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ABSTRACT. We present some remarks on [Carpathian J. Math. 39 (2023), No 2, 541–551] in order to obtain a
unique non trivial solution.

1. INTRODUCTION

In [2], the authors studied the following general functional equation

U(x) = pxU(h1(x)) + (1− p)xU(h2(x)) + p(1− x)U(h3(x))

+ (1− p)(1− x)U(h4(x)),
(1.1)

for any x ∈ [0, 1], where p ∈ [0, 1], U : [0, 1] → R is a unknown function such that U(0) = 0
and h1, h2, h3, h4 : [0, 1] → [0, 1] are given mappings such that

h3(0) = h4(0) = 0.(1.2)

They considered the space B of the real valued functions U : [0, 1] → R such that U(0) =
0 and

sup
x1 ̸=x2

|U(x1)− U(x2)|
|x1 − x2|

< ∞ .

It is easily seen that (B, ∥ · ∥) is a Banach space, where ∥ · ∥ is defined by

∥U∥ = sup
x1 ̸=x2

|U(x1)− U(x2)|
|x1 − x2|

,

for any U ∈ B.
The main result of [2] is the following.

Theorem 1.1 (Theorem 3.2 in [2]). Consider the functional equation (1.1) with the condition (1.2).
Suppose that hi : [0, 1] → [0, 1] (i = 1, 2, 3, 4), are Banach contraction mappings with contractive
coefficients αi (i = 1, 2, 3, 4) satisfying

2(α1 + α2 + α3 + α4) < 1

and

h1(0) = h2(0) = 0.(1.3)

Then Eq. (1.1) has a unique solution in the space (B, ∥ · ∥).

Notice that Eq. (1.1) under condition (1.2) is satisfied by the function identically equal
to zero and this function belongs to (B, ∥ · ∥). By the uniqueness of the solution given by
Theorem 1.1, the unique solution is the trivial solution. This is the main result of [2].

Received: 08.05.2023. In revised form: 14.11.2023. Accepted: 21.11.2023
2020 Mathematics Subject Classification. 39B22, 47H10, 03C45.
Key words and phrases. functional equations, stability, Banach fixed point theorem.
Corresponding author: Jackie Harjani; jackie.harjani@ulpgc.es

623



624 J. Caballero, J. Harjani and K. Sadarangani

2. CONCLUSIONS

In order to obtain a non trivial solution to Eq. (1.1), we consider the space B1 given by

B1 = {U ∈ B : U(1) = 1} .

Notice that B1 is a subset of the known Banach space H1[0, 1] of the Lipschitz functions,
this is,

H1[0, 1] =

{
U : [0, 1] → R : sup

x1 ̸=x2

{
|U(x1)− U(x2)|

|x1 − x2|
< ∞, for x1, x2 ∈ [0, 1]

}}
,

where the norm is given by

∥U∥ = |U(0)|+ sup
x1 ̸=x2

{
|U(x1)− U(x2)|

|x1 − x2|
for x1, x2 ∈ [0, 1]

}
.

Moreover, H1[0, 1] is a Banach algebra [1].
It is easily seen that B1 is a closed subset of B and, therefore, (B1, d) is a complete

metric space, where d is the distance induced by ∥ · ∥, this is,

d(U1, U2) = ∥U1 − U2∥ = sup
x1 ̸=x2

{
|(U1 − U2)(x1)− (U1 − U2)(x2)|

|x1 − x2|
, x1, x2 ∈ [0, 1]

}
,

for any U1, U2 ∈ B1.
Next, we present our result.

Theorem 2.2. If in Theorem 1.1 we replace condition (1.3) by

h1(1) = h2(1) = 1(2.4)

and p(α1+α3)+(1−p)(α2+α4) <
1
2 then Eq. (1.1) with (1.2) has a unique solution in (B1, d).

Proof. We consider the operator G defined on B1 as

(GU)(x) = pxU(h1(x)) + (1− p)xU(h2(x)) + p(1− x)U(h3(x))

+ (1− p)(1− x)U(h4(x)),

for U ∈ B1 and x ∈ [0, 1].
By condition (1.2), it is clear that (GU)(0) = 0 and by (2.4) we have that (GU)(1) = 1.
On the other hand, since H1[0, 1] is a Banach algebra it is easily seen that the identity

function and the composition of elements in H1[0, 1] also belong to H1[0, 1]. Therefore, if
U ∈ H1[0, 1] then GU ∈ H1[0, 1]. Summarizing, GU ∈ B1 and G applies B1 into itself.

Next, we have to prove that G is a Banach contraction in B1. For this, we take U1, U2 ∈
B1 and, since

d(GU1, GU2) = ∥GU1 −GU2∥ = ∥G(U1 − U2)∥,

we estimate ∥G(U1 − U2)∥. In fact, we take x, y ∈ [0, 1] with x ̸= y.
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|G(U1 − U2)(x)−G(U1 − U2)(y)|
|x− y|

=
1

|x− y|
|px(U1 − U2)(h1(x))

+(1− p)x(U1 − U2)(h2(x)) + p(1− x)(U1 − U2)(h3(x))

+(1− p)(1− x)(U1 − U2)(h4(x))

−py(U1 − U2)(h1(y))− (1− p)y(U1 − U2)(h2(y))

−p(1− y)(U1 − U2)(h3(y))− (1− p)(1− y)(U1 − U2)(h4(y))|

≤ 1

|x− y|

(
p|x− y||(U1 − U2)(h1(x))|+ py|(U1 − U2)(h1(x))− (U1 − U2)(h1(y))|

+ (1− p)|x− y||(U1 − U2)(h2(x))|
+ (1− p)y|(U1 − U2)(h2(x))− (U1 − U2)(h2(y))|
+ p|x− y||(U1 − U2)(h3(x))|+ p(1− y)|(U1 − U2)(h3(x))− (U1 − U2)(h3(y))|
+ (1− p)|x− y||(U1 − U2)(h4(x))|

+ (1− p)(1− y)|(U1 − U2)(h4(x))− (U1 − U2)(h4(y))|
)
.

Now, as (U1 − U2)(0) = (U1 − U2)(1) = 0 we obtain that

|G(U1 − U2)(x)−G(U1 − U2)(y)|
|x− y|

≤ p
|(U1 − U2)(h1(x))− (U1 − U2)(1))|

|h1(x)− 1|
|h1(x)− 1|

+ (1− p)
|(U1 − U2)(h2(x))− (U1 − U2)(1))|

|h2(x)− 1|
|h2(x)− 1|

+ p
|(U1 − U2)(h3(x))− (U1 − U2)(0))|

|h3(x)|
|h3(x)|

+ (1− p)
|(U1 − U2)(h4(x))− (U1 − U2)(0))|

|h4(x)|
|h4(x)|

+
p

|x− y|
∥U1 − U2∥ |h1(x)− h1(y)|+

1− p

|x− y|
∥U1 − U2∥ |h2(x)− h2(y)|

+
p

|x− y|
∥U1 − U2∥ |h3(x)− h3(y)|+

1− p

|x− y|
∥U1 − U2∥ |h4(x)− h4(y)|

≤ p ∥U1 − U2∥ |h1(x)− h1(1)|+ (1− p) ∥U1 − U2∥ |h2(x)− h2(1)|
+ p ∥U1 − U2∥ |h3(x)− h3(0)|+ (1− p) ∥U1 − U2∥ |h4(x)− h4(0)|
+ p ∥U1 − U2∥ α1 + (1− p) ∥U1 − U2∥ α2 + p ∥U1 − U2∥ α3

+ (1− p) ∥U1 − U2∥ α4

≤ p ∥U1 − U2∥ α1|x− 1|+ (1− p) ∥U1 − U2∥ α2|x− 1|
+ p ∥U1 − U2∥ α3|x|+ (1− p) ∥U1 − U2∥ α4|x|
+ p ∥U1 − U2∥ α1 + (1− p) ∥U1 − U2∥ α2 + p ∥U1 − U2∥ α3

+ (1− p) ∥U1 − U2∥ α4

≤ 2
(
p(α1 + α3) + (1− p)(α2 + α4)

)
∥U1 − U2∥.
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Finally, taking into account our assumption, we obtain that the operator G is a contraction
in (B1, ∥ · ∥). Therefore, by the Banach’s contraction principle, Eq. (1.1) has a unique
solution in this space. □

Remark 2.1. Since the solution U⋆ to Eq. (1.1) given by Theorem 2.2 belongs to (B1, ∥ · ∥)
we have that U⋆(1) = 1 and, therefore, U⋆ is not the trivial solution.

Finally, we present an example illustrating our result.

Example 2.1. Consider the following functional equation

U(x) =
1

3
x U

(
1

5
x+

4

5

)
+

2

3
x U

(
1

7
x+

6

7

)
+

1

3
(1− x) U

(
1

8
x

)
+

2

3
(1− x) U

(
1

9
x

)
.

(2.5)

Eq. (2.5) is a particular case of Eq. (1.1) with p = 1
3 , h1(x) = 1

5 x + 4
5 , h2(x) = 1

7 x + 6
7 ,

h3(x) =
1
8 x, h4(x) =

1
9 x.

Moreover, it is clear that h1(1) = h2(1) = 1, h3(0) = h4(0) = 0 and hi are contractions
of [0, 1] into itself with constants α1 = 1/5, α2 = 1/7, α3 = 1/8 and α4 = 1/9.

Since

p(α1 + α3) + (1− p)(α2 + α4) =
1

3

(
1

5
+

1

8

)
+

2

3

(
1

7
+

1

9

)
<

1

2
,

Theorem 2.2 says us that Eq. (2.5) has a unique nontrivial solution.
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