CARPATHIAN J. MATH.
Volume 40 (2024), No. 3, Pages 623-626

Some remarks on [Carpathian J. Math. 39 (2023), No 2, 541-551]

J. Caballero ${ }^{1}$, J. Harjani ${ }^{2}$ and K. Sadarangani ${ }^{3}$

ABSTRACT. We present some remarks on [Carpathian J. Math. 39 (2023), No 2, 541-551] in order to obtain a unique non trivial solution.

1. Introduction

In [2], the authors studied the following general functional equation

$$
\begin{align*}
U(x)= & p x U\left(h_{1}(x)\right)+(1-p) x U\left(h_{2}(x)\right)+p(1-x) U\left(h_{3}(x)\right) \\
& +(1-p)(1-x) U\left(h_{4}(x)\right), \tag{1.1}
\end{align*}
$$

for any $x \in[0,1]$, where $p \in[0,1], U:[0,1] \rightarrow \mathbb{R}$ is a unknown function such that $U(0)=0$ and $h_{1}, h_{2}, h_{3}, h_{4}:[0,1] \rightarrow[0,1]$ are given mappings such that

$$
\begin{equation*}
h_{3}(0)=h_{4}(0)=0 . \tag{1.2}
\end{equation*}
$$

They considered the space B of the real valued functions $U:[0,1] \rightarrow \mathbb{R}$ such that $U(0)=$ 0 and

$$
\sup _{x_{1} \neq x_{2}} \frac{\left|U\left(x_{1}\right)-U\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}<\infty .
$$

It is easily seen that $(B,\|\cdot\|)$ is a Banach space, where $\|\cdot\|$ is defined by

$$
\|U\|=\sup _{x_{1} \neq x_{2}} \frac{\left|U\left(x_{1}\right)-U\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}
$$

for any $U \in B$.
The main result of [2] is the following.
Theorem 1.1 (Theorem 3.2 in [2]). Consider the functional equation (1.1) with the condition (1.2). Suppose that $h_{i}:[0,1] \rightarrow[0,1](i=1,2,3,4)$, are Banach contraction mappings with contractive coefficients $\alpha_{i}(i=1,2,3,4)$ satisfying

$$
2\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)<1
$$

and

$$
\begin{equation*}
h_{1}(0)=h_{2}(0)=0 . \tag{1.3}
\end{equation*}
$$

Then Eq. (1.1) has a unique solution in the space $(B,\|\cdot\|)$.
Notice that Eq. (1.1) under condition (1.2) is satisfied by the function identically equal to zero and this function belongs to $(B,\|\cdot\|)$. By the uniqueness of the solution given by Theorem 1.1, the unique solution is the trivial solution. This is the main result of [2].

[^0]
2. CONCLUSIONS

In order to obtain a non trivial solution to Eq. (1.1), we consider the space B_{1} given by

$$
B_{1}=\{U \in B: U(1)=1\} .
$$

Notice that B_{1} is a subset of the known Banach space $H^{1}[0,1]$ of the Lipschitz functions, this is,

$$
H^{1}[0,1]=\left\{U:[0,1] \rightarrow \mathbb{R}: \sup _{x_{1} \neq x_{2}}\left\{\frac{\left|U\left(x_{1}\right)-U\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}<\infty, \text { for } x_{1}, x_{2} \in[0,1]\right\}\right\}
$$

where the norm is given by

$$
\|U\|=|U(0)|+\sup _{x_{1} \neq x_{2}}\left\{\frac{\left|U\left(x_{1}\right)-U\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|} \text { for } x_{1}, x_{2} \in[0,1]\right\}
$$

Moreover, $H^{1}[0,1]$ is a Banach algebra [1].
It is easily seen that B_{1} is a closed subset of B and, therefore, $\left(B_{1}, d\right)$ is a complete metric space, where d is the distance induced by $\|\cdot\|$, this is,

$$
d\left(U_{1}, U_{2}\right)=\left\|U_{1}-U_{2}\right\|=\sup _{x_{1} \neq x_{2}}\left\{\frac{\left|\left(U_{1}-U_{2}\right)\left(x_{1}\right)-\left(U_{1}-U_{2}\right)\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|}, x_{1}, x_{2} \in[0,1]\right\}
$$

for any $U_{1}, U_{2} \in B_{1}$.
Next, we present our result.
Theorem 2.2. If in Theorem 1.1 we replace condition (1.3) by

$$
\begin{equation*}
h_{1}(1)=h_{2}(1)=1 \tag{2.4}
\end{equation*}
$$

and $p\left(\alpha_{1}+\alpha_{3}\right)+(1-p)\left(\alpha_{2}+\alpha_{4}\right)<\frac{1}{2}$ then Eq. (1.1) with (1.2) has a unique solution in $\left(B_{1}, d\right)$.
Proof. We consider the operator G defined on B_{1} as

$$
\begin{aligned}
(G U)(x)= & p x U\left(h_{1}(x)\right)+(1-p) x U\left(h_{2}(x)\right)+p(1-x) U\left(h_{3}(x)\right) \\
& +(1-p)(1-x) U\left(h_{4}(x)\right)
\end{aligned}
$$

for $U \in B_{1}$ and $x \in[0,1]$.
By condition (1.2), it is clear that $(G U)(0)=0$ and by (2.4) we have that $(G U)(1)=1$.
On the other hand, since $H^{1}[0,1]$ is a Banach algebra it is easily seen that the identity function and the composition of elements in $H^{1}[0,1]$ also belong to $H^{1}[0,1]$. Therefore, if $U \in H^{1}[0,1]$ then $G U \in H^{1}[0,1]$. Summarizing, $G U \in B_{1}$ and G applies B_{1} into itself.

Next, we have to prove that G is a Banach contraction in B_{1}. For this, we take $U_{1}, U_{2} \in$ B_{1} and, since

$$
d\left(G U_{1}, G U_{2}\right)=\left\|G U_{1}-G U_{2}\right\|=\left\|G\left(U_{1}-U_{2}\right)\right\|
$$

we estimate $\left\|G\left(U_{1}-U_{2}\right)\right\|$. In fact, we take $x, y \in[0,1]$ with $x \neq y$.

$$
\begin{aligned}
& \frac{\left|G\left(U_{1}-U_{2}\right)(x)-G\left(U_{1}-U_{2}\right)(y)\right|}{|x-y|} \\
& \left.=\frac{1}{|x-y|} \right\rvert\, p x\left(U_{1}-U_{2}\right)\left(h_{1}(x)\right) \\
& \quad+(1-p) x\left(U_{1}-U_{2}\right)\left(h_{2}(x)\right)+p(1-x)\left(U_{1}-U_{2}\right)\left(h_{3}(x)\right) \\
& \quad+(1-p)(1-x)\left(U_{1}-U_{2}\right)\left(h_{4}(x)\right) \\
& \quad-p y\left(U_{1}-U_{2}\right)\left(h_{1}(y)\right)-(1-p) y\left(U_{1}-U_{2}\right)\left(h_{2}(y)\right) \\
& \quad-p(1-y)\left(U_{1}-U_{2}\right)\left(h_{3}(y)\right)-(1-p)(1-y)\left(U_{1}-U_{2}\right)\left(h_{4}(y)\right) \mid \\
& \leq \frac{1}{|x-y|}\left(p|x-y|\left|\left(U_{1}-U_{2}\right)\left(h_{1}(x)\right)\right|+p y\left|\left(U_{1}-U_{2}\right)\left(h_{1}(x)\right)-\left(U_{1}-U_{2}\right)\left(h_{1}(y)\right)\right|\right. \\
& \quad+(1-p)|x-y|\left|\left(U_{1}-U_{2}\right)\left(h_{2}(x)\right)\right| \\
& \quad+(1-p) y\left|\left(U_{1}-U_{2}\right)\left(h_{2}(x)\right)-\left(U_{1}-U_{2}\right)\left(h_{2}(y)\right)\right| \\
& \quad+p|x-y|\left|\left(U_{1}-U_{2}\right)\left(h_{3}(x)\right)\right|+p(1-y)\left|\left(U_{1}-U_{2}\right)\left(h_{3}(x)\right)-\left(U_{1}-U_{2}\right)\left(h_{3}(y)\right)\right| \\
& \quad+(1-p)|x-y|\left|\left(U_{1}-U_{2}\right)\left(h_{4}(x)\right)\right| \\
& \left.\quad+(1-p)(1-y)\left|\left(U_{1}-U_{2}\right)\left(h_{4}(x)\right)-\left(U_{1}-U_{2}\right)\left(h_{4}(y)\right)\right|\right) .
\end{aligned}
$$

Now, as $\left(U_{1}-U_{2}\right)(0)=\left(U_{1}-U_{2}\right)(1)=0$ we obtain that

$$
\begin{aligned}
& \frac{\left|G\left(U_{1}-U_{2}\right)(x)-G\left(U_{1}-U_{2}\right)(y)\right|}{|x-y|} \\
& \leq p \frac{\left.\mid\left(U_{1}-U_{2}\right)\left(h_{1}(x)\right)-\left(U_{1}-U_{2}\right)(1)\right) \mid}{\left|h_{1}(x)-1\right|}\left|h_{1}(x)-1\right| \\
& +(1-p) \frac{\left.\mid\left(U_{1}-U_{2}\right)\left(h_{2}(x)\right)-\left(U_{1}-U_{2}\right)(1)\right) \mid}{\left|h_{2}(x)-1\right|}\left|h_{2}(x)-1\right| \\
& +p \frac{\left.\mid\left(U_{1}-U_{2}\right)\left(h_{3}(x)\right)-\left(U_{1}-U_{2}\right)(0)\right) \mid}{\left|h_{3}(x)\right|}\left|h_{3}(x)\right| \\
& +(1-p) \frac{\left.\mid\left(U_{1}-U_{2}\right)\left(h_{4}(x)\right)-\left(U_{1}-U_{2}\right)(0)\right) \mid}{\left|h_{4}(x)\right|}\left|h_{4}(x)\right| \\
& +\frac{p}{|x-y|}\left\|U_{1}-U_{2}\right\|\left|h_{1}(x)-h_{1}(y)\right|+\frac{1-p}{|x-y|}\left\|U_{1}-U_{2}\right\|\left|h_{2}(x)-h_{2}(y)\right| \\
& +\frac{p}{|x-y|}\left\|U_{1}-U_{2}\right\|\left|h_{3}(x)-h_{3}(y)\right|+\frac{1-p}{|x-y|}\left\|U_{1}-U_{2}\right\|\left|h_{4}(x)-h_{4}(y)\right| \\
& \leq p\left\|U_{1}-U_{2}\right\|\left|h_{1}(x)-h_{1}(1)\right|+(1-p)\left\|U_{1}-U_{2}\right\|\left|h_{2}(x)-h_{2}(1)\right| \\
& +p\left\|U_{1}-U_{2}\right\|\left|h_{3}(x)-h_{3}(0)\right|+(1-p)\left\|U_{1}-U_{2}\right\|\left|h_{4}(x)-h_{4}(0)\right| \\
& +p\left\|U_{1}-U_{2}\right\| \alpha_{1}+(1-p)\left\|U_{1}-U_{2}\right\| \alpha_{2}+p\left\|U_{1}-U_{2}\right\| \alpha_{3} \\
& +(1-p)\left\|U_{1}-U_{2}\right\| \alpha_{4} \\
& \leq p\left\|U_{1}-U_{2}\right\| \alpha_{1}|x-1|+(1-p)\left\|U_{1}-U_{2}\right\| \alpha_{2}|x-1| \\
& +p\left\|U_{1}-U_{2}| | \alpha_{3}|x|+(1-p)\right\| U_{1}-U_{2}| | \alpha_{4}|x| \\
& +p\left\|U_{1}-U_{2}\right\| \alpha_{1}+(1-p)\left\|U_{1}-U_{2}\right\| \alpha_{2}+p\left\|U_{1}-U_{2}\right\| \alpha_{3} \\
& +(1-p)\left\|U_{1}-U_{2}\right\| \alpha_{4} \\
& \leq 2\left(p\left(\alpha_{1}+\alpha_{3}\right)+(1-p)\left(\alpha_{2}+\alpha_{4}\right)\right)\left\|U_{1}-U_{2}\right\| \text {. }
\end{aligned}
$$

Finally, taking into account our assumption, we obtain that the operator G is a contraction in $\left(B_{1},\|\cdot\|\right)$. Therefore, by the Banach's contraction principle, Eq. (1.1) has a unique solution in this space.
Remark 2.1. Since the solution U^{\star} to Eq. (1.1) given by Theorem 2.2 belongs to ($B_{1},\|\cdot\|$) we have that $U^{\star}(1)=1$ and, therefore, U^{\star} is not the trivial solution.

Finally, we present an example illustrating our result.
Example 2.1. Consider the following functional equation

$$
\begin{array}{rl}
U(x)=\frac{1}{3} x & U\left(\frac{1}{5} x+\frac{4}{5}\right)+\frac{2}{3} x U\left(\frac{1}{7} x+\frac{6}{7}\right)+\frac{1}{3}(1-x) U\left(\frac{1}{8} x\right) \tag{2.5}\\
& +\frac{2}{3}(1-x) U\left(\frac{1}{9} x\right) .
\end{array}
$$

Eq. (2.5) is a particular case of Eq. (1.1) with $p=\frac{1}{3}, h_{1}(x)=\frac{1}{5} x+\frac{4}{5}, h_{2}(x)=\frac{1}{7} x+\frac{6}{7}$, $h_{3}(x)=\frac{1}{8} x, h_{4}(x)=\frac{1}{9} x$.

Moreover, it is clear that $h_{1}(1)=h_{2}(1)=1, h_{3}(0)=h_{4}(0)=0$ and h_{i} are contractions of $[0,1]$ into itself with constants $\alpha_{1}=1 / 5, \alpha_{2}=1 / 7, \alpha_{3}=1 / 8$ and $\alpha_{4}=1 / 9$.

Since

$$
p\left(\alpha_{1}+\alpha_{3}\right)+(1-p)\left(\alpha_{2}+\alpha_{4}\right)=\frac{1}{3}\left(\frac{1}{5}+\frac{1}{8}\right)+\frac{2}{3}\left(\frac{1}{7}+\frac{1}{9}\right)<\frac{1}{2},
$$

Theorem 2.2 says us that Eq. (2.5) has a unique nontrivial solution.
Acknowledgments. The authors was partially supported by the project PID2019-106093GB - 100 .

References

[1] Banas, J.; Nalepa, R. On the Space of Functions with Growths Tempered by a Modulus of Continuity and Its Applications. J. Funct. Spaces Appl. 2013 (2013), Art. ID 820437, 14 pp.
[2] Turab, A.; Sintunavarat, W. On the solution of the generalized functional equation arising in mathematical psychology and theory of learning approached by the Banach fixed point theorem. Carpathian J. Math. 39 (2023), no 2, 541-551.

[^1]
[^0]: Received: 08.05.2023. In revised form: 14.11.2023. Accepted: 21.11.2023
 2020 Mathematics Subject Classification. 39B22, 47H10, 03C45.
 Key words and phrases. functional equations, stability, Banach fixed point theorem.
 Corresponding author: Jackie Harjani; jackie.harjani@ulpgc.es

[^1]: ${ }^{1}$ Departamento de Matemáticas
 Universidad de Las Palmas de Gran Canaria
 Campus de Tafira Baja
 35017 Las Palmas de Gran Canaria, Spain
 Email address: josefa.caballero@ulpgc.es
 Email address: kishin.sadarangani@ulpgc.es
 Email address: jackie.harjani@ulpgc.es

