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A parallel inertial SP-iteration monotone hybrid algorithm
for a finite family of G-nonexpansive mappings and its
application in linear system, differential, and signal
recovery problems

DAMRONGSAK YAMBANGWAI1 and TANAKIT THIANWAN2,∗

ABSTRACT. For solving a common fixed point of a finite family of G-nonexpansive mappings, we propose a
parallel inertial SP-iteration monotone hybrid algorithm (PISPMHA). Weak convergence theorem is established
for PISPMHA in Hilbert spaces endowed with graphs. Convergence behavior of PISPMHA is analyzed and dis-
cussed. As applications, we apply PISPMHA to solve linear system, differential, and signal recovery problems.

1. INTRODUCTION

Let H be a real Hilbert space with inner product ⟨., .⟩ and the induced by norm ∥.∥.
Let C be a nonempty subset of H. We identify the graph G with the pair (V (G), E(G)),
where the set V (G) of its vertices coincide with set C and the set of edges E(G) contains
∆ = {(x, x) : x ∈ C}, where the cartesian product C × C’s diagonal is denoted by ∆.
Additionally, no two edges of G are parallel. If a mapping T : C → C preserves the edges
of G (or if T is edge-preserving), it is said to be G-contraction, i.e.,

(x, y) ∈ E(G) ⇒ (T x, T y) ∈ E(G)

and the weights of G’s edges are reduced in the following manner by T : there exists
α ∈ (0, 1) such that

(x, y) ∈ E(G) ⇒ ∥T x− T y∥ ≤ α∥x− y∥.
A mapping T : C → C is said to be G-nonexpansive (see [3], Definition 2.3 (iii)) if T
preserves edges of G, i.e.,

(x, y) ∈ E(G) ⇒ (T x, T y) ∈ E(G),

and T non-increases weights of edges of G in the following way:

(x, y) ∈ E(G) ⇒ ∥T x− T y∥ ≤ ∥x− y∥.
We denote the fixed point set of a mapping T : H → H by F(T ) = {x ∈ H : T x = x} .

In 1922, Banach [9] proved the existence of unique fixed point for contractions in a
complete metric space. The most recent proof of the theorem used Banach spaces with
a graph G, where G = (V (G), E(G)) is a directed graph with all loops included in the
sets V (G) of its vertices and E(G) of its edges. By combination of the concepts in fixed
point theory and graph theory, Banach G-contraction was introduced by Jachymaski [21]
in complete metric space accompanied with the graph G where the set of vertex matches
with the metric space, also see e.g. [7], [12], [13], [14], [24], [27], [29], [31].
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In the last few decades investigations of fixed points by some iterative schemes for G-
contraction, G-nonexpansive and G-monotone nonexpansive mappings have been stud-
ied extensively by various authors (see [1], [2], [3], [30], [32] and the references cited
therein).

In 2017, Sridarat et al. [33] modified the SP-iteration process for three G-nonexpansive
mappings T1, T2 and T3 as follows:

(1.1)


zn = (1− γn)xn + γnT3xn,
yn = (1− βn)zn + βnT2zn,

xn+1 = (1− αn)yn + αnT1yn, n ≥ 0,

where {αn}, {βn} and {γn} are appropriate real sequences in [0, 1]. They studied the weak
and strong convergence of the iterative scheme (1.1) under proper conditions.

Glowinski and Le Tallec [18] used a three-step iterative strategy while studying elas-
toviscoplasticity, computing eigenvalues, and liquid crystal theory. It was shown in [18]
that the three-step iterative procedure produces superior numerical results than the esti-
mated iterations in two and one steps. In 1998, Haubruge, Nguyen, and Strodiot [20] in-
vestigated the convergence analysis of Glowinski and Le Tallec’s three-step methods [18],
and then used these methods to obtain new splitting-type algorithms for resolving vari-
ation inequalities, separable convex programming, and minimization of a sum of convex
functions. Additionally, they demonstrated that under some circumstances, three-step
iterations result in highly parallelized algorithms.

Other than that, many mathematicians have been interested in finding ways to accel-
erate the convergence of the algorithm. One such method is inertial extrapolation, which
was first put out by Polyak [28] as an acceleration procedure. Several convex minimiza-
tion issues based on the two-order in-time dynamical system’s heavy ball approach were
resolved using this methodology. Two iterative steps consist of inertial-type methods; the
second step is derived from the preceding two iterations. These techniques are dedicated
to being thought of as an effective strategy to deal with various iterative algorithms, par-
ticularly with the projection-based algorithms; for more information, refer to the works of
[4], [8], [11], [25], [38], [39], [42].

Suantai et al. [36], also, e.g. [37], recently presented the convergence of the algorithm
utilizing the shrinking projection technique with the parallel monotone hybrid method for
approximating common fixed points of a finite family of G-nonexpansive mappings, em-
ploying the notion of Anh and Hieu [5], [6]. The algorithm’s use has been made available
for signal recovery in circumstances when the kind of noise present is unknown.

The scheme is defined as follows: x1 ∈ C,C0 = C,

(1.2)


vin = αi

nxn + (1− αi
n)Tixn, i = 1, 2, ..., N,

in = argmax{
∥∥vin − xn

∥∥ : i = 1, 2, ..., N}, vn := vinn ,

Cn+1 = {v ∈ Cn : ∥v − vn∥ ≤ ∥v − xn∥},
xn+1 = PCn+1x1, n ≥ 1,

where {αi
n} ⊂ [0, 1] and lim infn→∞ αi

n(1 − αi
n) > 0 for all i = 1, 2, ... , N. vn is chosen by

the optimization all vin with xn. After that, the closed convex set Cn+1 was constructed by
vn. Finally, the next approximation xn+1 is defined as the projection of x1 on to Cn+1.

The main purpose of this paper is to construct a parallel inertial SP-iteration mono-
tone hybrid algorithm for approximating common fixed points of a finite family of G-
nonexpansive mappings in a Hilbert space endowed with a graph. This paper is orga-
nized as follows.
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Sect. 2 provides the fundamental concepts and a few lemmas needed to prove our main
result. Sect. 3 presents the main result. This part demonstrates the proposed method’s
weak convergence results under reasonable assumptions in a real Hilbert space endowed
with a graph. Section 4 uses our suggested approach to deal with several issues involving
linear systems, differential equations, and signal recovery.

2. GRAPH BASIC DEFINITIONS

In this section, we review certain basic concepts about the connectedness of graphs.
These notions can be found, for instance, in [22].

Suppose that x and y are vertices in a graph G. A path in G from x to y of length
N (N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1 vertices such that x0 = x, xN = y and
(xi, xi+1) ∈ E(G) for i = 0, 1, . . . N−1. If a path connects any two vertices in a graphG, the
graph is said to be connected. A directed graph G = (V (G), E(G)) is said to be transitive
if, for any x, y, z ∈ V (G) such that (x, y) and (y, z) are in E(G), we have (x, z) ∈ E(G).
The set of edges E(G) is said to be convex if (xi, yi) ∈ E(G) for all i = 1, 2, ..., N and
αi ∈ (0, 1) such that

∑N
i=1 αi = 1, then (

∑N
i=1 αixi,

∑N
i=1 αiyi) ∈ E(G). We denote G−1

the conversion of a graph G and

E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.
Suppose that x0 ∈ V (G) and A ⊆ V (G). We say that A is dominated by x0 if (x0, x) ∈

E(G) for all x ∈ A. A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).
In this study, the weak convergence is shown by the symbol ⇀. The following lemmas

are required in the inspection to support our main results.

Lemma 2.1 ([4]). Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that ψn+1 ≤
ψn + αn(ψn − ψn−1) + δn, for all n ≥ 1,

∑∞
n=1 δn < +∞ and there exists a real number a with

0 ≤ αn ≤ α < 1 for all n ≥ 1. Then the followings hold:
(i)

∑
n≥1[ψn − ψn−1] < +∞ where [t] = max{t, 0};

(ii) There exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.

Lemma 2.2 ([34]). Let X be a Banach space satisfying Opial’s condition and let {xn} be a se-
quence in X . Let u, v ∈ X be such that limn→∞ ∥xn − u∥ and limn→∞ ∥xn − v∥ exist. If {xnk

}
and {xmk

} are subsequences of {xn} which converge weakly to u and v, respectively, then u = v.

Lemma 2.3 ([35]). Let C be a nonempty, closed and convex subset of a Hilbert space H and
G = (V (G), E(G)) a directed graph such that V (G) = C. Let T : C → C be a G-nonexpansive
mapping and {un} be a sequence in C such that un ⇀ u for some u ∈ C. If there exists a
subsequence {unk

} of {un} such that (unk
, u) ∈ E(G) for all k ∈ N and {un − T un} → v for

some v ∈ H. Then (I − T )u = v.

3. MAIN RESULTS

For a finite family of G-nonexpansive mappings in Hilbert spaces with a graph, we are
now prepared to prove the weak convergence theorem for the parallel inertial SP-iteration
monotone hybrid algorithm (PISPMHA) in this section.

Theorem 3.1. Let H be a real Hilbert space and G = (V (G), E(G)) a transitive directed graph
such that E(G) is convex. Let Ti : H → H be a family of G-nonexpansive mappings for all
i = 1, 2, ..., N such that F = ∩N

i=1F (Ti) ̸= ∅. Suppose that {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and
{αi

n}, {βi
n}, {γin} ⊂ [0, 1].
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Algorithm 1 : Parallel inertial SP-iteration monotone hybrid algorithm (PISPMHA)

initialization: Take x0, x1 ∈ H. For n ≥ 1:
Compute

wn = xn + θn(xn − xn−1),

zin = (1− γin)wn + γinTiwn,

yin = (1− βi
n)z

i
n + βi

nTiz
i
n,

hin = (1− αi
n)y

i
n + αi

nTiy
i
n,

xn+1 = argmax{∥hin − wn∥, i = 1, 2, ..., N}.

Let {xn} and {wn} be the sequences generated by Algorithm 1 such that the following additional
conditions hold:
(i)

∑∞
n=1 θn ∥xn − xn−1∥ <∞ ;

(ii) {wn} is dominated by t and {wn} dominates t for all t ∈ F , and if there exists a subsequence
{wnk

} of {wn} such that {wnk
}⇀ u ∈ H, then ({wnk

}, u) ∈ E(G);
(iii) 0 < lim infn→∞ γin ≤ lim supn→∞ γin < 1.
Then the sequence {xn} converges weakly to an element in F.

Proof. Let t ∈ F . Since {wn} dominates t and Ti is edge-preserving, we get (Tiwn, t) ∈
E(G) for all i = 1, 2, ..., N . Implying there by (zin, t) = ((1 − γin)wn + γinTiwn, t) ∈ E(G)
by E(G) is convex. Again, by edge-preserving of Ti(i = 1, 2, ..., N) and (zin, t) ∈ E(G),
we have (Tizin, t) ∈ E(G), then (yin, t) = ((1 − βi

n)z
i
n + βi

nTizin, t) ∈ E(G), since E(G) is
convex. For all i = 1, 2, ..., N , we get

∥hin − t∥ =
∥∥(1− αi

n)(y
i
n − t) + αi

n(Tiyin − t)
∥∥

≤ (1− αi
n)

∥∥yin − t
∥∥+ αi

n

∥∥Tiyin − t
∥∥

≤ (1− αi
n)

∥∥yin − t
∥∥+ αi

n

∥∥yin − t
∥∥

=
∥∥yin − t

∥∥
=

∥∥(1− βi
n)(z

i
n − t) + βi

n(Tizin − t)
∥∥

≤ (1− βi
n)

∥∥zin − t
∥∥+ βi

n

∥∥Tizin − t
∥∥

≤ (1− βi
n)

∥∥zin − t
∥∥+ βi

n

∥∥zin − t
∥∥

=
∥∥zin − t

∥∥
=

∥∥(1− γin)(wn − t) + γin(Tiwn − t)
∥∥

≤ (1− γin) ∥wn − t∥+ γin ∥Tiwn − t∥
≤ (1− γin) ∥wn − t∥+ γin ∥wn − t∥
= ∥wn − t∥
≤ ∥xn − t∥+ θn ∥xn − xn−1∥ .

This implies that ∥xn+1 − t∥ ≤ ∥xn − t∥ + θn ∥xn − xn−1∥ . From Lemma 2.1 and the as-
sumption (i), we obtain limn→∞ ∥xn − t∥ exists, in particular, {xn} is bounded and also
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{zin}, {yin} and {hin}. By the properties in a real Hilbert space H, we have∥∥hin − t
∥∥2 =

∥∥((1− αi
n)y

i
n + αi

nTiyin)− t
∥∥2

≤ (1− αi
n)

∥∥yin − t
∥∥2 + αi

n

∥∥Tiyin − t
∥∥2 − (1− αi

n)α
i
n

∥∥yin − Tiyin
∥∥2

≤ (1− αi
n)

∥∥yin − t
∥∥2 + αi

n

∥∥Tiyin − t
∥∥2

≤ (1− αi
n)

∥∥yin − t
∥∥2 + αi

n

∥∥yin − t
∥∥2

=
∥∥yin − t

∥∥2
=

∥∥((1− βi
n)z

i
n + βi

nTizin)− t
∥∥2

≤ (1− βi
n)

∥∥zin − t
∥∥2 + βi

n

∥∥Tizin − t
∥∥2 − (1− βi

n)β
i
n

∥∥zin − Tizin
∥∥2

≤ (1− βi
n)

∥∥zin − t
∥∥2 + βi

n

∥∥Tizin − t
∥∥2

≤ (1− βi
n)

∥∥zin − t
∥∥2 + βi

n

∥∥zin − t
∥∥2

=
∥∥zin − t

∥∥2
=

∥∥((1− γin)wn + γinTiwn)− t
∥∥2

≤ (1− γin) ∥wn − t∥2 + γin ∥Tiwn − t∥2 − (1− γin)γ
i
n ∥wn − Tiwn∥2

≤ (1− γin) ∥wn − t∥2 + γin ∥wn − t∥2 − (1− γin)γ
i
n ∥wn − Tiwn∥2

= ∥wn − t∥2 − (1− γin)γ
i
n ∥Tiwn − wn∥2

≤ ∥xn − t∥2 + 2θn ⟨xn − xn−1, wn − t⟩ − (1− γin)γ
i
n ∥Tiwn − wn∥2 .(3.3)

This implies that there exist in ∈ {1, 2, ..., N} such that

(3.4) (1− γinn )γinn ∥Tinwn − wn∥2 ≤ ∥xn − t∥2 − ∥xn+1 − t∥2 + 2θn ⟨xn − xn−1, wn − t⟩ .

By the assumption (i) and (iii), from (3.3), (3.4) and limn→∞ ∥xn − t∥ exist, we have

lim
n→∞

∥Tinwn − wn∥ = 0.(3.5)

In addition, ∥∥zinn − wn

∥∥ ≤ γinn ∥Tinwn − wn∥ .(3.6)

Using (3.5) and (3.6), we have

lim
n→∞

∥∥zinn − wn

∥∥ = 0.(3.7)

Using (3.5), we also have∥∥zinn − Tinwn

∥∥ ≤ (1− γinn ) ∥wn − Tinwn∥+ γinn ∥Tinwn − Tinwn∥
= (1− γinn ) ∥wn − Tinwn∥
→ 0 (as n→ ∞).(3.8)

Since (wn, t), (t, zinn ) ∈ E(G), so (wn, z
in
n ) ∈ E(G). From (3.7) and (3.8), we have∥∥yinn − Tinwn

∥∥ ≤ (1− βin
n )

∥∥zinn − Tinwn

∥∥+ βin
n

∥∥Tinzinn − Tinwn

∥∥
≤ (1− βin

n )
∥∥zinn − Tinwn

∥∥+ βin
n

∥∥zinn − wn

∥∥
→ 0 (as n→ ∞).(3.9)
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Using (3.5) and (3.9), we have∥∥yinn − wn

∥∥ =
∥∥yinn − Tinwn + Tinwn − wn

∥∥
≤

∥∥yinn − Tinwn

∥∥+ ∥Tinwn − wn∥
→ 0 (as n→ ∞).(3.10)

Since (wn, t), (t, yinn ) ∈ E(G), so (wn, y
in
n ) ∈ E(G). It follows from (3.9) and (3.10) that

∥xn+1 − Tinwn∥ ≤ (1− αin
n )

∥∥yinn − Tinwn

∥∥+ αin
n

∥∥Tinyinn − Tinwn

∥∥
≤ (1− αin

n )
∥∥yinn − Tinwn

∥∥+ αin
n

∥∥yinn − wn

∥∥
→ 0 (as n→ ∞).(3.11)

In addtion,

∥xn+1 − wn∥ ≤ ∥xn+1 − Tinwn∥+ ∥Tinwn − wn∥ .

From (3.5) and (3.11), we have

lim
n→∞

∥xn+1 − wn∥ = 0.(3.12)

It follows from (3.12) that ∥∥hin − wn

∥∥ ≤ ∥xn+1 − wn∥ → 0(3.13)

as n→ ∞ for all i = 1, 2, ..., N . From (3.3), we have

(1− γin)γ
i
n ∥Tiwn − wn∥2 ≤ ∥wn − t∥2 −

∥∥hin − t
∥∥2 .(3.14)

By our assumption (iii), it follows from (3.13) and (3.14) that

lim
n→∞

∥Tiwn − wn∥ = 0(3.15)

for all i = 1, 2, ..., N . Since {wn} is bounded and H is reflexive, ωw(wn) = {x ∈ H : wnk
⇀

p, {wnk
} ⊂ {wn}} is nonempty. Let p ∈ ωw(wn) be an arbitrary element. Then there exists

a subsequence {wnk
} ⊂ {wn} converging weakly to p. Let q ∈ ωw(wn) and {wnm

} ⊂ {wn}
be such that wnm

⇀ q. Using Lemma 2.3 and (3.15), we have p, q ∈ F . Applying Lemma
2.2, we obtain p = q. The proof is completed. □

Note that if T is nonexpansive, then T is G-nonexpansive. As a direct convergence of
Theorem 3.1, we can get the following result.

Corollary 3.1. Let H be a real Hilbert space and Ti : H → H a family of nonexpansive mappings
for all i = 1, 2, ..., N such that F = ∩N

i=1F (Ti) ̸= ∅. Let {xn}, {wn} generated by x0, x1 ∈ H
and

(3.16)



wn = xn + θn(xn − xn−1),

zin = (1− γin)wn + γinTiwn,

yin = (1− βi
n)z

i
n + βi

nTizin,
hin = (1− αi

n)y
i
n + αi

nTiyin,
xn+1 = argmax{∥hin − wn∥, i = 1, 2, ..., N},

where {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αi
n}, {βi

n}, {γin} ⊂ [0, 1]. Assume that the following
additional conditions hold:
(i)

∑∞
n=1 θn ∥xn − xn−1∥ <∞ ;

(ii) 0 < lim infn→∞ γin ≤ lim supn→∞ γin < 1.
Then the sequence {xn} converges weakly to an element in F.
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4. APPLICATIONS

In this section, we apply the PISPMHA to solve certain linear system problems, differ-
ential problems, and signal recovery under situations without knowing the type of noises.

4.1. Linear System problems. Let consider the linear system
(4.17) Ax = b,

where A : Rl → Rl is linear and positive operator and x,b ∈ Rl. Then, linear system
(4.17) has a unique solution. There are many different ways of rearranging equation (4.17)
in the form of fixed point equation T (x) = x. For example, also see e.g. Table 1, the well-
known weight Jacobi (WJ) and successive over relaxation (SOR) methods (see for example
[19, 40, 41]) present the linear system (4.17) into the form of fixed point equation as

TWJ (x) = x, TSOR (x) = x and TGS (x) = x,

respectively.

Linear system Fixed point mapping T (x)

Ax = b TWJ (x) =
(
I − ωD−1A

)
x+ ωD−1b

TSOR (x) =
(
I − ω (D − ωL)−1 A

)
x+ ω (D − ωL)−1 b

TABLE 1. The different way of rearranging linear systems (4.17) into the
form x = T (x).

And ω is weight parameter, D is the diagonal part of matrix A and L is the lower
triangular part of matrix D −A, respectively.

In controlling the operators TWJ and TSOR in the form of TWJ(h) = SWJ(h) + CWJ, where

SWJ = I − ωD−1A, CWJ = ωD−1G

and TSORh = SSORh+ CSOR, where

SSOR = I − ω (D − ωL)
−1
A, CSOR = ω (D − ωL)

−1
G

be nonexpansive mapping, see [17] for more detail, their weight parameter must be prop-
erly modified. The implemented of weight parameter ω for the operator S of WJ and SOR
methods are defined as its norm less than one. Moreover, the optimal weight parameter
ωo in getting the smallest norm for each types of operator S are indicated on Table 2.

The different types Implement weight Optimal weight
of operator S parameter ω parameter ωo

SWJ 0 < ω <
2

λmax(D−1A)
ωo =

2

λmin(D−1A) + λmax(D−1A)

SSOR 0 < ω < 2 ωo =
2

1 +
√

1− ρ2

TABLE 2. Implemented weight parameter and optimal weight parameter
of operator S .

The parameters λmax(D
−1A) and λmin(D

−1A) are the maximum and minimum eigen-
value of matrix D−1A, respectively. ρ is the spectral radius of the iteration matrix of the
Jacobi method (SWJ with ω = 1).
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Thus, in finding the solution of linear system (4.17), we can manipulate this linear
system into the form of fixed point equations

(4.18) Ti (x) = x, ∀i = 1, 2, . . . ,M,

where x is the common solution of equation (4.18). We introduce a PISPMHA in solving
the common solution of equation (4.18). The generated sequence {xn} is created itera-
tively by using two initial data x0,x1 ∈ Rl and

wn = xn + θn (xn − xn−1) ,

zin = (1− γin)wn + γinTi(wn),

yi
n = (1− βi

n)z
i
n + βi

nTi(zin),
hi
n = (1− αi

n)y
i
n + αi

nTi(yi
n),

xn+1 = argmax
{
||hi

n −wn||, i = 1, 2, . . . ,M
}
,

(4.19)

where n ≥ 1 and {αi
n}, {βi

n}, {γin} are appropriate real sequences in [0, 1]. The following
stopping criterion is used

∥xn+1 − xn∥2 < ϵl,

and after that set xn−1 = xn and xn = xn+1.
Next, the PISPMHA (4.19) is compared with the well known WJ, SOR and Gauss-Seidel

(the SOR with ω = 1 names as GS) methods in getting the solution of linear system:

(4.20)



4 −1 0 −1 0 . . . . . . . . . 0

−1 4 −1 0 −1 0 . . . . . . 0
0 −1 4 −1 0 −1 0 . . . 0

−1 0 −1 4 −1 0 −1 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 . . . −1 0 −1 4 −1 0 −1
0 . . . 0 −1 0 −1 4 −1 0

0 . . . . . . 0 −1 0 −1 4 −1

0 . . . . . . . . . 0 −1 0 −1 4


l×l



x1
x2
x3
x4
...
xl−3

xl−2

xl−1

xl


l×1

=



1

1
1

1
...
1
1

1

1


l×1

,

and x0 = [1 1 · · · 1 1]Tl×1, x1 = [0.5 0.5 · · · 0.5 0.5]Tl×1 with l = 50, 100, 150.
For simplicity, the PISPMHA (4.19) with M ≤ 3 and the G-nonexpansive mapping Ti are
chosen from TWJ, TSOR and TGS. The results of WJ, GS, SOR and the PISPMHA with the
following cases:

Case I: The PISPMHA with TWJ
Case II: The PISPMHA with TGS
Case III: The PISPMHA with TSOR
Case IV: The PISPMHA with TWJ−TGS
Case V: The PISPMHA with TWJ−TSOR
Case VI: The PISPMHA with TGS−TSOR
Case VII: The PISPMHA with TWJ− TGS−TSOR

in solving linear system (4.20) are demonstrated and discussed. The weight parameter ω
of the PISPMHA set as its optimum weight parameter (ωo) defined on Table 2. We used
the following parameters:

(4.21) αi
n =

n

n+ 1
, βi

n = αi
n, γin = αi

n,

(4.22) θn =

min

{
1

n2∥xn − xn−1∥22
, 0.1

}
if (xn ̸= xn−1) & (1 ≤ n < Ñ),

0.15 otherwise,
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when Ñ is a number of iterations that we want to stop with ϵl = 10−7. The approximate
error per step of iteration for WJ, GS, SOR and all cases studies of the PISPMHA are
measured by using the relative error

∥xn − x∥2/∥x∥2.
Figures 1 and 2 show the relative error on each step of iteration and the iterations

number throughout the process for WJ, GS, SOR and all cases studies of the PISPMHA in
solving linear system (4.20) with l = 50, l = 100 and l = 150, respectively.
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FIGURE 1. Relative error of the suggested methods to problem (4.20) with
l = 50, l = 100 and l = 150, respectively.
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FIGURE 2. The evolution of iterations number for the suggested ap-
proach to problem (4.17) with l = 50, l = 100 and l = 150, respectively.

It can be seen from Figures 1 and 2 that when the relative error per each step of iteration
and the iterations number throughout the process are compared, the SOR method is better
than WJ, GS, TWJ, TGS and TWJ−TGS methods. And, the proposed approach with TSOR,
TWJ−TSOR, TGS−TSOR and TWJ−TGS−TSOR are the same and better than SOR method. Moreover,
the relative error per each step of iteration for the proposed approach and the iterations
number throughout the process with M > 1 (parallel algorithm) is based on the non-
parallel PISPMHAs. For example, the proposed approach with TWJ− TGS is the same as
the proposed approach with TGS and the proposed approach with TWJ−TSOR, TGS−TSOR
and TWJ− TGS−TSOR are the same as the proposed approach with TSOR. As a result that
the parallel algorithm in which the TSOR is used as its partial components (The proposed
approach with TWJ−TSOR, TGS−TSOR, TWJ−TGS−TSOR), it will be give us the best convergence.

Next, Figures 3 and 4 show the average CPU time on each iteration and the CPU
time consumption through out the process for WJ, GS, SOR and all cases studies of the
PISPMHA in solving linear system (4.20) with l = 50, l = 100 and l = 150, respectively.
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FIGURE 3. The average CPU time on each iteration for the suggested ap-
proach to problem to problem (4.19) with l = 50, l = 100 and l = 150,
respectively.
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FIGURE 4. The CPU time consumption through out the process for the
suggested approach to problem (4.20) with l = 50, l = 100 and l = 150
respectively.

It can be seen that the proposed approach with TWJ− TGS−TSOR takes the most average
of time per step of iteration. The SOR method takes the least time to complete the pro-
cess. However, if we considering from the time consumption throughout the process the
parallell methods in which the TSOR is used as its partial components, the PISPMHA with
TWJ−TSOR, TGS−TSOR and TWJ− TGS−TSOR will be no less interesting than others methods.
Specifically, the proposed approach using TWJ−TGS−TSOR which creates from all considered
techniques comprises of WJ, GS, and SOR methods. We don’t have to worry about which
way achieves the fastest convergence; we simply choose all methods and then generate
parallel suggested methods from them.

4.2. Differential problems. Let consider the following simple and well known
one-dimensional heat equation with Dirichlet boundary conditions and initial data,

ut = νuxx + f(x, t), 0 < x < l, t > 0.
(4.23) u(x, 0) = u0(x), 0 < x < l,

u(0, t) = ψ1(t), u(l, t) = ψ2(t), t > 0,

where ν is constant, u(x, t) represents the temperature at point (x, t) and f(x, t), ψ1(t),
ψ2(t) are sufficiently smooth functions. Below, we use the notations uni and (uxx)

n
i to

represent the numerical approximations of u(xi, tn) and uxx(xi, t
n) and tn = n∆t, where

∆t denotes the temporal mesh size. A set of schemes in solving problem (4.23) is based
on the following well-known Crank-Nikolson type of scheme [40, 41],

un+1
i − uni

∆t
=
ν

2

[
(uxx)

n+1
i + (uxx)

n
i

]
+ f

n+1/2
i , i = 2, . . . , N − 1

with initial data
u0i = u0(xi), i = 2, . . . , N − 1
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and Dirichlet boundary conditions

un+1
1 = ψ1(t

n+1), un+1
N = ψ2(t

n+1).

To approximate term of (uxx)ki , k = n, n + 1, we use the standard centered discretization
with space. The matrix form of second-order finite difference scheme (FDS) in solving
heat problem (4.23) can be written as

(4.24) Aun+1 = Gn,

where Gn = Bun + fn+1/2,

A =



1 + α −
α

2
−
α

2
1 + α −

α

2
. . .

. . .
. . .

−
α

2
1 + α −

α

2
−
α

2
1 + α


, B =



1− α
α

2α

2
1− α

α

2
. . .

. . .
. . .

α

2
1− α

α

2α

2
1− α


,

un =


uk2
uk3
...

ukN−2

ukN−1

 , fn+1/2 =



α

2
ψ
n+1/2
1 +∆tf

n+1/2
2

∆tf
n+1/2
3
...

∆tf
n+1/2
N−2

α

2
ψ
n+1/2
2 +∆tf

n+1/2
N−1

 ,

α = ν∆t/
(
∆x2

)
, ψn+1/2

i = ψi(t
n+1/2), i = 1, 2 and fn+1/2

i = fi(t
n+1/2), i = 2, . . . , N − 1.

From equation (4.24), matrix A is square and symmetric positive definite. Traditionally
iterative methods have been presented in solving the solution of linear systems (4.24). The
well-known weight Jacobi (WJ), successive over relaxation (SOR) and Gauss-Seidel (GS,
SOR with ω = 1) methods [19, 40] are chosen to exemplify here (see on Table 3).

Linear system Iterative method Specific name

Aun+1 = Gn Du(n+1,s) = (D − ωA)u(n+1,s) + ωGn WJ

(D − ωL)u(n+1,s) =
(
(D − ωL)− ωA

)
u(n+1,s) + ωGn SOR

TABLE 3. The specific name of WJ and SOR in solving linear system (4.24).

The implemented of WJ and SOR methods in solving the solution of linear systems (4.24)
can bee seen on [15]. And ω is weight parameter, D is the diagonal part of matrix A and L
is the lower triangular part of matrix D − A, respectively. Moreover, the optimal weight
parameter ωo are also indicated with the same formula on Table 2. For stability of WJ
and SOR method in solving linear system (4.24) generates from the discretization of the
consideration problem (4.23), the step sizes of time play an important role of the stability
needed. The discussion on the stability of WJ and SOR in solving linear system (4.24) can
be found in [19, 40].
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Since the well-known WJ, SOR and Gauss-Seidel (GS, SOR with ω = 1) methods
in solving linear system (4.24) can be presented in the form of fixed point equation as
TWJ (u) = u, TSOR (u) = u and TGS (u) = u, respectively then we introduce a new iterative
method using the G-nonexpansive mapping Ti,∀i = 1, 2, . . . ,M . The generated sequence
{un} for a new PISPMHA is created iteratively by using two initial data u(n,0),u(n,1) ∈ Rl

and

w(n,s) = u(n,s) + θn

(
u(n,s) − u(n,s−1)

)
,

z
(n,s)
i = (1− γsi )w

(n,s) + γsi Tiw(n,s),

y
(n,s)
i = (1− βs

i )z
(n,s)
i + βs

i Tiz
(n,s)
i ,

h
(n,s)
i = (1− αs

i )y
(n,s)
i + αs

iTiy
(n,s)
i , n ≥ 0,

u(n+1,s) = argmax
{
||h(n,s)

i −w(n,s)||, i = 1, 2, . . . ,M
}
,

(4.25)

where the second superscript “ s ” denotes the number of iterations s = 1, 2, . . . , Ŝn and
set

γsi =
s

s+ 1
, βs

i = γsi , αs
i = γsi ,

and {θn} is set as equation (4.22). The nonexpansive mapping Ti of the PISPMHA can
be chosen from these three operators TGS, TWJ and TSOR. And we call the PISPMHA as a
parallel algorithm if M ≥ 2 is chosen. The step size of time for the PISPMHA are based
on the smallest step size chosen from WJ, GS and SOR method in solving linear system
(4.24) generated from the discretization of the consideration problem (4.23).

In all computations, we used ν = 25, ∆t = ∆x2/10 (step size of time) and ϵd = 10−10.
For testing purpose only, both computations are performed for 0 ≤ t ≤ 0.01 (when t ≫
0.05, u(x, t) → 0). The following stopping criterion is used

∥u(n+1,Ŝn) − u(n+1,Ŝn−1)∥2 < ϵd,

where “ Ŝn ” denotes the number of the last iteration at time Tn and after that set

u(n,0) = u(n+1,Ŝn−1) and u(n,1) = u(n+1,Ŝn).

All computations are performed by using uniform grid of 161 nodes which corresponds
to the solution of linear systems (4.24) with 159 × 159 sizes respectively. We apply the
WJ, SOR, GS and the PISPMHA with parallel and non-parallel cases of these three opera-
tors TGS, TWJ and TSOR in getting the solution of linear system (4.24) of heat problem with
Dirichlet boundary conditions and initial data (4.23).

Let consider the following heat problem:

ut = νuxx + 0.4ν(4π2 − 1)e−4νt cos(4πx), 0 ≤ x ≤ 1, 0 < t < ts,

u(x, 0) = cos(4πx)/10, u(0, t) = e−4νt/10, u(1, t) = e−4νt/10,

u(x, t) = e−4νt cos(4πx)/10.

(4.26)

The results of the basic iterative methods (WJ, GS, SOR) and the PISPMHA with the op-
erators TGS, TWJ and TSOR similar to the previous section are demonstrated and discussed.

The relative error on each step of time are measured by using the following formula

∥un+1 − u(n+1,Ŝn)∥2/∥un+1∥2.

The trend of the average iterations number for the fundamental iterative methods is
shown in Figure 5 compared to all cases of the suggested algorithms in addressing the
discretization of consideration issue (4.26) with different grid sizes.
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FIGURE 5. The evolution of the average iterations number on each step
of time for GS, WJ, SOR and the suggested method to problem (4.23).

It can be seen from this figure that the average number of iteration on each step of time
for the PISPMHA with M > 1 is smaller than the basic iterative methods. Furthermore,
for all of the consideration grid sizes, the average number of iterations on each step of
time for the suggested method in which the operator TSOR is utilized as one of its partial
components gives us the smallest number of iterations.

Since the PISPMHA is designed using all consideration methods, regardless of which
method gives us the fastest convergence discussed in the previous section. The PISPMHA
with TWJ−TGS−TSOR is chosen to test and verify the order of accuracy for the presented FDS
in solving heat equation (4.26). And, for all computations, uniform grids of 11, 21, 41, 81
and 161 nodes are used, which correspond to the discretization of heat equation problem
(4.26) with ∆x = 0.1, 0.05, 0.025, 0.0125, 0.0625, respectively.
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FIGURE 6. The evolution of relative error in getting the numerical so-
lution of problem (4.26) with various grid sizes by using the suggested
method with TWJ−TGS−TSOR.

It can be seen from Figure 6 that the PISPMHA with TWJ−TGS−TSOR are seen to be second
order of accuracy. That is the order of accuracy of the PISPMHA with TWJ−TGS−TSOR agrees
with their FDS construction.

Next, we compare the PISPMHA’s convergence behavior and performance to the basic
iterative technique for problem (4.26) with ν = 25 and t ∈ (0, 1] when the grid sizes are
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set with 161 nodes. The estimated solution of problem (4.26) at t = 0.01 using the basic
iterative approach and the PISPMHA with M ≤ 3 is shown in Figure 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x  [0,1]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

E
x
a

c
t 

s
o

lu
ti
o

n
 a

n
d

 r
e

p
re

s
e

n
t 

u
(x

,t
) 

w
h

e
re

 t
 =

0
.0

1

FIGURE 7. Approximate solutions of the basic iterative methods and the
suggested method.

The trend of iterations number for the basic iterative methods and the suggested al-
gorithm in solving problem (4.24) originates from the discretization of the consideration
problem (4.26) with 161 nodes is shown in Figure 8. In comparison to the basic iterative
methods, the suggested method with parallel case needs fewer iterations on each step of
time, as shown in Figure 8. And the recommended approaches that use the operator TSOR
as partial components provide us the fewest number of iterations at each time step.
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FIGURE 8. The evolution of iterations number for the basic iterative
methods and the suggested method.

The average CPU time on each iteration and CPU time consumption throughout the
process for WJ, GS, SOR, and all case studies of the proposed approach in addressing
the consideration problem (4.26) with 161 nodes are shown in Figure 9. The suggested
method with the parallel situation always takes the longest average time per iteration
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step. On the other hand, the fundamental iterative method takes the shortest time to
finish the procedure. However, with parallel situations, examine the time consumption
of the suggested method throughout the procedure. It will take not much different time
when compared to the WJ approach.
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FIGURE 9. The average CPU time on each iteration and the CPU time
consumption through out the process for the basic iterative methods and
the suggested method.

4.3. Signal recovering. The minimization problem of the sum of two functions is to find
a solution of

min
x∈Rn

{F (x) := f(x) + g(x)},(4.27)

where g : Rn → R ∪ {∞} is proper convex and lower semi-continuous function, and f :
Rn → R is convex differentiable function with gradient ∇f being L-Lipschitz constant for
some L > 0. The solution of (4.27) can be characterized by using Fermat’s rule, Theorem
16.3 of Bauschke and Combettes [10] as follows:

x∗ is a minimizer of (f + g) ⇔ 0 ∈ ∂g(x∗) +∇f(x∗),

where ∂g is the subdifferential of g and ∇f is the gradient of f . The subdifferential of g at
x∗, denoted by ∂g(x∗), is defined by

∂g(x∗) := {u : g(x)− h(x∗) ≥ ⟨u,x− x∗⟩ , ∀x}.
Additionally, it is generally known that the following fixed point problem characterizes
the solution of (4.27):

x∗ is a minimizer of (f + g) ⇔ x∗ = proxτg(I − τ∇f)(x∗),

where τ > 0, proxg is the proximity operator of h defined by proxg := argmin{g(y) +
1
2 ∥x− y∥22}, see [26] for more details. It is also known that proxτg(I − τ∇f) is a nonex-
pansive mapping when τ ∈

(
0, 2

L

)
.

Next, we apply the PISPMHAs to solve the signal recovering problems. In signal pro-
cessing, compressed sensing can be modeled as the following under determinated linear
equation system

y = Ax+ n,

where A ∈ Rm×n is a degraded matrix, x ∈ Rn is an original signal with n components to
be recovered and n,y ∈ Rm are noise and the observed signal with noisy for m compo-
nents respectively. Finding the solutions of previous determinated linear equation system
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can be seen as solving the LASSO problem

(4.28) min
x∈RN

1

2
∥y −Ax∥22 + λ∥x∥1,

where λ > 0. As a result various techniques and iterative schemes have been developed
to solve the Lasso problem. We can apply the minimization problem of the sum of two
functions for solving the LASSO problem (4.28) by setting

S(x) = proxτh (x− τ∇f(x)) ,
where f(x) = ∥y −Ax∥22/2, h(x) = λ∥x∥1, ∇f(x) = AT (Ax− y).

Now, we present the parallel iterative method in recovering the original signal x when
the observed signals y1,y2, ...,yM can be recovered by using the degraded matricesA1, A2,
..., AM , repectively in which
(4.29) yi = Aix+ ni, i = 1, 2, . . . ,M.

That is, the original signal x is a common solution of theM -determinated system of linear
equations (4.29). Let us consider the following M -LASSO problems which is called as the
LASSO system introduced by Suantai et al. [36]:

min
x∈RN

1

2
∥A1x− y1∥22 + λ1∥x∥1,

min
x∈RN

1

2
∥A2x− y2∥22 + λ2∥x∥1,

...

min
x∈RN

1

2
∥AMx− yM∥22 + λM∥x∥1,

(4.30)

where the original signal x is common solution of LASSO system (4.30). We will find the
true signal x through the common solution of LASSO system. Let

Si(x) = proxτigi
(
x+ τiA

t
i(Aix− yi)

)
.

We apply the PISPMHA in finding the common solution x for the LASSO system:

wn = xn + θn(xn − xn−1)

zin = (1− γin)w
n + γinSi(w

n),

yi
n = (1− βi

n)z
i
n + βi

nSi(z
i
n),

hi
n = (1− αi

n)y
i
n + αi

nSi(y
i
n),

xn+1 = argmax
{
||hi

n −wn||, i = 1, 2, . . . ,M
}
,

(4.31)

where gi(x) = λi ∥x∥1, τi = 2/∥AT
i Ai∥2 , the default parameters θn and {αi

n}, {βi
n}, {γin}

are set as equations (4.21) and (4.22). And, we called the algorithm (4.31) as the PISPMHA
with degraded matrices Ai, i = 1 . . .M .

Next, some experiments are provided to illustrate the convergence and the effective-
ness of the PISPMHA (4.31) and compare with the FISTA algorithm [11], Suantai et al.
[36], Cholamjiak et al. [16] and Jun-on et al. [23]. The original signal x with n = 1024
generated by the uniform distribution in the interval [−2, 2] with 70 nonzero elements is
used to create the observation signal with m = 512 and yi = Aix+ ni where j ≤ 3.



A parallel inertial SP-iteration monotone hybrid algorithm for a finite family of G-nonexpansive mappings... 551

0 100 200 300 400 500 600 700 800 900 1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10. Original Signal (x) with m = 70.

The observation signal yi, i = 1, 2, 3 show on Figure 11.

0 50 100 150 200 250 300 350 400 450 500

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250 300 350 400 450 500

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300 350 400 450 500

-30

-20

-10

0

10

20

30

FIGURE 11. Degraded Signals y1, y2, and y3, respectively.

The matricesAi generated by the normal distribution with mean zero and variance one
and the white Gaussian noise ni (see on Figure 12).
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FIGURE 12. Noise Signals n1, n2, and n3, respectively.

Both theoretical and experimental results for the convergence properties of the PISPMHA
with the permutation of the blurring matrices A1, A2 and A3 are demonstrated and dis-
cussed on the following cases:

Case I: The PISPMHA with S1.
Case II: The PISPMHA with S2.
Case III: The PISPMHA with S3.
Case IV: The PISPMHA with S1−S2.
Case V: The PISPMHA with S1−S3.
Case VI: The PISPMHA with S2−S3.
Case VII: The PISPMHA with S1−S2−S3.

The process is started when the signal initial data x0 and x1 with n = 1024 is picked
randomly.
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FIGURE 13. Initial Signals x0 and x1.
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The relative signal error is measured by the following formula

∥xn − x∥2/∥x∥2
in order to check the convergence of all comparative algorithms. The signal-to-noise ratio
(SNR), which is defined as

SNR(xn) = 20 log10

(
∥xn∥2

∥xn − x∥2

)
,

is used to evaluate a signal quantitatively, xn is the signal recovered at iteration nth using
the proposed approach.

Figures 14 and Figure 15 show the signal relative error and SNR quality of all compar-
ing methods for recovering the degraded signal.
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Non-Parallell situation (PISPMHA with case I-III).
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FIGURE 14. The relative error norm of all comparative methods.
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FIGURE 15. The SNR plots of all comparative methods (PISPMHA with case IV-VII).
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Figure 14 shows that the relative error plots of all algorithms are decreased as the itera-
tion number increases and after that they converge to some constants. The relative errors
plot demonstrates the validity of all comparative algorithms and confirms their conver-
gence. The first three figures of Figure 14 show that when the number of iterations is
lagge enough, the FISTA method provides us the least relative error. It should also be
highlighted that within the first 500 iterations, the PISPMHA and Jun-on et al. methods
approaches converge similarly and faster than the other comparable methods. With the
exception of FISTA techniques, the remaining figures of Figure 14 depict the convergence
behavior of all comparison approaches (all methods that can be parallel computing). The
other parallel approaches converge significantly better than the proposed method, as can
be seen. However, after 100 iterations the proposed method converges better.

Figure 15 shows that the SNR quality of the restored signal using all comparative meth-
ods increases until it converges to some constant value. The FISTA method outperforms
the other approaches when the quality of the recovered signal is attained using only one
of the dregraded matrices, as seen in the first three figures of Figure 15. The remaining
figures of Figure 15 show the SNR quality of all comparative methods excepted FISTA
methods. It can be seen that the SNR quality of the restored image for all parallel algo-
rithms are improved and better than FISTA method. And, when all degrading matrices is
used in finding the common solutions of the signal recovering problem, we get the best
quality of the recovering signal. With the exception of FISTA techniques, the remaining
figures of Figure 15 illustrate the SNR quality of all comparing methods. All parallel meth-
ods improve and outperform the FISTA method in terms of SNR quality of the restored
image. We acquire the best quality of the recovered signal when all degrading matrices
are applied in discovering the common solutions of the signal recovering challenge.

Figure 16 displays the SNR plots for the best case of FISTA technique and all com-
parative parallel methods that use all degradation matrices within 100th iterations. We
discovered that all parallel approaches outperform the FISTA method in terms of quality.
And, after 50 iterations, the PISPMHA approach provides us the best quality. Moreover,
the highest SNR quality can be achieved within the first 100 iterations.
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FIGURE 16. The SNR plots of FISTA method and all comparative parallel methods in
which all degrading matrices within 100th iterations.

Next, the average CPU time on each iteration and the CPU time usage throughout
the operation within 100 iterations are then displayed for all comparative methodologies.
Figures 17 and 18 show that the proposed technique, which uses all degradation matrices,
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takes the longest average time on each iteration step and also consumes the greatest CPU
time during the procedure. That’s the one of the disadvantage of the proposed method.
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FIGURE 17. The CPU time consumption through out the process for
FISTA and all parallel methods within 100th iterations.
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FIGURE 18. The CPU time consumption through out the process for
FISTA and all parallel methods within 100th iterations.

The last figure shows the best quality of the restored signals at 90th step of iterations
for all comparative methods.
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FISTA [11] with S3 (SNR = 6)
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Suantai et al. [36] with S1− S2−S3 (SNR = 60)
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Cholamjiak et al. [16] with S1− S2−S3 (SNR = 60)
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Jun-on et al. [23] with S1− S2−S3 (SNR = 80)
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FIGURE 19. Recovering signals being used the FISTA method and all comparative par-
allel methods in which all degrading matrices at 90th iterations.
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5. CONCLUSIONS

In this article, we achieve the parallel inertial SP-iteration monotone hybrid algorithm
(PISPMHA) to solve a common fixed point of a finite family of G-nonexpansive mappings
on Hilbert spaces involving a graph. We have proved weak convergence of the sequence
generated by above said algorithm to an element of the problem’s solution set under some
certain conditions. As applications, we give the idea how to apply fundamental iterative
methods like WJ, GS, and SOR to the proposed approach in with parallel and non-parallel
cases in solving the unique solution of the differential problems. The suggested method
converges to precise answers for all considered issues. The proposed methods, which
apply WJ, GS, and SOR techniques to our algorithm, demonstrate that we don’t need
to worry about which approach provides the fastest convergence; instead, we may pick
all methods and construct parallel recommended ways from them. And, for the parallel
algorithm, the number of iterations is determined by the fastest fundamental method that
is developed as one of its partial components. Furthermore, we discovered that, when
compared to the FISTA technique, the suggested approach with the parallel case extends
the quality range of the recovered signal when applied to the common solution of signal
recovery difficulties. When all degrading matrices are used to find the common solutions
to the signal recovery challenge, the recovered signal has the best quality. One of the
downsides of the proposed method applying differential and signal recovering problems
is the longest average time on each iteration step compared with other methods.
Acknowledgments This research was supported by University of Phayao and Thailand
Science Research and Innovation Fund (Fundamental Fund 2024).
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