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Asymptotic solutions of differential equations with
singular impulses

NAURYZBAY AVILTAY, MARAT AKHMET and AKYLBEK ZHAMANSHIN

ABSTRACT. The paper considers impulsive systems with singularities. The main novelty is that beside the
singularity of the differential equation, the impulsive equation is a singular one. The method of boundary
functions is applied to obtain the main result. Examples with simulations confirming the theoretical results are
given.

1. INTRODUCTION

The interest in singularly perturbed equations is due to the fact that they are mathemat-
ical models of many application problems related to diffusion processes, chemical kinetics
[19], mathematical biology [13, 17], processes in physics, fluid dynamics [10], engineering
[12, 15] and many others. Different types of problems with singular perturbations are dis-
cussed in many books [6, 14, 16, 21, 23]. The problems depend on small parameter such
that solutions show a nonuniform behaviour over the time axis as the parameter tends to
zero. Various asymptotic methods exist to approximate solutions of singularly perturbed
problems.There exist methods which enable us to construct uniform approximations with
any required accuracy. The research conducted in [21, 22], led to the development of the
method of boundary functions. This method is also known as the boundary layer correc-
tion method [16]. One can apply the method for solving a singularly perturbed problem
if in a part of its domain the condition of the well-known Tikhonov theorem is valid. Var-
ious asymptotic methods can be found in [16]. In the present paper, we shall imply the
method of boundary functions for analysis of impulsive systems. Impulse effects exist in
a wide diversity of evolutionary processes in which states undergo rapid changes [2]. In
many systems, in addition to singular perturbation, there also impulse actions [7, 8, 18, 9],
but they are not singular there.

Let us consider the following model of a singularly perturbed differential equation,

εż = f(z, y, t),

ẏ = g(z, y, t),

where ε is a small positive real number. In the literature, results based on this system are
known as theorems of Tikhonov type [4, 11, 16, 20]. In [1, 3, 5], the authors considered the
system with the singularity at impact moments. The system is with singularity at impact
moments as well as with the small parameter multiplied by the derivative. As a result of
these articles, there was formulated a singular problem, which helps researchers to con-
sider degenerate systems without rattling to approximate the original models and reduce
complexity. The articles [7, 8] and book [6] considered impulsive systems with small pa-
rameter involved only in the differential equations, but not in the impulsive equations
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of them. We insert a small parameter into the impulse equation [1]. So the singularity
concept for discontinuous dynamics is significantly extended.

Akhmet and Çağ [1, 3, 5] for the first time in the literature considered equations, when
impulses are also singular, beside the differential equation. This concerns the following
problem

εż = F (z),

ε∆z|t=θi = I(z, ε)
(1.1)

with z(0, ε) = z0, where z ∈ Rm, t ∈ [0, T ], F (z) is a continuously differentiable function
on D and I(z, ε) is a continuous function for (z, ε) ∈ D × [0, 1], D is the domain D = {0 ≤
t ≤ T, ∥ z ∥< d}, θipi=1, 0 < θ1 < θ2 < ... < θp < T. If ε = 0 in (1.1), then one has the form

0 = F (z), 0 = I(z, 0).(1.2)

It is a degenerate system, since its order is less than the order of (1.1). Consider an isolated
real root z = φ of (1.2). Moreover, for the impulse function, the following condition

lim
(z,ε)→(φ,0)

I(z, ε)

ε
= 0 or lim

(z,ε)→(φ,0)

I(z, ε)

ε
= I0 ̸= 0(∗)

was used, which prevents impulsive function to blow up as the parameter ε decays to
zero. By virtue of these conditions, two cases were shown, a singularity with one layer
and a singularity with multi-layers. The subinterval, where the fast change of the solution
of singular perturbed problem from the initial value to values close to the solution of
unperturbed problem take place, is called a boundary layer. In the case of singularity
with a single layer, the characteristic feature is the presence of a boundary layer in the
neighborhood of the initial point, while in the case of singularity with multi-layers , the
boundary layer is present not only in the neighborhood of the initial point, but also in the
neighborhood of each discontinuity moment.

The main novelty in [1] is the extension of Tikhonov’s theorem in such a way that
system (1.3) has a small parameter in the impulse functions and discontinuity moments
are different for each dependent variable. The peculiarity in the impulsive part of the
system can be considered using perturbation theory methods. In our present study, we
apply the ideas of the article [1].

More precisely, our discussion is related on the following system [1],

(1.3a) εż = f(z, y, t), ẏ = g(z, y, t),

(1.3b) ε∆z|t=θi = I(z, y, ε), ∆y|t=ηj
= J(z, y),

where z, f and I are m-dimensional vector valued functions, y, g and J are n-dimensional
vector valued functions, θi

p
i=1, 0 < θ1 < θ2 < ... < θp < T, and ηj

k
j=1, are distinct disconti-

nuity moments in (0, T ).
The impulsive system consists of differential equations (1.3a) and impulse equations

(1.3b). In [1], the authors studied the behavior of solutions of the singularly perturbed sys-
tem (1.3) and considered two cases of singularity with single and multi-layer layers, which
depend on the condition (∗). By introducing a small parameter into the impulse equa-
tion, the notion of singularity for discontinuous dynamics was significantly expanded
and shown that the transition to the limit for y(t, ε) is uniform in the entire interval of
0 ≤ t ≤ T, while the transition to the limit for z(t, ε) isn’t uniform in the entire interval
of 0 ≤ t ≤ T , but only in the subintervals δ ≤ t ≤ θi

p
i=1 for δ > 0, outside the boundary

layers.
In what follows, instead of ”we construct an asymptotic series” a shorter expression is

used: ”we construct asymptotics”. It will mean the algorithm which allows us to obtain
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the terms of the asymptotic series up to arbitrary natural n. We build a uniform asymp-
totic approximation of the solution which is valid in the entire interval 0 ≤ t ≤ T using the
method of boundary functions. However, the theorems of article [1] do not give the order
of accuracy of the asymptotic approximation ỹ(t) for the solution y(t, ε) in 0 ≤ t ≤ T and
that of z̃(t) for z(t, ε) outside the boundary layer. Our goal is to construct an approxima-
tion with higher accuracy and the complete asymptotic expansion for solutions of systems
with singularly perturbed impulses.

2. FORMALITIES OF APPROXIMATION

In this part of the paper, we demonstrate the algorithm for the construction of an as-
ymptotic approximation of the solution using the method of boundary functions. Differ-
ential equations with singular perturbed impulses are considered.

Let us consider the following system

εz′ = F (z, y, ε), ε∆z|t=θi = I(z, y, ε),

y′ = f(z, y), ∆y|t=θi = J(z, y)
(2.4)

with initial condition

(2.5) z(0, ε) = z0, y(0, ε) = y0,

where ε is a small positive real number, z, F and I are m-dimensional functions, y, f and
J are n-dimensional functions, z0 and y0 are assumed to be independent of ε, θi

p
i=1, 0 <

θ1 < θ2 < ... < θp < T, are distinct discontinuity moments in (0, T ). We set ∆x|t=θi =
x(θi+)− x(θi), assuming that the limits x(θi+) = lim

t→θi+
x(t) exist and x(θi−) = x(θi).

Assume that ε = 0 in (2.4). Then the system reduces to the following equations

0 = F (z̃, ỹ, 0), 0 = I(z̃, ỹ, 0),

ỹ′ = f(z̃, ỹ), ∆ỹ|t=θi = J(z̃, ỹ),
(2.6)

which we call a degenerate system due to the fact that the order is less than the order of
system (2.4). Therefore, for system (2.6) the number of initial conditions to be set to less
than the number of initial conditions for (2.4). We naturally insert the initial condition for
y, as

(2.7) ỹ(0) = y0,

and drop the initial condition for z.
To solve system (2.6), it is necessary to find z̃ from 0 = F (z̃, ỹ, 0) and 0 = I(z̃, ỹ, 0).

Then choose one of the root z̃ = φ(ỹ(t), t) such that 0 = F (φ(ỹ(t), t), ỹ, 0) and 0 =
I(φ(ỹ(t), t), ỹ, 0) and substitute into (2.6) with the initial value (2.7) to obtain

ỹ′ = f(φ(ỹ(t), t), ỹ), ∆ỹ|t=θi = J(φ(ỹ(t), t), ỹ),

ỹ(0) = y0.
(2.8)

The following conditions will be needed.
(C1) The functions f(z, y) and J(z, y) are infinitely differentiable in domain H = {(y, t) ∈

N = {0 ≤ t ≤ T, ∥y∥ ≤ c}, ∥z∥ ≤ d}, F (z, y, ε) and I(z, y, ε) are infinitely differen-
tiable in H × [0, 1];

(C2) the algebraic equations F (z, y, 0) = 0 and I(z, y, 0) = 0 have a root z = φ(y, t) in
domain N such that,
1) φ(y, t) is a continuous function in N,
2) (φ(y, t), y, t) ∈ H, (y, t) ∈ N,
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3) the root φ(y, t) is isolated in N , i.e., ∃ϵ > 0 : F (z, y, t) ̸= 0 and I(z, y, ε) ̸= 0 ,
0 <∥ z − φ(y, t) ∥< ϵ, (y, t) ∈ N ;

(C3) the system (2.8) has a unique solution ỹ(t) on 0 ≤ t ≤ T , and (ỹ(t), t) ∈ N for
0 ≤ t ≤ T . Moreover, the functions f(φ(ỹ, t), ỹ) and J(φ(ỹ, t), ỹ) are Lipschitz
with respect to y ∈ N .

Now, setting x = z − φ and t = τε, we obtain the system

(2.9)
dx

dτ
= F (x+ φ(y, t), y, 0), τ ≥ 0,

where y and t are considered as parameters, x = 0 is an isolated stationary point of (2.9)
for (y, t) ∈ N.

(C4) There exists a positive definite function V (x, y, τ) whose derivative with respect
to τ along the system (2.9) is negatively defined in the domain H.

Consider adjoint system

(2.10)
dω

dτ
= F (ω, y0, 0), τ ≥ 0

with initial condition

(2.11) ω(0) = z0.

Since z0 may be, in general, far from stationary point φ(y0, 0), then the solution ω(τ) of
equations (2.10) and (2.11) needs not tend to φ(y0, 0) as τ → ∞.

Assume also that the solution ω(τ) of equations (2.10) and (2.11) satisfies the condition
(C5) ω(τ) → φ(y0, 0) as τ → ∞, and (ω(τ), y0, 0) belong H for τ ≥ 0.

In this case, z0 is said to belong to the basin of attraction of the stationary point ω =
φ(y0, 0). By virtue of the asymptotic stability of this point all points near it will belong to
its basin of attraction.

To prevent the impulse function to blow up when the parameter ε decays to zero, the
following assumption is required,

(C6) lim
(z,y,ε)→(φ,y0,0)

I(z, y, ε)

ε
= 0.

We will seek for a asymptotic representation of the solution z(t, ε), y(t, ε) of problem
(2.4)-(2.5) in the form

z(t, ε) = z̃(t, ε) + ω(i)(τi, ε), τi =
t− θi
ε

, i = 1, 2, ..., p,

y(t, ε) = ỹ(t, ε) + εν(i)(τi, ε), θi < t ≤ θi+1, θ0 = 0,
(2.12)

where

z̃(t, ε) =

∞∑
k=0

εkz̃k(t), ỹ(t, ε) =

∞∑
k=0

εkỹk(t),

ω(i)(τi, ε) =

∞∑
k=0

εkω
(i)
k (τi), ν(i)(τi, ε) =

∞∑
k=0

εkν
(i)
k (τi).

(2.13)

The coefficients ω
(i)
k (τi) and ν

(i)
k (τi) in the expansions (2.13) are called boundary func-

tions and on them the additional condition is imposed,

ω
(i)
k (∞) = 0, ν

(i)
k (∞) = 0, i = 1, 2, ..., p.(2.14)
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Substituting the series (2.12) into system (2.4), we obtain the equalities

ε(z̃′(t, ε) +
1

ε
ω̇(i)(τi, ε)) = F (z̃(t, ε), ỹ(t, ε), ε)+

[F (z̃(t, ε) + ω(i)(τi, ε), ỹ(t, ε) + εν(i)(τi, ε), ε)− F (z̃(t, ε), ỹ(t, ε), ε)],

ỹ′(t, ε) + ν̇(i)(τi, ε) = f(z̃(t, ε), ỹ(t, ε))+

[f(z̃(t, ε) + ω(i)(τi, ε), ỹ(t, ε) + εν(i)(τi, ε))− f(z̃(t, ε), ỹ(t, ε))].

Equalizing expressions for t and τi in the last equations, we get two systems

εz̃′(t, ε) = F (z̃(t, ε), ỹ(t, ε), ε),

ỹ′(t, ε) = f(z̃(t, ε), ỹ(t, ε)),
(2.15)

and

ω̇(i)(τi, ε) = F (z̃(t, ε) + ω(i)(τi, ε), ỹ(t, ε) + εν(i)(τi, ε), ε)− F (z̃(t, ε), ỹ(t, ε), ε),

ν̇(i)(τi, ε) = f(z̃(t, ε) + ω(i)(τi, ε), ỹ(t, ε) + εν(i)(τi, ε))− f(z̃(t, ε), ỹ(t, ε)).
(2.16)

Now we represent F , f , I , J in the form of power series in ε,

F (z̃(t, ε), ỹ(t, ε), ε) = F (z̃0(t) + εz̃1(t) + . . . , ỹ0(t) + εỹ1(t) + . . . , ε) =

F (z̃0(t), ỹ0(t), 0) + ε[Fz(t)z̃1(t) + Fy(t)ỹ1(t) + Fε(t)] + . . .+

εk[Fz(t)z̃k(t) + Fy(t)ỹk(t) + Fk(t)] + . . . = F̃0(t) + εF̃1(t) + . . . εkF̃k(t) + . . . ,

where matrices Fz(t),Fy(t) and Fε(t) are calculated at (z̃0(t), ỹ0(t), 0) and Fk(t) are ex-
pressed recursively through z̃j(t) and ỹj(t) with j < k,

F (z̃(t, ε) + ω(i)(τi, ε), ỹ(t, ε) + εν(i)(τi, ε), ε)− F (z̃(t, ε), ỹ(t, ε), ε) =

F (z̃0(θi + ετi) + εz̃1(θi + ετi) + . . .+ ω
(i)
0 (τi) + εω

(i)
1 (τi) + . . . ,

ỹ0(θi + ετi) + εỹ1(θi + ετi) + . . .+ εν
(i)
0 (τi) + ε2ν

(i)
1 (τi) + . . . , ε)−

F (z̃0(θi + ετi) + εz̃1(θi + ετi) + . . . , ỹ0(θi + ετi) + εỹ1(θi + ετi) + . . . , ε) =

F (z̃0(θi) + ω
(i)
0 (τi), ỹ0(θi), 0)− F (z̃0(θi), ỹ0(θi), 0)+

ε[Fz(τi)ω
(i)
1 (τi) + Fy(τi)ν

(i)
0 (τi) +G1(τi)] + . . .+

εk[Fz(τi)ω
(i)
k (τi) + Fy(τi)ν

(i)
k−1(τi) +Gk(τi)] + . . . =

Π0F (τi) + εΠ1F (τi) + . . .+ εkΠkF (τi) + . . . ,

where the elements Fz(τi) and Fy(τi) are calculated at (z̃0(θi) + ω
(i)
0 (τi), ỹ0(θi), 0), i =

1, 2, ..., p, the elements Fz(θi) and Fy(θi) are calculated at (z̃0(θi), ỹ0(θi), 0) and Gk(τi), i =

1, 2, ..., p, are expressed recursively through ω
(i)
j (τi) and ν

(i)
j−1(τi) with j < k. Similarly one

can get that

I(z(θi, ε), y(θi, ε), ε) = I(z(θi−, ε), y(θi−, ε), ε) =

I(z̃(θi, ε) + ω(i−1)(
θi − θi−1

ε
, ε), ỹ(θi, ε) + εν(i−1)(

θi − θi−1

ε
, ε), ε) =

I(z̃(θi, ε), ỹ(θi, ε), ε) = I(z̃0(θi), ỹ0(θi), 0)+

ε[Iz(θi)z̃1(θi) + Iy(θi)ỹ1(θi) + Iε(θi)] + . . .+(2.17)

εk[Iz(θi)z̃k(θi) + Iy(θi)ỹk(θi) + Ik(θi)] + . . . =

Ĩ0(θi) + εĨ1(θi) + . . .+ εk Ĩk(θi) + . . . ,
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where the elements Iz(θi), Iy(θi) and Iε(θi) calculated at the points (z̃0(θi), ỹ0(θi), 0), i =
1, 2, ..., p, and Ik(θi) are expressed recursively through z̃j(θi) and ỹj(θi) with j < k. Similar
expansions hold for J(z(θi, ε), y(θi, ε)).

Now the problems (2.4), (2.5) and (2.15) and (2.16) take the form

ε(z̃′0(t) + εz̃′1(t) + . . .+ εkz̃′k(t) + . . .) = F̃0(t) + εF̃1(t) + . . . εkF̃k(t) + . . . ,

ỹ′0(t) + εỹ′1(t) + . . .+ εkỹ′k(t) + . . . = f̃0(t) + εf̃1(t) + . . . εkf̃k(t) + . . . ,

ω̇
(i)
0 (τi) + εω̇

(i)
1 (τi) + . . .+ εkω̇

(i)
k (τi) + . . . = Π0F (τi) + εΠ1F (τi) + . . .+ εkΠkF (τi) + . . . ,

ν̇
(i)
0 (τi) + εν̇

(i)
1 (τi) + . . .+ εkν̇

(i)
k (τi) + . . . = Π0f(τi) + εΠ1f(τi) + . . .+ εkΠkf(τi) + . . . ,

ε(
∞∑
k=0

εk∆z̃k|t=θi +
∞∑
k=0

εkω
(i)
k (0)) = Ĩ0(θi) + εĨ1(θi) + . . .+ εk Ĩk(θi) + . . . ,

∞∑
k=0

εk∆ỹk|t=θi + ε

∞∑
k=0

εkν
(i)
k (0) = J̃0(θi) + εJ̃1(θi) + . . .+ εkJ̃k(θi) + . . . .

Substituting the expansion (2.13) into conditions (2.5), we obtain

z(0, ε) =

∞∑
k=0

εkz̃k(0) +

∞∑
k=0

εkω
(0)
k (0) = z0,

and

y(0, ε) =

∞∑
k=0

εkỹk(0) + ε

∞∑
k=0

εkν
(0)
k (0) = y0.

In fact, the above expansions up to order n. We equate the coefficients according to
the powers of ε. To determine the approximation of order zero z̃0(t), ỹ0(t), ω

(i)
0 (τi) and

ν
(i)
0 (τi), i = 1, 2, ..., p, we obtain the systems

0 = F (z̃0(t), ỹ0(t), 0),

ỹ′0(t) = f(z̃0(t), ỹ0(t)),
(2.18)

ω̇
(i)
0 (τi) = F (z̃0(θi) + ω

(i)
0 (τi), ỹ0(θi), 0)− F (z̃0(θi), ỹ0(θi), 0) = Π0F (τi),

ν̇
(i)
0 (τi) = f(z̃0(θi) + ω

(i)
0 (τi), ỹ0(θi))− f(z̃0(θi), ỹ0(θi)) = Π0f(τi),

(2.19)

(2.20) 0 =
I(z̃0(θi), ỹ0(θi), 0)

ε
,

∆z̃0|t=θi + ω
(i)
0 (0) = Iz(θi)z̃1(θi) + Iy(θi)ỹ1(θi) + Iε(θi) = Ĩ1(z̃0(θi), ỹ0(θi), 0),

∆ỹ0|t=θi = J(z̃0(θi), ỹ0(θi)) = J0(z̃0(θi), ỹ0(θi)),(2.21)

z̃0(0) + ω
(0)
0 (0) = z0, ỹ0(0) = y0.

To define the coefficients of εk(k ≥ 1), we use the equations

z̃′k−1(t) = Fz(t)z̃k(t) + Fy(t)ỹk(t) + Fk(t),

ỹ′k(t) = fz(t)z̃k(t) + fy(t)ỹk(t) + fk(t),
(2.22)

ω̇
(i)
k (τi) = Fz(τi)ω

(i)
k (τi) + Fy(τi)ν

(i)
k−1(τi) +Gk(τi) = ΠkF (τi),

ν̇
(i)
k (τi) = fz(τi)ω

(i)
k (τi) + fy(τi)ν

(i)
k−1(τi) +Qk(τi) = Πkf(τi),
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∆z̃k|t=θi + ω
(i)
k (0) = Iz(θi)z̃k+1(θi) + Iy(θi)ỹk+1(θi) + Ik+1(θi),

∆ỹk|t=θi + ν
(i)
k−1(0) = Jz(θi)z̃k(θi) + Jy(θi)ỹk(θi) + Jk(θi),(2.23)

z̃k(0) + ω
(0)
k (0) = 0, ỹk(0) + ν

(0)
k−1(0) = 0.

Consider the interval t ∈ [0, θ1]. To find the coefficients of ε0 for the approximation z̃0(t)
and ỹ0(t) we have the system

0 = F (z̃0(t), ỹ0(t), 0),

ỹ′0(t) = f(z̃0(t), ỹ0(t)), ỹ0(0) = y0.

In view of conditions (C2) and (C3) we choose z̃0(t) = z̃(t), ỹ0(t) = ỹ(t).
Due to the first equation of (2.18), equation (2.19) takes the form

ω̇
(0)
0 (τ0) = F (z̃0(θ0) + ω

(0)
0 (τ0), ỹ0(θ0), 0).

From the last equation and initial condition

ω
(0)
0 (0) = z0 − z̃0(0)

one can find ω
(0)
0 (τ0). In view of condition (C5), ω(0)

0 (τ0) possesses the exponential esti-
mate,

(2.24) ∥ω(0)
0 (τ0)∥ ≤ c exp(−κτ0),

where c and κ are positive numbers.
It remains to solve the equation

ν̇
(0)
0 (τ0) = f(z̃0(θ0) + ω

(0)
0 (τ0), ỹ0(θ0))− f(z̃0(θ0), ỹ0(θ0)) = Π0f(τ0).

Taking into account condition (2.14), we find initial condition

ν
(0)
0 (0) =

∫ 0

∞
Π0f(s)ds,

and obtain that

ν
(0)
0 (τ0) =

∫ τ0

∞
Π0f(s)ds.

Since ∥Π0f(τ0)∥ ≤ c exp(−κτ0) then it is true that

∥ν(0)0 (τ0)∥ ≤ c exp(−κτ0).

To determine the coefficients of εk for the approximation z̃k(t) and ỹk(t) we apply the
systems

z̃′k−1(t) = Fz(t)z̃k(t) + Fy(t)ỹk(t) + Fk(t),

ỹ′k(t) = fz(t)z̃k(t) + fy(t)ỹk(t) + fk(t), ỹk(0) + ν
(0)
k−1(0) = 0.

To find ω
(0)
k (τ0) it is needed to solve the following system

ω̇
(0)
k (τ0) = Fz(τ0)ω

(0)
k (τ0) + Fy(τ0)ν

(0)
k−1(τ0) +Gk(τ0),

ω
(0)
k (0) = −z̃k(0).

It remains to solve the equations

ν̇
(0)
k (τ0) = fz(τ0)ω

(0)
k (τ0) + fy(τ0)ν

(0)
k−1(τ0) +Qk(τ0) = Πkf(τ0).

Using assumption (2.14), one can find initial condition

ν
(0)
k (0) =

∫ 0

∞
Πkf(s)ds,
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and equalities

ν
(0)
k (τ0) =

∫ τ0

∞
Πkf(s)ds.

Functions ΠkF (τ0) and Πkf(τ0) admit the exponential estimates of the type (2.24). There-
fore, the following inequalities are hold,

∥ω(0)
k (τ0)∥ ≤ c exp(−κτ0),

∥ν(0)k (τ0)∥ ≤ c exp(−κτ0).

Now consider the next interval t ∈ (θi, θi+1], i = 1, 2, ..., p. To define the coefficients of
ε0 for the approximation z̃0(t) and ỹ0(t) we utilize the systems

0 =F (z̃0(t), ỹ0(t), 0), 0 = I(z̃0(θi), ỹ0(θi), 0),

ỹ′0(t) =f(z̃0(t), ỹ0(t)), ∆ỹ0|t=θi = J(z̃0(θi), ỹ0(θi)).

By conditions (C2) and (C3), we have to choose z̃0(t) = z̃(t), ỹ0(t) = ỹ(t).
According to the first equation of (2.18), the equation (2.19) can be written as

ω̇
(i)
0 (τi) = F (z̃0(θi) + ω

(i)
0 (τi), ỹ0(θi), 0), i = 1, 2, ..., p.

The last equation and initial condition

ω
(i)
0 (0) = Iz(θi)z̃1(θi) + Iy(θi)ỹ1(θi) + Iε(θi)−∆z̃0|t=θi , i = 1, 2, ..., p,

imply to find ω
(i)
0 (τi), where ω

(i)
0 (0) may be modified as below. By differentiate both sides

of the first equations of (2.18) and (2.20) we obtain that

∂F

∂z̃0
dz̃0 +

∂F

∂ỹ0
dỹ0 = 0 ⇒ ∂F

∂z̃0
= − ∂F

∂ỹ0

dỹ0
dz̃0

,

∂I

∂z̃0
dz̃0 +

∂I

∂ỹ0
dỹ0 = 0 ⇒ ∂I

∂z̃0
= − ∂I

∂ỹ0

dỹ0
dz̃0

.

(2.25)

The substitution of the first equation of (2.25) into (2.22) gives that

z̃′0(θi) = − ∂F

∂ỹ0

dỹ0
dz̃0

z̃1(θi) + Fy(θi)ỹ1(θi) + F1(θi).

Hence,

Fy(θi)[ỹ1(θi)−
dỹ0
dz̃0

z̃1(θi)] = z̃′0(θi)− F1(θi).

The last equality implies that

(2.26) ỹ1(θi)−
dỹ0
dz̃0

z̃1(θi) =
1

Fy(θi)
(z̃′0(θi)− F1(θi)).

Substituting the second equation of (2.25) into (2.23), we obtain

ω
(i)
0 (0) = Iy(θi)[ỹ1(θi)−

dỹ0
dz̃0

z̃1(θi)] + Iε(θi)−∆z̃0|t=θi , i = 1, 2, ..., p.

Replace the square bracket with equation (2.26) to get

ω
(i)
0 (0) =

Iy(θi)

Fy(θi)
(z̃′0(θi)− F1(θi)) + Iε(θi)−∆z̃0|t=θi , i = 1, 2, ..., p.

In view of condition (C5), ω
(i)
0 (τi) possesses the exponential estimate:

(2.27) ∥ω(i)
0 (τi)∥ ≤ c exp(−κτi), i = 1, 2, ..., p,

where c and κ are positive numbers, which are various in different inequalities.
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It remains to solve the equations

ν̇
(i)
0 (τi) = f(z̃0(θi) + ω

(i)
0 (τi), ỹ0(θi))− f(z̃0(θi), ỹ0(θi) = Π0f(τi), i = 1, 2, ..., p.

By virtue of condition (2.14), we find initial condition

ν
(i)
0 (0) =

∫ 0

∞
Π0f(s)ds.

Therefore, one can obtain

ν
(i)
0 (τi) =

∫ τi

∞
Π0f(s)ds.

As ∥Π0f(τi)∥ ≤ c exp(−κτi), it is true that

∥ν(i)0 (τi)∥ ≤ c exp(−κτi), i = 1, 2, ..., p.

To determine the coefficients of εk for the approximation z̃k(t) and ỹk(t) we have the
systems

z̃′k−1(t) = Fz(t)z̃k(t) + Fy(t)ỹk(t) + Fk(t),

ỹ′k(t) = fz(t)z̃k(t) + fy(t)ỹk(t) + fk(t),

∆ỹk|t=θi + ν
(i)
k−1(0) = Jz(θi)z̃k(θi) + Jy(θi)ỹk(θi) + Jk(θi).

To find ω
(i)
k (τi), i = 1, 2, ..., p, it is needed to solve the system

ω̇
(i)
k (τi) = Fz(τi)ω

(i)
k (τi) + Fy(τi)ν

(i)
k−1(τi) +Gk(τi),

ω
(i)
k (0) = Iz(θi)z̃k+1(θi) + Iy(θi)ỹk+1(θi) + Ik+1(θi)∆z̃k|t=θi ,

where ω
(i)
k (0) can be changed as follows. Differentiating both sides of the equations (2.18)

and (2.20) one can obtain that

∂F

∂z̃0
dz̃0 +

∂F

∂ỹ0
dỹ0 = 0 ⇒ ∂F

∂z̃0
= − ∂F

∂ỹ0

dỹ0
dz̃0

,

∂I

∂z̃0
dz̃0 +

∂I

∂ỹ0
dỹ0 = 0 ⇒ ∂I

∂z̃0
= − ∂I

∂ỹ0

dỹ0
dz̃0

.

(2.28)

Substitution of the first equation of (2.28) into (2.22) implies that

z̃′k(θi) = − ∂F

∂ỹ0

dỹ0
dz̃0

z̃k+1(θi) + Fy(θi)ỹk+1(θi) + Fk+1(θi).

Therefore,

Fy(θi)[ỹk+1(θi)−
dỹ0
dz̃0

z̃k+1(θi)] = z̃′k(θi)− Fk+1(θi).

The expression in the square bracket in the last relation is equal to

(2.29) ỹk+1(θi)−
dỹ0
dz̃0

z̃k+1(θi) =
1

Fy(θi)
(z̃′k(θi)− Fk+1(θi)).

Substituting the second equation of (2.28) into (2.23), we obtain

ω
(i)
k (0) = Iy(θi)[ỹk+1(θi)−

dỹ0
dz̃0

z̃k+1(θi)] + Ik+1(θi)−∆z̃k|t=θi , i = 1, 2, ..., p.

Replace the square bracket with equation (2.29) to get

ω
(i)
k (0) =

Iy(θi)

Fy(θi)
(z̃′k(θi)− Fk+1(θi)) + Ik+1(θi)−∆z̃k|t=θi , i = 1, 2, ..., p.
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In the end, it remains to solve the equations

ν̇
(i)
k (τi) = fz(τi)ω

(i)
k (τi) + fy(τi)ν

(i)
k−1(τi) +Qk(τi) = Πkf(τi), i = 1, 2, ..., p.

By using condition (2.14) we get that

ν
(i)
k (0) =

∫ 0

∞
Πkf(s)ds,

and

ν
(i)
k (τi) =

∫ τi

∞
Πkf(s)ds.

Functions ΠkF (τi) and Πkf(τi) possess the exponential estimate of the type (2.27). There-
fore, it can be proved that the following inequalities hold,

∥ω(i)
k (τi)∥ ≤ c exp(−κτi), i = 1, 2, ..., p,

∥ν(i)k (τi)∥ ≤ c exp(−κτi), i = 1, 2, ..., p.
(2.30)

Thus, the coefficients of the expansions (2.13) are obtained at least up to order k = n.

3. MAIN RESULTS

In this section, we prove the main Theorem 3.1 and Theorem 3.2, which describe two
cases respectively, singularity with one layer and singularity with multi-layers. The first
one is with a single layer that occurs near t = 0, and the second is with multi-layers that
appears near t = 0 and t = θi

p
i=1. It is proved that the partial sums of series (2.12) form a

sequence of uniform approximations to the solution of problem (2.4)-(2.5).

3.1. Asymptotic expansion of singularity with a single layer. Consider the case when
convergence is not uniform near t = 0 since z(0, ε) = z0 and z0 ̸= φ for all ε > 0. The
interval of nonuniform convergence is called an initial layer.

By virtue of condition (C6) of (2.17), the following equality is valid,

Ĩ1(z̃0(θi), ỹ0(θi), 0) = 0, i = 1, 2, ..., p.

Then the first equation of (2.21) takes the form

ω
(i)
0 (0) = −∆z̃0|t=θi , i = 1, 2, ..., p.

Substituting the last expression in (2.12) one can obtain

z(θi+, ε) = z̃0(θi+) + ω
(i)
0 (0) +O(ε) = z̃0(θi) +O(ε), i = 1, 2, ..., p.

We can say that the region of nonuniform convergence is O(ε) thick, since for t > 0, ∥z(t, ε)−
φ∥ = O(ε) can be made arbitrarily close to zero by choosing ε small enough. This implies
that for enough small ε, the solution z(t, ε) of the problem (2.4),(2.5) has no boundary
layer phenomenon near the points t = θi

p
i=1.

Theorem 3.1. Let conditions (C1)− (C5) and (C6) are hold. Then there exist positive constants
ε0 and c such that for any ε ∈ (0, ε0] the problem (2.4),(2.5) has a unique solution z(t, ε), y(t, ε)
which satisfies the inequality

|z(t, ε)− Zn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T,

|y(t, ε)− Yn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T,
(3.31)
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where

Zn(t, ε) =

n∑
k=0

εkz̃k(t) +

n∑
k=0

εkω
(i)
k (τi),

Yn(t, ε) =

n∑
k=0

εkỹk(t) + ε

n∑
k=0

εkν
(i)
k (τi), i = 1, 2, ..., p.

Proof. By replacing the variables z(t, ε) = u(t, ε) + Zn(t, ε) and y(t, ε) = v(t, ε) + Yn(t, ε)
in (2.4) and (2.5), we obtain the system

ε
du

dt
= Fzu+ Fyv +G1(u, v, t, ε),

dv

dt
= fzu+ fyv +G2(u, v, t, ε),

ε∆u|t=θi = Iz(θi)u(θi) + Iy(θi)v(θi) +Q1(u, v, θi, ε),

∆v|t=θi = Jz(θi)u(θi) + Jy(θi)v(θi) +Q2(u, v, θi, ε),

(3.32)

with initial condition

(3.33) u(0, ε) = 0, v(0, ε) = 0,

where the elements of matrices Fz, Fy, fz and fy are calculated at the points (z̃0(t) +

ω
(i)
0 (τi), ỹ0(t), 0), i = 1, 2, ..., p,

G1(u, v, t, ε) = F (u+ Zn, v + Yn, ε)− ε
dZn

dt
− Fzu− Fyv,

G2(u, v, t, ε) = f(u+ Zn, v + Yn)−
dYn

dt
− fzu− fyv,

Q1(u, v, θi, ε) = I(u+ Z(i−1)
n , v + Y (i−1)

n , ε) + εZ(i−1)
n − εZ(i)

n − Izu− Iyv,

Q2(u, v, θi, ε) = J(u+ Z(i−1)
n , v + Y (i−1)

n ) + Y (i−1)
n − Y (i)

n − Jzu− Jyv.

The functions G(u, v, t, ε) have the following two properties,
1) G1(0, 0, t, ε) = O(εn+1), G2(0, 0, t, ε) = O(εn+1).
2) For any ε > 0 there exist numbers δ = δ(ε) and µ = µ(ε) such that for ∥ui∥ ≤ δ,
∥vi∥ ≤ δ, i = 1, 2, 0 < ε < ε0 the following inequalities hold,
∥Gi(u1, v1, t, ε)−Gi(u2, v2, t, ε)∥ ≤ ε(∥u2 − u1∥+ ∥v2 − v1∥), i = 1, 2.
Let us prove the property 1). For t ∈ (θi, θi+1] we obtain that

G2(0, 0, t, ε) =f(Zn, Yn)−
dYn

dt
= [f(

n∑
k=0

εk(z̃k(ετi) + ω
(i)
k (τi)),

n∑
k=0

εk(ỹk(ετi) + εν
(i)
k (τi)))−

f(

n∑
k=0

εkz̃k(ετi),

n∑
k=0

εkỹk(ετi))−
n∑

k=0

εkν̇
(i)
k (τi)]+

[f(

n∑
k=0

εkz̃k(t),

n∑
k=0

εkỹk(t))−
n∑

k=0

εkỹ′k(t)] =

[

n∑
k=0

εkΠkf(τi) +O(εn+1)−
n∑

k=0

εkν̇
(i)
k (τi)]+

[

n∑
k=0

εkf̃k(t) +O(εn+1)−
n∑

k=0

εkỹ′k(t)] = O(εn+1),
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similarly to that for functions ỹk(t), ν
(i)
k (τi), i = 1, 2, ..., p. The second property of the func-

tions Gj , j = 1, 2, follows from the mean value theorem. Actually,

Gi(u1, v1, t, ε)−Gi(u2, v2, t, ε) =

∫ 1

0

∂

∂s
Gi(su1 + (1− s)u2, sv1 + (1− s)v2, t, ε)ds =∫ 1

0

∂uGi(u
∗(s), v∗(s), t, ε)ds · (u1 − u2) +

∫ 1

0

∂vGi(u
∗(s), v∗(s), t, ε)ds · (v1 − v2),

where u∗(s) = su1 + (1− s)u2, v
∗(s) = sv1 + (1− s)v2. But

∂uGi(u
∗(s), v∗(s), t, ε) = ∂zF (u∗(s) + Zn, v

∗(s) + Yn, ε)− ∂zF (Z0, Y0, 0),

∂vGi(u
∗(s), v∗(s), t, ε) = ∂yF (u∗(s) + Zn, v

∗(s) + Yn, ε)− ∂yF (Z0, Y0, 0),

and

|u∗(s) + Zn(t, ε)− Z0(t)| ≤ |u∗(s)|+ Cε,

|v∗(s) + Yn(t, ε)− Y0(t)| ≤ |v∗(s)|+ Cε.

The continuity of the first derivatives of the functions F (z, y, ε) and f(z, y) implies the
validity of property 2). The functions Qi(u, v, θi, ε), i = 1, 2, have the following two
properties,

1∗) For 0 < ε < ε0

Q1(0, 0, θi, ε) = O(εn+1), Q2(0, 0, θi, ε) = O(εn+1).

2∗) For any ε > 0 there exist numbers δ = δ(ε) and µ = µ(ε) such that for ∥ui∥ ≤ δ,
∥vi∥ ≤ δ, i = 1, 2, 0 < ε < ε0 the following inequalities hold,

∥Qi(u1, v1, θi, ε)−Qi(u2, v2, θi, ε)∥ ≤ ε(∥u2 − u1∥+ ∥v2 − v1∥), i = 1, 2.

The validity of the property 1∗) for Q1(0, 0, θi, ε) follows from the next relation

Q1(0, 0, θi, ε) = I(Z(i−1)
n , Y (i−1)

n , ε) + εZ(i−1)
n − εZ(i)

n =

I(

n∑
k=0

εk(z̃k(θi) + ω
(i−1)
k (

θi − θi−1

ε
)),

n∑
k=0

εk(ỹk(θi) + εν
(i−1)
k (

θi − θi−1

ε
)), ε)+

ε

n∑
k=0

εk(z̃k(θi) + ω
(i−1)
k (

θi − θi−1

ε
))− ε

n∑
k=0

εk(z̃k(θi+) + ω
(i)
k (0)) =

n∑
k=0

εk+1ω
(i−1)
k (

θi − θi−1

ε
)+

[I(

n∑
k=0

εk(z̃k(θi) + ω
(i−1)
k (

θi − θi−1

ε
)),

n∑
k=0

εk(ỹk(θi) + εν
(i−1)
k (

θi − θi−1

ε
)), ε)−

I(

n∑
k=0

εkz̃k(θi),

n∑
k=0

εkỹk(θi), ε)] + [

n∑
k=0

εk Ĩk(θi) +O(εn+1)−

ε

n−1∑
k=0

εk(∆z̃k|t=θi + ω
(i)
k (0))− εn+1(∆z̃n|t=θi + ω(i)

n (0))] = O(εn+1).

The first two terms decrease exponentially as ε → 0, since of the estimates (2.30) and
the mean value theorem. The third term is evaluated using O(εn+1). The property 2∗) is
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proved similarly to property 2). Now, we replace the impulsive system (3.32)-(3.33) by
the equivalent integral equations

u(t, ε) =
1

ε

∫ t

0

U(t, s, ε)[Fy(s, ε)v(s, ε) +G1(u1, v1, t, ε)]ds+(3.34) ∑
0<θi<t

U(t, θi, ε)(E +
Iz(θi)

ε
)−1(Iy(θi)v(θi) +Q1(u, v, θi, ε)),

v(t, ε) =

∫ t

0

V (t, s, ε)[fz(s, ε)u(s, ε) +G2(u1, v1, t, ε)]ds+(3.35) ∑
0<θi<t

V (t, θi, ε)(E + Jy(θi))
−1(Jz(θi)u(θi) +Q2(u, v, θi, ε)),

where U(t, s, ε) and V (t, s, ε) are the fundamental matrices of the systems

ε
dU

dt
= Fz(t, ε)U, t ̸= θi, ε∆U |t=θi = Iz(θi)U, U(s, s, ε) = E,

dV

dt
= fy(t, ε)V, t ̸= θi, ∆V |t=θi = Jy(θi)V, V (s, s, ε) = E.

For the matrix U(t, s, ε) it is correct that

∥U(t, s, ε)∥ ≤ c exp(−κ

ε
(t− s)), 0 ≤ s ≤ t ≤ T.

Substituting the expression for v(t, ε), defined by the equation (3.35), into the first equa-
tion, we obtain

u(t, ε) =

∫ t

0

K(t, s, ε)u(s, ε)ds+W1(u, v, t, ε),

where K is a bounded kernel, and the operator W1 possesses the same two properties as
function G(u, v, t, ε). The last equation can be replaced by the equivalent equation

(3.36) u(t, ε) =

∫ t

0

R(t, s, ε)W1(u, v, s, ε)ds+W1(u, v, t, ε) = T1(u, v, t, ε),

where R is the resolvent of the kernel K. Now, let us substitute the expression (3.36) for
u(t, ε) into the equation of (3.35),

v(t, ε) =

∫ t

0

V (t, s, ε)[fz(s, ε)T1(u, v, t, ε) +G2(u, v, t, ε)]ds+

∑
0<θi<t

V (t, θi, ε)(E + Jy(θi))
−1(Jz(θi)T1(u, v, θi, ε) +Q2(u, v, θi, ε)) = T2(u, v, t, ε).

(3.37)

Integral operators T1 and T2 admit the same two properties as function G(u, v, t, ε). Ap-
plying the method of successive approximations to the systems (3.36), (3.37) we find that
a unique solution exists and satisfies the estimates

|u(t, ε)| = |z(t, ε)− Zn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T,

|v(t, ε)| = |y(t, ε)− Yn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T.

The theorem is proved. □
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3.2. Asymptotic expansion of singularity with multi-layers. In the previous subsection,
it was shown that there exists a single initial layer. Using an impulse function, the con-
vergence can be nonuniform near several points, that is to say, that multi-layers emerge.
These layers occur on the neighborhoods of t = 0 and t = θi

p
i=1.

To have singularity with multi-layers, let us consider system (2.4) with the assumptions
(C1)-(C5) and additional condition

(C7) lim
(z,y,ε)→(φ,ỹ,0)

I(z, y, ε)

ε
= I0 ̸= 0, and φ(ỹ(θi), θi)+ I0, i = 1, 2, ..., p, are in the basin

of attraction of φ(ỹ(t), t).

By the virtue of condition (C7) of (2.17), the following equality is valid,

Ĩ1(z̃0(θi), ỹ0(θi), 0) = I0 ̸= 0, i = 1, 2, ..., p.

Therefore, the first equation of (2.21) takes the form

ω
(i)
0 (0) = I0 −∆z̃0|t=θi , i = 1, 2, ..., p.

Substituting the last expression in (2.12) one can obtain

z(θi+, ε) = z̃0(θi+) + ω
(i)
0 (0) +O(ε) = z̃0(θi) + I0 +O(ε), i = 1, 2, ..., p.

By condition (C7), after each impulse moment, the difference ∥z(θi+, ε)−φ∥ = I0 +O(ε)
is not diminish to zero as ε → 0. Hence, the convergence is not uniform. Then we can
say that the solution z(t, ε) of the system (2.4) with the initial value (2.5) has multi-layers
appearing near t = 0 and t = θi

p
i=1.

The next theorem can be proved in the similar way as Theorem 3.1.

Theorem 3.2. Assume that conditions (C1)-(C5) and (C7) are fulfilled. Then there exist pos-
itive constants ε0 and c such that for any ε ∈ (0, ε0] problem (2.4), (2.5) has a unique solution
z(t, ε), y(t, ε) which satisfies the inequality

|z(t, ε)− Zn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T,

|y(t, ε)− Yn(t, ε)| ≤ cεn+1, 0 ≤ t ≤ T,

where

Zn(t, ε) =

n∑
k=0

εkz̃k(t) +

n∑
k=0

εkω
(i)
k (τi),

Yn(t, ε) =

n∑
k=0

εkỹk(t) + ε

n∑
k=0

εkν
(i)
k (τi), i = 1, 2, ..., p.

4. NUMERICAL EXAMPLES

Example 4.1. Consider the impulsive system with singularities

εz′ = z(2− z) + ε2y1, ε∆z|t=θi = 2− z + ε2(y21 − 2y2),

y′1 = y2 − zy1, ∆y1|t=θi = 2z + y21 ,

y′2 = 2y1 − y2 − y31 ,

(4.38)

and initial conditions

(4.39) z(0, ε) = 1, y1(0, ε) = 1, y2(0, ε) = −2,
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where θi = i/3, i = 1, 2, ...14. Assume that ε = 0 in this problem. Then, the first line of
(4.38) becomes z̃(2− z̃) = 0, 2− z̃ = 0. It has the root z̃ = φ = 2. One can check that

∂

∂z
(z(2− z))|z=2 = 2− 2z < 0.

Therefore, z̃ = 2 is uniformly asymptotically stable. Substituting z̃ = 2 into the second
line of (4.38), one can obtain

ỹ′1 = ỹ2 − 2ỹ1, ∆ỹ1|t=θi = ỹ21 + 4,

ỹ′2 = 2ỹ1 − ỹ2 − ỹ31 ,

ỹ1(0) = 1, ỹ2(0) = −2.

This system has a unique solution ỹ(t). Now, let us check the condition (C6)

lim
(z,y,ε)→(φ,y0,0)

2− z + ε2(y21 − 2y2)

ε
= 0.

The solution z(t, ε) of system (4.38) with initial value (4.39) has a single initial layer at
t = 0. The result of simulation is seen in Figure 1 that a single layer occurs. In Figure 2 it is
shown that the solution of system (4.38) with initial value (1,1,-2) tends to z = 2 as ε → 0.

FIGURE 1. The red, blue and green lines are graphs of solutions of system
(4.38) with initial values z(0, ε) = 1, y1(0, ε) = 1 and y2(0, ε) = −2 with
values of ε : 0.1, 0.05, 0.005, respectively.

Example 4.2. Now, let us consider the following system with impulsive singularity

εz′ = z − z3, ε∆z|t=θi = (z − 1)2 − 0.5εy + 2sin(ε),

y′ = yz − y2, ∆y|t=θi = 2y + z − 1,
(4.40)

and initial conditions

(4.41) z(0, ε) = 2, y(0, ε) = 3,

where θi = i/3, i = 1, 2, ...14. If ε = 0 in (4.40), then the first line becomes z̃ − z̃3 = 0,
and (z̃ − 1)2 = 0. It has the root z̃ = 1. The corresponding root φ = 1 will be uniformly
asymptotically stable since

∂

∂z
(z − z3)|z=1 = 1− 3z2 < 0.
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FIGURE 2. Red, blue and green lines represent solutions of system (4.38)
with initial value (1, 1,−2) for ε equals to 0.1, 0.05 and 0.005, respectively.

Substituting z̃ = 1 into the second equation of system (4.40), we obtain that

ỹ′ = ỹ − ỹ2, ∆ỹ|t=θi = 2ỹ,

with initial condition ỹ(0) = 3. The last system admits the unique solution

ỹ(t) =
exp(t)

exp(t)−
i∑

k=0

2

3i−k+1
exp(

k

3
)

, i = 1, 2, ...14.

One can verify that condition (C7) is valid

lim
(z,y,ε)→(φ,ỹ,0)

(z − 1)2 − 0, 5εy + 2sin(ε)

ε
= 2− exp(θi)

2 exp(θi)−
i∑

k=0

1

3i−k+1
exp(

k

3
)

̸= 0.

The solution z(t, ε) of system (4.40) with initial value (4.41) has multi-layers near t = 0
and t = θi+, i = 1, 2, ...14. Figure 3 demonstrates the solution of system (4.40) with initial
value (1,1,-2), which tends to z = 1 as ε → 0.

FIGURE 3. The red, blue and green curves are the behaviours of solutions
of system (4.40) if ε is equal to 0.1, 0.05 and 0.005, respectively.
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5. CONCLUSION

In this paper, the singular impulsive differential equations of type in [1, 3, 5] is consid-
ered. The boundary function method is used to construct desired asymptotic solutions.
We investigated the asymptotic expansion of solutions with any degree of accuracy. Single
layer and several multi-layers are considered.

The articles [7, 8] and book [6] investigated impulse systems with small parameters,
participating only in the differential equations, but not in their impulse equations. Fol-
lowing [1, 3], we inserted a small parameter into the impulse equation. Thus, the concept
of singularity for discontinuous dynamics is greatly expanded. Illustrative examples with
simulations are given to support the theoretical results.
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