λ11(1 + u2z2) ≤
1

2
(3.9)

For any ε′ ∈
[
0, 1

4

]
, λ11 ∈

0, −2+2

√
1+

u2
2
4

u2
2

 and u2 ∈ (0, 1], the union of sets satisfying

(3.8) and (3.9) is
[
0, 1

2

]
.

4. ROBUST SEMIDEFINITE LINEAR PROGRAMMING

The following represents a mathematical formulation of the robust semidefinite linear
programming problem [9].

Minimize cTx,

subject to Q(x) := Q0 +

m∑
i=1

xiQi ⪰ 0,(RSDLP)

∀Qi ∈ Ui, i ∈ I.

This model is a special case of RSDP, where K = Rm and φ(x) = cT (x) for all x ∈ Rm.
Given ε ≥ 0, x̃ ∈ F is said to be an ε-approximate solution of RSDLP if ⟨c, x̂ − y⟩ ≤ ε for
all y ∈ F . Let Solε(RSDLP) denote ε-approximate solution set of RSDLP. The Lagrangian
dual problem for RSDLPs is defined as follows:

max
(Λ,Q)∈Sn+×U

{− tr [Q0Λ] : (tr[Q1Λ], tr[Q2Λ], . . . , tr[QmΛ]) = c} .
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We assume D is closed and convex cone for strong duality of RSDLP and its Lagrangian
dual problem.

Corollary 4.1. Given ε > 0. Suppose further that Condition R holds for problem RSDLP.

(i) If x̃ ∈ Solε(RSDLP), then there exist ε0 ∈ [0, ε] and array (Λ̃, Q̃) ∈ Sn+ × U such that

c =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and ε0 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

(ii) For ε0 ∈ [0, ε] and x̃ ∈ F , if there exist an array (Λ̃, Q̃) ∈ Sn+ × U such that

c =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and ε0 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε,

then x̃ ∈ Solε(RSDLP).

Proof. (i) Since x̃ is an ε-approximate solution of (RSDLP), for any y ∈ F
⟨c, x̃⟩ ≤ ⟨c, y⟩+ ε.

It follows from Lemma 2.2 that there exist ε0 ≥ 0, ε1 ≥ 0, ṽ ∈ ∂ϵ0cx̃ + Nε1(Rm, x̃),
and (Λ̃, Q̃) ∈ Sn+ × U such that

ṽ =
(
tr[Q̃1Λ̃], tr

[
Q̃2Λ̃

]
, . . . , tr[Q̃mΛ̃]

)
and

ε0 + ε1 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

This means that there exist ε0 ≥ 0 and (Λ̃, Q̃) ∈ Sn+ × U such that

c =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and ε0 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

(ii) Let ε0 ∈ [0, ε] and x̃ ∈ F . Suppose that there exist an array (Λ̃, Q̃) ∈ Sn+ ×U such that

c =
(
tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]

)
and ε0 + tr

[(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
Λ̃

]
= ε.

Since tr

[(
Q̃0 +

m∑
i=1

xiQ̃i

)
Λ̃

]
≥ 0, for every y ∈ F , one has

⟨c, y⟩ − ⟨c, x̃⟩ =
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, x
〉

−
〈(

tr[Q̃1Λ̃], tr[Q̃2Λ̃], . . . , tr[Q̃mΛ̃]
)
, x̃
〉

=

〈
m∑
i=1

yiQ̃i, Λ̃

〉
+
〈
Q̃0, Λ̃

〉
−
〈
Q̃0, Λ̃

〉
−

〈
m∑
i=1

yiQ̃i, Λ̃

〉

=

〈(
Q̃0 +

m∑
i=1

yiQ̃i

)
, Λ̃

〉
− tr

〈(
Q̃0 +

m∑
i=1

x̃iQ̃i

)
, Λ̃

〉
≥ −ε+ ε0 ≥ −ε.

Thus,
⟨c, x̃⟩ ≤ ⟨c, y⟩+ ε, ∀y ∈ F .

That is, x̃ ∈ Solε(RSDLP).
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□

From Corollary 4.1, we immediately obtain the following result for characterization of
ε-approximate solution set for RSDLPs.

Corollary 4.2. Given ε ≥ 0, one has

Solε(RSDLP) =
⋃

(Λ,Q)∈RKTε

⋃
0≤ε′≤ε

z ∈ F

∣∣∣∣∣∣∣
c = (tr[Q1Λ], tr[Q2Λ], . . . , tr[QmΛ]) ,

tr

[(
Q0 +

m∑
i=1

ziQi

)
Λ

]
= ε− ε′

 .

We now give the following example to illustrate Corollary 4.2.

Example 4.2. Consider the following robust semidefinite linear programming with un-
certainty data:

Minimize x1 + x2,(P2)

subject to

u2x2 u1x1 0
u1x1 0 0
0 0 1

 ⪰ 0,

where

U0 =


0 0 0
0 0 0
0 0 u0

 : u0 = 1

 , U1 =


 0 u1 0
u1 0 0
0 0 0

 : u1 ∈ [−1, 1]


and U2 =


u2 0 0

0 0 0
0 0 0

 : u2 ∈ [0, 1]

 .

Thus, the feasible solution for problem (P2) is {(0, x2) : x2 ≥ 0}, and so the optimal
valued is 0.

The Lagrangian dual problem for problem (P2) is defined as follows:

max

(Λ,Q0,Q1,Q2)∈S3+×

2∏
i=0

Ui

{− tr [Q0Λ] : (tr[Q1Λ], tr[Q2Λ]) = (1, 1)}(D2)

= max

(Λ,Q0,Q1,Q2)∈S3+×

2∏
i=0

Ui

{−λ33 : (2u1λ12, u2λ11) = (1, 1)}

= 0,

where Λ =

λ11 λ12 λ13

λ12 λ22 λ23

λ13 λ23 λ33

. Hence, strong duality holds. For any ε ≥ 0, the ε-

approximate solution is {(0, z2) : 0 ≤ z2 ≤ ε}. If ε = 2, then

Sol2(D2) =
{
(Λ, Q0, Q1, Q2) ∈ S3+ ×

2∏
i=0

Ui : (2u1λ12, u2λ11) = (1, 1) and λ33 ∈ [0, 2]

}
,

and

RKT2(D2) =
{
(Λ, Q0, Q1, Q2) ∈ S3+ ×

2∏
i=0

Ui : (2u1λ12, u2λ11) = (1, 1) and λ33 ∈ [0, 2]

}
.
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Then,

Sol2(P2) =
⋃

(Λ,Q0,Q1,Q2)∈RKT2

⋃
0≤ε′≤2

{
z ∈ F

∣∣∣∣ (1, 1) = (2u1λ12, u2λ11) and
u2λ11z2 + 2u1λ12z1 + λ33 = 2− ε′

}

=
⋃

(Λ,Q0,Q1,Q2)∈RKT2

⋃
0≤ε′≤2

{
(0, z2) ∈ F

∣∣∣∣ (1, 1) = (2u1λ12, u2λ11) and
0 ≤ z2 = 2− ε′ − λ33

}
= {(0, z2) : 0 ≤ z2 ≤ 2} .

5. CONCLUSIONS

This article is focused on the characterization of ε-approximate solutions for convex
semidefinite programming problems that involve uncertainty data. The paper begins
by reviewing essential findings related to the optimality condition and duality of robust
convex semidefinite programming problems. It then establishes the optimality and
duality conditions for the problem by assuming specific constraint qualifications. The
study investigates ε-Kuhn-Tucker vectors and their relationships with optimal solutions,
maximizers of the corresponding Lagrangian dual problem, saddle points of the Lagrangian,
and Kuhn-Tucker vectors. Finally, the article describes the characterization of ε-approximate
solution sets for the problem, analyzing the connection between three sets: the set of
Lagrange multipliers corresponding to ε-approximate solutions, the set of ε-Kuhn-Tucker
vectors, and the set of approximate solutions for their Lagrangian dual problems. This
special characterization is seen due to the semidefinite structure of robust convex semidef-
inite programming problems. Additionally, the article examines the practical application
of the characterization of ε-approximate solution sets for semidefinite linear programming
problems with uncertain data. The characterization is illustrated using several examples.
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