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A population model with pseudo exponential survival

DRAGOŞ-PATRU COVEI1, TRAIAN A. P ÎRVU2 and CĂTĂLIN ŞTERBEŢI3

ABSTRACT. This paper considers a model for population dynamics with age structure. Following Dufresne
(2006) and Beghriche et all (2022) the probability of survival is assumed to be a linear combination of exponen-
tials, and a product of a polynomial and an exponential. The number of births in unit time is characterized
through a system of ordinary differential equations. This is solved explicitly in special cases, which leads to
closed form expressions for the population size. The later allows an assymptotic analysis with three cases; the
population goes extinct, explodes, or converges to a finite number depending of the interplay between model
parameters. From a practical standpoint our modelling approach leads to a better fit of population data when
compared to the exponential survival, and it also allows for more shapes of population as a function of time.

1. INTRODUCTION

This work analyzes a population model with age structure. There are many papers on
this topic, we only refer a few [2, 3, 4, 10, 11, 14, 16, 17].

The pioneer work of [14] was among the first to model the population dynamics, or
more precisely, its density, as map which depends on time and age. The fertility function
and mortality intensity are exogenous in his model. The total population at a given time
is obtained by integrating the density map along its age dependency. Thus, the density
map is key in studying the population model.

A system of integral and differential equations can be employed to characterize the
density map. A Volterra integral equation turns out to be equivalent to this system. It
well known by now that fixed point arguments yield existence to such Volterra equations,
but their numerical implementation is burdensome.

Let us turn now to the contributions of our paper. In order to make the problem more
tractable, and inspired by the works of [1] and [6] we assumed that the mortality intensity
is a combination of exponentials or an exponential multiplied by a polynomial. In this
paradigm we manage to reduce the Volterra integral equation to a system of ordinary
differential equations which can be solved easily. Moreover, in special settings closed form
solutions were obtained by means of Laplace transform. In the special case of exponential
mortality intensity our closed form solutions coincide with the ones obtained in such a
setting by [2].

Our methodology can be extend naturally if one approximated a general mortality in-
tensity function by linear combinations of exponentials.

The closed form solutions we obtained for the total population allowed us to perform
an asymptotic analysis. This revealed that in the limit the population goes extinct, ex-
plodes, or converges to a finite number.

We provide the survival and fertility parameters interplay which leads to one of these
situations.
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Let us comment now on the real world applicability of our work. Our explicit solutions
show that the population is a sum of three or four exponentials (depending on the model
considered) and this will have a profound impact when compared to the exponential sur-
vival model where the population is exponential. Not only our model allows for more
shapes of the population function of time but will also provide a better fit to population
data. There is a rich literature by now on the fitting of real world data with a linear com-
bination of exponentials; we mentioned [5] and [9] only. The later shows the superiority
of the fit when more exponentials are employed (the comparison is done with one, two,
and three exponentials).

The reminder of this paper is organized as follows: Section 2 presents the model; Sec-
tions 3 deals with the case when the mortality intensity is a linear combination of ex-
ponentials; Section 4 treats the case when the mortality intensity is a polynomial times
an exponential; Section 4.1 treats a new fertility model; The conclusion can be found in
Section 5.

2. THE MODEL

Let us introduce the model. The function ρ(a, t) denotes the density of people aged a
years at time t, which will be assumed a differentiable in both variables. The number of
people aged between

a and a+∆a

at time t, where ∆a is the small time increment, can be approximated by

ρ(a, t)∆a.

Consequently, the total population at time t is∑
a

ρ(a, t)∆a.

By passing ∆a→ 0 one gets
∞∫
0

ρ(a, t) da

the total size of population at time t, which will be denoted by

(2.1) P (t) =

∞∫
0

ρ(a, t) da.

In this model people can die and death rate, then the mortality intensity or age-specific
mortality or death modulus is denoted by the nonnegative function µ(a).

As such, during the time interval from t to t+∆t a fraction

µ(a)∆t

of people aged between a and a+∆a at time t die.
The number of people

ρ(a, t)∆a

at time t have ages between a and a+∆a.
The number of deaths from this age cohort between during the times t and t+∆t is

ρ(a, t)∆a · µ(a)∆t.
The number of people surviving at time t+∆t, with ages between

a+∆t and a+∆t+∆a
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can be thus approximated by

ρ(a+∆t, t+∆t)∆a ≈ ρ(a, t)∆a− ρ(a, t)µ(a)∆a∆t,

or, equivalently,

(2.2)
ρ(a+∆t, t+∆t)− ρ(a, t)

∆t
+ µ(a)ρ(a, t) ≈ 0.

Let ∆t→ 0 to get
(2.3)
lim∆t→0

ρ(a+∆t,t+∆t)−ρ(a,t)
∆t = lim∆t→0

ρ(a+∆t,t+∆t)−ρ(a,t+∆t)
∆t + lim∆t→0

ρ(a,t+∆t)−ρ(a,t)
∆t

= lim∆t→0(ρa(a, t+∆t) + ρt(a, t))
= ρa(a, t) + ρt(a, t),

where ρa(a, t) (respectively ρt(a, t)) is the partial derivative of ρ(a, t) with respect to a
(respectively t).

Coupling (2.2) and (2.3) together we obtain the Lotka-McKendrick equation

(2.4) ρa(a, t) + ρt(a, t) + µ(a)ρ(a, t) = 0,

(for more on this see [2, p. 274] or [8, Section 2, pp. 128-130]).
The probability that a subject of age a0 will survive to age a is then given by

e
−

a∫
a0

µ(α) dα

.

Consequently, the probability of survival from age 0 (birth) to age a is

(2.5) π(a) = e
−

a∫
0

µ(α) dα
.

Following [7] and [6] we may assume that this probability is a linear combination of ex-
ponentials.

The birth process in our model is given by a function called the birth modulus or natality
rates or fecundity function, denoted by β(a), which will be positive. Then

β(a)∆t

is the number of people born from parents with ages between a and a + ∆a in the time
interval from t to t + ∆t, and in turn the total number of births occurring during t and
t+∆t is

∆t
∑
a

β(a)ρ(a, t)∆a→ ∆t

∞∫
0

β(a)ρ(a, t) da.

Since this quantity equals
ρ(0, t)∆t

one obtains renewal condition or the total birth rate or fertility rate, at the time t given by

(2.6) B(t) = ρ(0, t) =

∞∫
0

β(a)ρ(a, t) da,

which it should depend on the total population and so in practice ρ(a, t) is zero for large
age. The time 0 age distribution is exogenously given

(2.7) ρ(a, 0) = Φ(a),

is assumed to be known and it is called the initial population distribution.
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Finally, (2.4), (2.6) and (2.7) leads to the following PDE characterization of ρ

(2.8)



ρa(a, t) + ρt(a, t) + µ(a)ρ(a, t) = 0 for a, t ≥ 0,

ρ(0, t) =
∞∫
0

β(a)ρ(a, t) da for t > 0,

ρ(a, 0) = Φ(a) for a > 0.

The problem (2.8) discovered first by McKendrick [14] is the starting point of many pop-
ulation models analyzed by many other authors.

Obviously, to solve (2.8) we can rewrite the equation

ρa(a, t) + ρt(a, t) + µ(a)ρ(a, t) = 0

as the well know transport equation(
e

a∫
0

µ(α) dα
ρ(a, t)

)′

|a

+

(
e

a∫
0

µ(α) dα
ρ(a, t)

)′

|t

= 0,

which has the general solution

(2.9) ρ(a, t) = e
−

a∫
0

µ(α) dα
h (t− a)

for some function h : R → R. Next, we simply plug the general solution (2.9) into the
boundary conditions and solve for the yet to be determined function h

ρ(0, t) = h (t) = B(t) =⇒ ρ(a, t) = e
−

a∫
0

µ(α) dα
B (t− a) for t ≥ a,

ρ(a, 0) = Φ(a) = e
−

a∫
0

µ(α) dα
h (−a) =⇒ ρ(a, t) = Φ(a− t)e

−
a∫

a−t

µ(α) dα

for t < a.

Therefore, the solution ρ(a, t) is given by an implicit formula

(2.10) ρ(a, t) =


B(t− a)e

−
a∫
0

µ(α) dα
for t ≥ a

Φ(a− t)e
−

a∫
a−t

µ(α) dα

for t < a

(see [13, Section 2, pp. 4-6] for more details). From this one gets the following Volterra
integral equation on the birth rate

ρ(0, t) =

∞∫
0

β(a)ρ(a, t) da

=

t∫
0

β(a)ρ(0, t− a)e
−

a∫
0

µ(α) dα
da+

∞∫
t

β(a)Φ(a− t)e
−

a∫
a−t

µ(α) dα

da

=

t∫
0

β(a) B(t− a)e
−

a∫
0

µ(α) dα
da+

∞∫
t

β(a)Φ(a− t)e
−

a∫
a−t

µ(α) dα

da.



A population model with pseudo exponential survival 631

We let Ψ(t) be the rate of births from members who were present in the population at time
0, and in terms of the initial age distribution and the birth and mortality intensity

(2.11) Ψ(t) =

∞∫
t

β(a)Φ(a− t)e
−

a∫
a−t

µ(α) dα

da =

∞∫
0

β(t+ s)Φ(s)e
−

s+t∫
s

µ(α) dα
ds.

With notation (2.5) and (2.11), the renewal equation characterizes B(t) is given by

(2.12) B(t) = Ψ(t) +

t∫
0

β(a)π(a)B(t− a) da,

(see [12] for the authors that developed this theory). Moreover, if B(t) is a solution of the
renewal equation, then a solution of the PDE of ρ is (2.10).

However, until now the explicit solution for (2.12) is obtained in some very special
cases. This means that numerical method is the most used alternative for the researchers
to obtain new results. On the other hand in many real world phenomena it is useful to
know an explicit solution for (2.12). Then, our objective of the paper is to present an
explicit formula for the McKendrick model in a special framework that appears in the
natural phenomena.

To introduce our results we assume as in [2], that the expected number of offspring for
each individual over a lifetime, being the sum over all ages a of probability of survival to
age a multiplied by the number of offspring at age a is finite, i.e.

R =

∫ ∞

0

β (a)π (a) da <∞.

3. THE CASE OF PSEUDO EXPONENTIAL MORTALITY INTENSITY

In the following, inspired by [6] and [7], we consider a model with π(a) pseudo expo-
nential, i.e.

(3.13) π(a) =

n∑
i=1

cie
−µia,

for positive constants ci, µi with

(3.14) c1 ̸= 0,
n∑

i=1

µ2
i ̸= 0 and

n∑
i=1

ci = 1.

The last assumption is imposed for tractability and is natural as we can approximate the
complement of a distribution function by a combination of exponentials according with
[6, Section 3].

Next, we assume that the function β(a) can be expressed in exponential form as follows

(3.15) β(a) = βe−µa,

and with a notational change one can let β = 1. We should mention that, if µ > 0, the
function in (3.15) describes behavior analogous to that of mammals (see [15, p. 404], or
[12, 19] for more details). On the other hand for a = 0, this function β(a) is of a form that
could be appropriate for many species of fish where fecundity increases with age (size).

Our first main result can be expressed in the following.

Theorem 3.1. Assume the following: (3.13), (3.14) and (3.15). Under these assumptions, the
integral equation (2.12) has a unique solution. Moreover, the solution and the population (2.1) can
be expressed exactly when n = 2, c1 ̸= 0, c2 ̸= 0 and Φ (a) is the Dirac function.
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Proof. In the first part, we establish the existence and uniqueness of the solution. Return-
ing to our objective, in our current context

B(t) = Ψ(t) +

t∫
0

β(a)π(a)B(t− a) da,

becomes

B(t) = Ψ(t) +

n∑
i=1

ciBi(t),

where

(3.16) Bi(t) =

t∫
0

e−(µ+µi)aB(t− a)da =

t∫
0

e−(µ+µi)(t−z)B(z)dz.

It follows that

B′
i(t) = B(t)− (µ+ µi)

t∫
0

e−(µ+µi)(t−z)B(z)dz = B(t)− (µ+ µi)Bi(t).

Thus we get the following ODE system for Bi(t) in the form

B′
i(t) = Ψ(t) + (ci − (µ+ µi))Bi(t) +

n∑
j ̸=i

cjBj(t), Bi(0) = 0.

We can rewrite the system as

B′
i(t) = ψ(t) +

n∑
j=1

αijBj(t),

with
αij = cj i ̸= j, αii = ci − (µ+ µi) .

In canonical form the system can be written

(3.17) b′(t) = Ab(t) + u(t),

where

b =

 B1

...
Bn

 , u =

 ψ
...
ψ


and

A =

 α11 α12 · · · α1n

...
...

...
αn1 αn2 · · · αnn

 .

From the general theory of linear ODE systems, (3.17) has a unique solution, which, given
the boundary condition is

b(t) =

∫ t

0

eA(t−s)u(s)ds.

Let us notice that

Ψ(t) = β(t)π(t) =

n∑
i=1

cie
−(µ+µi)t,
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and

(3.18) R =

∫ ∞

0

β(t)π(t)dt =

n∑
i=1

ci
µ+ µi

.

We can compute B(t) via Laplace transform (see [7]).
We assume for simplicity that n = 2. In the remaining of the paper the Laplace trans-

form is denoted by a hat

(3.19) B̂(p) = Φ̂ (p) + F̂ (p) B̂(p).

Here Φ̂ (p) is the Laplace transform of Ψ

Φ̂ (p) =

∫ ∞

0

Ψ(a) e−pada

=

∫ ∞

0

2∑
i=1

cie
−(µ+µi)ae−pada

=

2∑
i=1

ci

∫ ∞

0

e−(p+µ+µi)ada

=

2∑
i=1

ci
p+ µ+ µi

,

F̂ (p) is the Laplace transform of βπ

F̂ (p) =

∫ ∞

0

β(a)π(a)e−pada =
c1

p+ µ+ µ1
+

c2
p+ µ+ µ2

.

Observing that

F̂ (0) = R, lim
p−→∞

F̂ (p) = 0 and F̂ (p) is decreasing in p

we conclude that the equation

F̂ (p) = 1

has a unique real solution, denoted by p0. Moreover, we distinguish the cases

1. if R > 1 then p0 > 0;
2. if R < 1 then p0 < 0;
3. if R = 1 then p0 = 0.

Indeed, let us prove for the case 1. It is enough to assume by contradiction that p0 < 0 to
see

1 = F̂ (p0) > F̂ (0) = R,

a contradiction with R > 1, concluding the case 1.
Let us return to the Laplace transform of B, which is given by

B̂(p) =

2∑
i=1

ci
p+ µ+ µi

+

2∑
i=1

ci
p+ µ+ µi

B̂(p).

Then, if p ̸= p0 we have

B̂(p) =

c1
p+µ+µ1

+ c2
p+µ+µ2

1− c1
p+µ+µ1

− c2
p+µ+µ2

,
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or equivalently

B̂(p) =
c1 (p+ µ+ µ2) + c2 (p+ µ+ µ1)

(p+ µ+ µ1) (p+ µ+ µ2)− c1 (p+ µ+ µ2)− c2 (p+ µ+ µ1)
,

which is well defined for all p ̸= p0.
Let p1, p2 the roots of

p2 + (2µ+ µ1 + µ2 − 1)p+ (µ+ µ1)(µ+ µ2)− µ− c1µ2 − c2µ1 = 0.

This quadratic has real roots since the discriminant is positive

∆ = (µ1 − µ2 + c2 − c1)
2 + 4c1(1− c1) ≥ 0,

and the roots are

p1 =
−(2µ+ µ1 + µ2 − 1) +

√
∆

2
, p2 =

−(2µ+ µ1 + µ2 − 1)−
√
∆

2
.

Moreover, we observe that ∆ > 0 (this is the case when c1 ̸= 0, c2 ̸= 0). As such

B̂(p) =

(
p1 + µ+ c2µ1 + c1µ2

p1 − p2

)
1

p− p1
+

(
p2 + µ+ c2µ1 + c1µ2

p2 − p1

)
1

p− p2
.

Therefore

B(t) =

(
p1 + µ+ c2µ1 + c1µ2

p1 − p2

)
ep1t +

(
p2 + µ+ c2µ1 + c1µ2

p2 − p1

)
ep2t.

To calculate the total population, let us remember that

P (t) =

∞∫
0

ρ(a, t) da =

t∫
0

ρ(a, t) da+

∞∫
t

ρ(a, t) da

=

t∫
0

B(t− a)e
−

a∫
0

µ(α) dα
da+

∞∫
t

Φ(a− t)e
−

a∫
a−t

µ(α) dα

da,

so the population size will be different from the previous model studied. Here

e
−

a∫
a−t

µ(α)dα

= e
−

a∫
a−t

µ(α) dα

= e
−

a∫
0

µ(α) dα
e

a−t∫
0

µ(α) dα
=

π(a)

π(a− t)
.

Using the definition of π
π (a) = c1e

−µ1a + c2e
−µ2a

yields
π(a)

π(a− t)
=

c1e
−µ1a + c2e

−µ2a

c1e−µ1(a−t) + c2e−µ2(a−t)
.

In the final part of the proof theorem, we concentrate on a particular scenario of our model
by supposing that Φ(a) is the Dirac function. Under this assumption

Φ(a− t)
π(a)

π(a− t)
= Φ(a− t)

π(t)

π(t− t)
,

which implies
∞∫
t

Φ(a− t)
π(a)

π(a− t)
da =

π(t)

π(0)

∞∫
t

Φ(a− t)da = c1e
−µ1t + c2e

−µ2t.

In order to ease notation
B(t) = K1e

p1t +K2e
p2t,
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with

K1 =

(
p1 + µ+ c2µ1 + c1µ2

p1 − p2

)
, K2 =

(
p2 + µ+ c2µ1 + c1µ2

p2 − p1

)
.

Thus,

B(t− a)e
−

a∫
0

µ(α) dα

=
(
K1e

p1(t−a) +K2e
p2(t−a)

) (
c1e

−µ1a + c2e
−µ2a

)
= K1c1e

p1t−(µ1+p1)a +K1c2e
p1t−(µ2+p1)a +K2c1e

p2t−(µ1+p2)a +K2c2e
p2t−(µ2+p2)a

= K1e
p1t
(
c1e

−(µ1+p1)a + c2e
−(µ2+p1)a

)
+K2e

p2t
(
c1e

−a(µ1+p2) + c2e
−(µ2+p2)a

)
from where

t∫
0

B(t− a)e
−

a∫
0

µ(α) dα
da

= K1

(
c1

1−e−(µ1+p1)t

µ1+p1
+c2

1−e−(µ2+p1)t

µ2+p1

)
etp1 +K2

(
c1

1−e−(µ1+p2)t

µ1+p2
+ c2

1−e−(µ2+p2)t

µ2+p2

)
ep2t

= K1

(
c1

ep1t−e−µ1t

µ1+p1
+c2

ep1t−e−µ2t

µ2+p1

)
+K2

(
c1

ep2t−e−µ1t

µ1+p2
+ c2

ep2t−e−µ2t

µ2+p2

)
.

Therefore

P (t) = K1

(
c1
ep1t − e−µ1t

µ1 + p1
+c2

ep1t − e−µ2t

µ2 + p1

)
+K2

(
c1
ep2t − e−µ1t

µ1 + p2
+ c2

ep2t − e−µ2t

µ2 + p2

)
+ c1e

−µ1t + c2e
−µ2t.

=

(
c1K1

µ1 + p1
+

c2K1

µ2 + p1

)
ep1t +

(
c1K2

µ1 + p2
+

c2K2

µ2 + p2

)
ep2t

−
(

c1K1

µ1 + p1
+

c1K2

µ1 + p2
− c1

)
e−µ1t −

(
c2K1

µ2 + p1
+

c2K2

µ2 + p2
− c2

)
e−µ2t.

Having solved for P (t) in closed form we can perform an asymptotic analysis, which
clearly is as t −→ ∞

either P (t) → 0 either P (t) → ∞ either P (t) → l ∈ (0,∞) .

The asymptotic analysis shows the trade-off between fertility parameters and survival
parameters and which ones prevail in the limit. Our first main theorem has now been
proven. □

To conclude this section, we observe that in the special case of c2 = 0 ( take µ2 = µ1 so
∆ > 0) we obtain

B(t) = e(1−(µ+µ1))t,

which is the result obtained in the genesis model by [2] (page 279, example 1). Indeed this
is the case since, with these parameters,

p2 = −µ− µ1, p1 = 1− µ− µ1,

and
p2 + µ+ c2µ1 + c1µ2 = 0.
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4. ANOTHER PSEUDO EXPONENTIAL SURVIVAL

In the following, inspired by [1] we consider another pseudo exponential survival as
follows

(4.20) π(a) =

(
n∑

i=0

cia
i

)
e−µ1a,

and

(4.21a) β(a) = e−µa,

with the appropriate conditions on the parameters defined in (3.14).
We are now able to express our second main result as follows.

Theorem 4.2. Suppose that the following assumptions hold: (4.20) and (4.21a). Under these
assumptions, the integral equation (2.12) has a unique solution. Additionally, when n = 1 and
Φ (a) is the Dirac function, the solution and the population (2.1) can be expressed exactly.

Proof. We follow the same approach as in Theorem 3.1, starting with the existence and
uniqueness of the solution (2.12) becomes

B(t) = Ψ(t) +

n∑
i=0

ciBi(t),

where

(4.22) Bi(t) =

t∫
0

e−µaaiB(t− a)da =

t∫
0

e−µ(t−z)(t− z)iB(z)dz,

and µ = µ+ µ1.
By differentiating we get the following ODE system for Bi(t) in the form

B′
0(t) = B(t)− µB0(t),

B′
i(t) = −µBi(t) + iBi−1(t), i ≥ 1.

In canonical form the system can be written

(4.23) b′(t) = Ab(t) + u(t),

where

b =

 B0

...
Bn

 , u =


ψ
0
...
0


and

A =


c0 − µ c1 c2 c3 · · · cn

1 −µ 0 0 · · · 0
0 2 −µ 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · n −µ

 .

From the general theory of linear ODE systems, (4.23) has a unique solution, which, given
the boundary condition is

b(t) =

∫ t

0

eA(t−s)u(s)ds.
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Our next step is to find the population in exact form. As in the case of (3.18) we have

(4.24) R =

∫ ∞

0

β(t)π(t)dt =

n∑
i=0

ci

∫ ∞

0

tie−(µ1+µ)tdt =

n∑
i=0

cii!

(µ1 + µ)
i+1

.

As in Section 3 we denote by p0 the solution of

F̂ (p) = 1

where F̂ (p) is the Laplace transform of βπ. Then, the Laplace transform of B for n = 1 is
given by

B̂(p) =
c0

p+ µ̄
+

c1
(p+ µ̄)2

+

[
c0

p+ µ̄
+

c1
(p+ µ̄)2

]
B̂(p).

Consequently

B̂(p) =
c0(p+ µ̄) + c1

(p+ µ̄)2 − c0(p+ µ̄)− c1
,

is well defined for all p ̸= p0. Let’s point that

c0(p+ µ̄) + c1
(p+ µ̄)2 − c0(p+ µ̄)− c1

=
A (p− p2 + µ̄)

(p− p1 + µ̄) (p− p2 + µ̄)
+

B (p− p1 + µ̄)

(p− p1 + µ̄) (p− p2 + µ̄)
,

where p1, p2 are the roots of the quadratic

x2 − c0x− c1 = 0.

They are real since ∆ = c20 + 4c1 and

p1 =
c0 +

√
∆

2
, p2 =

c0 −
√
∆

2
.

Moreover {
A+B = c0
A (−p2 + µ̄) +B (−p1 + µ̄) = c0µ̄+ c1.

This system has the solution

A =
c1 + c0p1
p1 − p2

and B = −c1 + c0p2
p1 − p2

.

Thus,

B̂(p) =
c1 + c0p1
p1 − p2

1

p− p1 + µ̄
− c1 + c0p2

p1 − p2

1

p− p2 + µ̄
.

Therefore
B(t) =

c1 + c0p1
p1 − p2

e(p1−µ̄)t − c1 + c0p2
p1 − p2

e(p2−µ̄)t.

The total population can now be calculated, as previously mentioned

P (t) =

∞∫
0

ρ(a, t) da =

t∫
0

ρ(a, t) da+

∞∫
t

ρ(a, t) da

=

t∫
0

B(t− a)e
−

a∫
0

µ(α) dα
da+

∞∫
t

Φ(a− t)e
−

a∫
a−t

µ(α) dα

da.

We can make an initial observation that the population size will be distinct from the pre-
vious model. Here

e
−

a∫
a−t

µ(α)dα

=
π(a)

π(a− t)
=

(c0 + c1a)e
−µ1a

[c0 + c1 (a− t)] e−µ1(a−t)
,
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since

π(a) = (c0 + c1a)e
−µ1a.

Let us notice that

∞∫
t

Φ(a− t)
π(a)

π(a− t)
da =

∞∫
t

Φ(a− t)
π(t)

π(t− t)
da

=
π (t)

π (0)

∞∫
t

Φ(a− t) =
π(t)

c0
=

(c0 + c1t)e
−µ1t

c0
.

In order to ease notation

B(t) = K1e
λ1t +K2e

λ2t,

with

K1 =
c1 + c0p1
p1 − p2

, K2 = −c1 + c0p2
p1 − p2

, λ1 = p1 − µ̄, λ2 = p2 − µ̄.

Thus,

B(t− a)e
−

a∫
0

µ(α) dα

=
(
K1e

λ1(t−a) +K2e
λ2(t−a)

) 1

2
(c0 + c1t)e

−µ1t

= K1
c0
eaλ1

e(λ1−µ1)t + tK1
c1
eaλ1

e(λ1−µ1)t + tK2
c1
eaλ2

e(λ2−µ1)t +K2
c0
eaλ2

e(λ2−µ1)t

= K1e
(λ1−µ1)te−λ1a (c0 + tc1) +K2e

(λ2−µ1)te−λ2a (tc1 + c0)

= (tc1 + c0)
(
K1e

(λ1−µ1)te−λ1a +K2e
(λ2−µ1)te−λ2a

)
from where

t∫
0

B(t− a)e
−

a∫
0

µ(α) dα
da = (tc1 + c0)

t∫
0

(
K1e

(λ1−µ1)te−aλ1 +K2e
(λ2−µ1)te−aλ2

)
da

= (tc1 + c0)

t∫
0

(
K1e

(λ1−µ1)te−λ1a +K2e
(λ2−µ1)te−λ2a

)
da

= (tc1 + c0)

 t∫
0

K1e
(λ1−µ1)te−λ1ada+

t∫
0

K2e
(λ2−µ1)te−λ2ada


= (tc1 + c0)

K1e
(λ1−µ1)t

t∫
0

e−λ1ada+K2e
(λ2−µ1)t

t∫
0

e−λ2ada


=

(
K1e

(λ1−µ1)t
1− e−λ1t

λ1
+K2e

(λ2−µ1)t
1− e−λ2t

λ2

)
(tc1 + c0)
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Thus,

P (t) =

(
K1e

(λ1−µ1)t
1− e−λ1t

λ1
+K2e

(λ2−µ1)t
1− e−λ2t

λ2

)
(tc1 + c0) +

c0 + c1t

c0
e−µ1t

=

(
K1e

λ1t
1− e−λ1t

λ1
+K2e

λ2t
1− e−λ2t

λ2

)
(c0 + c1t)e

−µ1t +
c0 + c1t

c0
e−µ1t

=

(
K1

eλ1t − 1

λ1
+K2

eλ2t − 1

λ2

)
(c0 + c1t)e

−µ1t +
c0 + c1t

c0
e−µ1t

=

(
K1e

λ1t

λ1
− K1

λ1
+
K2e

λ2t

λ2
− K2

λ2

)
(c0 + c1t)e

−µ1t +
c0 + c1t

c0
e−µ1t

=

[
K1

λ1
e(λ1−µ1)t +

K2

λ2
e(λ2−µ1)t +

(
−K1

λ1
− K2

λ2
+

1

c0

)
e−µ1t

]
(c0 + c1t).

Having solved for P (t) in closed form we can perform an asymptotic analysis as in the
previous section. We have now completed the proof for our second main theorem. □

To conclude this section, we observe that in the special case of c0 = 1 and c1 = 0, we
have

p1 = 1, p2 = 0

leading to

B(t) = e(1−µ̄)t = e(1−(µ+µ1))t,

which is the result obtained in the genesis model by [2] (page 279, example 1).

Remark 4.1. As per [6], the pseudo exponential functions that we consider can approxi-
mate any continuous survival probability function, thereby making our approach in The-
orems 3.1-4.2 applicable to all such functions.

We consider a fertility model at the end of the paper, using the same arguments as in
our Sections 3-4 and inspired by [18].

4.1. A Fertility Model . We take the fertility function to be

β(a) =

(
n∑

i=0

cia
i

)
e−µa.

Moreover, the survival function is assumed exponential

π(a) = e−µ1a.

Let us notice that we get the same equation for B(t) as in the previous model since the
product β(a)π(a) is the same. As such, we obtain the same formula for B(t) and his
Laplace transform. Next, we will compute the total population P (t) in the special case of
n = 1. Recall that in this case

B(t) = K1e
λ1t +K2e

λ2t,

with

K1 =
c1 + c0p1
p1 − p2

, K2 = −c1 + c0p2
p1 − p2

, λ1 = p1 − µ̄, λ2 = p2 − µ̄.
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The total population P (t) is given by

P (t) =

∞∫
0

ρ(a, t) da =

t∫
0

ρ(a, t) da+

∞∫
t

ρ(a, t) da

=

t∫
0

B(t− a)e
−

a∫
0

µ(α) dα
da+

∞∫
t

Φ(a− t)e
−

a∫
a−t

µ(α) dα

da,

so the population size will be different from the previous model. Here µ(α) = µ1. Let us
notice that

∞∫
t

Φ(a− t)e
−

a∫
a−t

µ(α) dα

da =
π (t)

π (0)

∞∫
t

Φ(a− t)da = e−µ1t.

Moreover,
t∫

0

B(t− a)e
−

a∫
0

µ(α) dα
da =

t∫
0

B(t− a)e−µ1a da

=

t∫
0

(
K1e

λ1(t−a) +K2e
λ2(t−a)

)
e−µ1a da

=

t∫
0

(
K1e

λ1t−(λ1+µ1)a +K2e
λ2t−(λ2+µ1)a

)
da

=
K1

λ1 + µ1
eλ1t +

K2

λ2 + µ1
eλ2t −

(
K1

λ1 + µ1
+

K2

λ2 + µ1

)
e−µ1t

=
K1

λ1 + µ1

(
eλ1t − e−µ1t

)
+

K2

λ2 + µ1

(
eλ2t − e−µ1t

)
.

Therefore

P (t) =
K1

λ1 + µ1

(
eλ1t − e−µ1t

)
+

K2

λ2 + µ1

(
eλ2t − e−µ1t

)
+ e−µ1t

=
K1

λ1 + µ1
eλ1t +

K2

λ2 + µ1
eλ2t +

(
1− K1

λ1 + µ1
− K2

λ2 + µ1

)
e−µ1t.

Having solved for P (t) in closed form we can perform an asymptotic analysis as before.

5. CONCLUSION

Our results show that the population is a sum of three or four exponentials (depending
on the model considered), which is a significant departure from the classical exponential
survival model where the population is exponential. Our model not only allows for more
shapes of the population function of time but also provides a better fit to population data.
There is a rich literature on the fitting of real-world data with a linear combination of
exponentials, and we have mentioned [5] and [9] as examples. The latter shows the supe-
riority of the fit when more exponentials are employed (the comparison is done with one,
two, and three exponentials). Consequently, our population models will perform much
better than the classical exponential survival model on data fitting. While more general
models for population with numerical solutions are available, the lack of explicit solutions
will render them not applicable to data fitting.
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