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Oscillation of second-order functional differential
equations with mixed argument

B. BACULÍKOVÁ and J. DŽURINA

ABSTRACT. In this paper we introduce new effective technique for investigation of oscillation for second-
order differential equation with mixed argument

(E) y′′(t) = p(t)y(τ(t)).

Our criteria improves the existing ones and the progress is illustrated via several examples.

1. INTRODUCTION

This paper is concerned with oscillatory behavior of linear functional differential equation
of the form

(E) y′′(t) = p(t)y(τ(t)),

where the following conditions are assumed to hold
(H1) p(t) ∈ C([t0,∞)), p(t) > 0,
(H2) τ(t) ∈ C1([t0,∞)), τ ′(t) > 0, lim

t→∞
τ(t) = ∞.

As usually, by a proper solution of Eq. (E) we mean a function y : [Ty,∞) → R which
satisfies (E) for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We make
the standing hypothesis that (E) does possess proper solutions.

The oscillatory character of the solutions is understood in the standard way, that is,
a proper solution is termed oscillatory or nonoscillatory according to whether it does or
does not have infinitely many zeros. There are numerous papers devoted to oscillation of
differential equations, see e.g. [1]–[20].

If y(t) is a nonoscillatory solution of (E), then there exist a number ℓ ∈ {0, 2} such that

y(t)y(i)(t) > 0 for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 for ℓ ≤ i ≤ n.
(1.1)

Such a y(t) is said to be a (nonoscillatory) solution of degree ℓ and the totality of solutions
of degree ℓ is denote by Nℓ. If we denote the set of all nonoscillatory solutions of (E) by
N , then we have

N = N0 ∪N2.

It is known that in the case where τ(t) ≡ t Eq. (E) always has solutions of degree 0 and 2,
that is, N0 ̸= ∅ and N2 ̸= ∅. The situation for (E) with τ(t) ̸≡ t is different. In fact, it may
happen that N0 = ∅ or N2 = ∅ when the deviating argument τ(t) is retarded (τ(t) ≤ t) or
advanced (τ(t) ≥ t) and the deviation |t − τ(t)| is large enough, see Ladas et al. [20] or
Koplatadze and Chanturia [12] who formulated the following results:
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Theorem A. If τ(t) ≤ t and

(1.2) lim sup
t→∞

∫ t

τ(t)

(s− τ(t))p(s) ds > 1,

then N0 = ∅ for (E).

Theorem B. If τ(t) ≥ t and

(1.3) lim sup
t→∞

∫ τ(t)

t

(τ(t)− s)p(s) ds > 1,

then N2 = ∅ for (E).

The effort of mathematicians has been oriented to improve those results or extend them
to more general differential equations. The present authors also contributed to the subject,
see [2].

We are interested in the situation in which N = ∅, that is, all proper solutions of (E) are
oscillatory. The deviating argument τ(t) is said to be of mixed type if its delay part

Dτ = {t ∈ (t0,∞) : τ(t) < t}

and its advanced part

Aτ = {t ∈ (t0,∞) : τ(t) > t}

are both unbounded subset of (t0,∞). In view of above-mentioned results it is natural to
expect that the presence of deviating argument of mixed type will be sufficient to force all
solutions of (E) to oscillate. Kusano [13] was the first who proved this conjecture. After
introducing two sequences {tk}, {sk} such that

(1.4) tk ∈ Dτ , tk → ∞ as k → ∞

and

(1.5) sk ∈ Aτ , sk → ∞ as k → ∞

Kusano formulated the following criterion:

Theorem C. Assume that there exist two sequences {tk}, {sk} satisfying (1.4) and (1.5). If

(1.6) lim sup
k→∞

∫ tk

τ(tk)

(
τ(tk)− τ(s)

)
p(s) ds > 1

and

(1.7) lim sup
k→∞

∫ τ(sk)

sk

(
τ(t)− τ(sk)

)
p(t) dt > 1,

then (E) is oscillatory.

Our aim in this work is to significantly improve the above mentioned results and the
progress will be demonstrated via set of illustrative examples in which we shall compare
our results with known ones.
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2. MAIN RESULTS

It is easy to see that (H2) guaranties the existence of the inverse function τ−1(t) and
therefore the auxiliary function ξ(t) ∈ C1([t0,∞)) in this way

(2.8) ξ(ξ(t)) = τ−1(t)

is well defined.
We are about to establish criterion for N0 = ∅ of (E). Suppose that there exists a se-

quence {tk} such that (1.4) holds. It is easy to see that ξ(tk) > tk. To simplify our notation
we employ the following functions

P1(tk) =

∫ ξ(tk)

tk

(s− tk)p(s) ds,

P2(tk) =

∫ τ−1(tk)

ξ(tk)

(s− tk)p(s) ds,

P3(tk) =

∫ τ−1(ξ(tk))

τ−1(tk)

(s− tk)p(s) ds.

(2.9)

Theorem 2.1. Assume that there exist a function ξ(t) ∈ C1([t0,∞)) satisfying (2.8) and a
sequence {tk} such that (1.4) holds. If

lim sup
k→∞

[
P1(tk)P1(ξ

−1(tk)) + P1(tk)P3(ξ
−1(tk))

(1− P2(tk))(1− P2(ξ−1(tk)))

+
P3(tk)P1(ξ(tk))

(1− P2(tk))(1− P2(ξ(tk)))

]
> 1,

(2.10)

then N0 = ∅ for (E).

Proof. Assume on the contrary that y(t) is an eventually positive solution of (E) such that
y(t) ∈ N0. Integrating twice of (E) from t to ∞ and changing order of integration we are
led to

(2.11) y(t) ≥
∫ ∞

t

(s− t)p(s)y(τ(s)) ds.

Consequently

y(t) ≥
∫ ξ(t)

t

(s− t)p(s)y(τ(s)) ds+

∫ τ−1(t)

ξ(t)

(s− t)p(s)y(τ(s)) ds

+

∫ τ−1(ξ(t))

τ−1(t)

(s− t)p(s)y(τ(s)) ds.

(2.12)

It is useful to observe that for tk ∈ Dτ also (τ(tk), τ
−1(ξ(tk))) ∈ Dτ Setting t = tk and

using that y(t) is decreasing function, we are led to

y(tk) ≥ y(ξ−1(tk))P1(tk) + y(tk)P2(tk) + y(ξ(tk))P3(tk),

which is

(2.13) y(tk) ≥
1

1− P2(tk)

[
y(ξ−1(tk))P1(tk) + y(ξ(tk))P3(tk)

]
.

We repeat this procedure and setting consequently t = ξ−1(tk) and t = ξ(tk) into (2.12),
we obtain

(2.14) y(ξ−1(tk)) ≥
1

1− P2(ξ−1(tk))

[
y(τ(tk))P1(ξ

−1(tk)) + y(tk)P3(ξ
−1(tk))

]
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and

y(ξ(tk)) ≥
1

1− P2(ξ(tk))

[
y(tk)P1(ξ(tk)) + y(τ−1(tk))P3(ξ(tk))

]
≥ P1(ξ(tk))

1− P2(ξ(tk))
y(tk),

(2.15)

respectively. Combining (2.14), (2.15) and (2.13), one gets

y(tk) ≥
1

1− P2(tk)

[
P1(tk)

1− P2(ξ−1(tk))

[
y(τ(tk))P1(ξ

−1(tk)) + y(tk)P3(ξ
−1(tk))

]
+

P3(tk)

1− P2(ξ(tk))
y(tk)P1(ξ(tk))

]
which in view of y(τ(tk)) ≥ y(tk), leads to

y(tk) ≥ y(tk)

[[
P1(tk)P1(ξ

−1(tk)) + P1(tk)P3(ξ
−1(tk))

]
(1− P2(tk))(1− P2(ξ−1(tk)))

+
P3(tk)P1(ξ(tk))

(1− P2(tk))(1− P2(ξ(tk)))

]
.

This contradicts (2.10) and we conclude that N0 = ∅. □

Our next considerations are intended to derive sufficient conditions for N2 = ∅ of
(E). Suppose that there exists a sequence {sk} such that (1.5) holds. It is easy to see
that ξ(sk) < sk, where ξ(t) is defined by (2.8). We shall use the notation

Q1(sk) =

∫ τ−1(sk)

τ−1(ξ(sk))

(sk − s)p(s) ds,

Q2(sk) =

∫ ξ(sk)

τ−1(sk)

(sk − s)p(s) ds,

Q3(sk) =

∫ sk

ξ(sk)

(sk − s)p(s) ds.

(2.16)

Theorem 2.2. Assume that there exist a function ξ(t) ∈ C1([t0,∞)) satisfying (2.8) and a
sequence {sk} such that (1.5) holds. If

lim sup
k→∞

[
Q3(sk)Q1(ξ

−1(sk)) +Q3(sk)Q3(ξ
−1(sk))

(1−Q2(sk))(1−Q2(ξ−1(sk)))

+
Q1(sk)Q3(ξ(sk))

(1−Q2(sk))(1−Q2(ξ(sk)))

]
> 1,

(2.17)

then N2 = ∅ for (E).

Proof. Assume on the contrary that (E) possesses an eventually positive solution y(t) ∈
N2. Double integration of (E) from t1 to t yields

y(t) ≥
∫ t

t1

(t− s)p(s)y(τ(s)) ds.
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Therefore employing auxiliary function ξ(t), we get

y(t) ≥
∫ τ−1(t)

τ−1(ξ(t))

(t− s)p(s)y(τ(s)) ds+

∫ ξ(t)

τ−1(t)

(t− s)p(s)y(τ(s)) ds

+

∫ t

ξ(t)

(t− s)p(s)y(τ(s)) ds.

(2.18)

It easy to see that for sk ∈ Aτ also (τ−1(ξ(sk)), sk) ∈ Aτ . Putting t = sk and taking into
account that y(t) is an increasing function, we have

y(sk) ≥ Q1(sk)y(ξ(sk)) +Q2(sk)y(sk) +Q3(sk)y(ξ
−1(sk))

which is equivalent to

(2.19) y(sk) ≥
1

1−Q2(sk)

[
Q1(sk)y(ξ(sk)) +Q3(sk)y(ξ

−1(sk))
]
.

Repeating this operation and setting consequently t = ξ(sk) and t = ξ−1(sk) into (2.18),
one gets

y(ξ(sk)) ≥
1

1−Q2(ξ(sk))

[
Q1(ξ(sk))y(τ

−1(sk)) +Q3(ξ(sk))y(sk)
]

≥ Q3(ξ(sk))

1−Q2(ξ(sk))
y(sk)

(2.20)

and

(2.21) y(ξ−1(sk)) ≥
1

1−Q2(ξ−1(sk))

[
Q1(ξ

−1(sk))y(sk) +Q3(ξ
−1(sk))y(τ(sk))

]
,

respectively. Setting (2.20) and (2.21) into (2.19) and using that y(τ(sk)) ≥ y(sk), we get

y(sk) ≥
y(sk)

1−Q2(sk)

[
Q1(sk)Q3(ξ(sk))

1−Q2(ξ(sk))

+
Q3(sk)

1−Q2(ξ−1(sk))

[
Q1(ξ

−1(sk)) +Q3(ξ
−1(sk))

]]
,

which contradicts to (2.17) and we conclude that N2 = ∅. □

Combining Theorems 2.1 and 2.2 we obtain desired oscillation criterion.

Theorem 2.3. Assume that there exist a function ξ(t) ∈ C1([t0,∞)) satisfying (2.8) and two
sequences {tk}, {sk} satisfying (1.4) and (1.5). If (2.10) and (2.17) hold, then every solution of
(E) is oscillatory.

In the following example we illustrate the quality of our criterion by comparing it with
that of Kusano presented in Theorem C.

Example 2.1. Consider the equation

(E1) y′′(t) = p0y(t+ sin t),

where p0 > 0, is a constant.
Clearly, the deviating argument τ(t) = t+ sin t is of mixed type. It is easy to see that if

tk = (π/2)+ 2kπ, k = 1, 2, . . . , then tk ∈ Dτ moreover τ(tk) = tk − 1, τ−1(tk) = tk +1 and
ξ(tk) = tk + (1/2). It is easy to verify that

P1(tk) =
p0
8
, P2(tk) =

3p0
8

, and P3(tk) =
5p0
8

.
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On the other hand, if sk = (−π/2) + 2kπ, k = 1, 2, . . . , then sk ∈ Aτ moreover τ(sk) =
sk + 1, τ−1(sk) = sk − 1 and ξ(sk) = sk − (1/2). It is easy to verify that

Q1(sk) =
5p0
8

, Q2(sk) =
3p0
8

, and Q3(sk) =
p0
8
.

Therefore both conditions (2.10) and (2.17) reduce to

p0 >
8√

11 + 3
≈ 1.2665

which according to Theorem 2.3 guarantees that (E1) is oscillatory. we would like to point
out that by Theorem C all solutions of (E1) are oscillatory provided that

p0 >
1

sin 1− 1/2
≈ 2.9285.

The progress is confessed.

Example 2.2. We consider the equation

(E2) y′′(t) =
p0
t2

y(t(1 + 0.5 sin(ln t))), p0 > 0.

We set tk = e−π/2+2kπ , k = 1, 2, . . . . Then tk ∈ Dτ and τ(tk) = tk/2, τ
−1(tk) = 2tk and

ξ(tk) =
√
2 tk. Thus simple computation yields

P1(tk) = p0

(
ln

√
2 +

√
2− 2

2

)
= p0A1, P2(tk) = p0

(
ln

√
2 +

1−
√
2

2

)
= p0A2,

P3(tk) = p0

(
ln
√
2 +

√
2− 2

4

)
= p0A3.

Condition (2.10) takes the form

p0 >

√
A2

1 + 2A1A3 −A2

A2
1 + 2A1A3 −A2

2

= 3.3833

which by Theorem 2.1 implies that N0 = ∅ for (E2).
On the other hand, choosing sk = eπ/2+2kπ , k = 1, 2, . . . we see that sk ∈ Aτ and

τ(sk) = 3sk/2, τ
−1(sk) = 2sk/3 and ξ(sk) =

√
2/3 sk. Consequently

Q1(tk) = p0

(
ln

√
2

3
+

3
√
3

2
√
2
− 3

2

)
= p0B1, Q2(tk) = p0

(
ln

√
2

3
+

3

2
−
√

3

2

)
= p0B2,

Q3(tk) = p0

(
ln

√
2

3
+

√
3

2
− 1

)
= p0B3.

Condition (2.17) reduces to

p0 >

√
B2

1 + 2B1B3 −B2

B2
1 + 2B1B3 −B2

2

= 4.3983

which by Theorem 2.2 implies that N2 = ∅ for (E2) and moreover, by Theorem 2.3 all
solutions of (E2) are oscillatory.

Compared to Theorem C conditions (1.6) and (1.7) yield

p0

(
0.5− ln 2− 0.5 cos

(
−π

2
− ln 2

))
> 1

and
p0

(
−0.5 + ln 1.5− 0.5 cos

(π
2
+ ln 1.5

))
> 1
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respectively, which means that (E2) is oscillatory provided that

p0 > 9.7382.

Our progress is remarkable and it is caused by employing three integrals (see (2.9) and
(2.16)) instead of only one (see (1.6) and (1.7)).
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