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Iteration
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FRANCIS NWAWURU4 and SOH EDWIN MUKIAWA5

ABSTRACT. In real Hilbert spaces, given a single-valued Lipschitz continuous and monotone operator, we
study generalized split feasibility problem (GSFP) over solution set of monotone variational inclusion problem.
An inertia iterative method is proposed to solve this problem, by showing that the sequence generated by the
iteration converges strongly to solution of GSFP. As against previous methods, our step size is chosen to be
simple and not depending on norm of associated bounded linear map as well as Lipschitz constant of the single-
valued operator. The obtained result was applied to study split linear inverse problem, precisely, the LASSO
problem. Lastly, with the aid of numerical examples, we exhibited efficiency of our algorithm and its dominance
over other existing schemes.

1. INTRODUCTION

In 1994, Censor and Elfvin [12] were the first to formulate and study the Split Feasibility
Problem (SFP). It is formulated as: Let C ⊂ RN and Q ⊂ RM be convex, nonempty, closed
and T ∈ RM×N be a real matrix.

(1.1) Find u∗ ∈ C that satisfies z∗ = Tu∗ ∈ Q.

The SFP hitherto has different applications in image and signal processing, phase re-
trieval, data compression and Intensity-Modulated Radiation Therapy (IMRT) treatment
plans, etc. Consequently, many Researchers have investigated the problem under varying
settings (see [20, 26, 52, 53, 54] and the references therein).
Some generalizations of the SFP have been investigated by other authors. For example,
the following Split Variational Inequality problem (SVIP) was formulated by Censor et al.
[13]:
Assume H1 and H2 are Hilbert spaces, C ⊂ H1 and Q ⊂ H2 are convex, closed and
nonempty, the operator T : H1 → H2 is linear and bounded. Given the operators
A1 : H1 → H1 and A2 : H2 → H2, for any z ∈ C,

(1.2) find u∗ ∈ C that satisfies ⟨A1u
∗, z − u∗⟩ ≥ 0, for any z ∈ C,

(1.3) and such that z∗ = Tu∗ ∈ Q and solves ⟨A2z
∗, z − z∗⟩ ≥ 0, for any z ∈ Q.

In fact, combining the SFP (1.3) and the classical variational inequality problem (VIP)
yields SVIP. Another generalization of SFP is Split Monotone Variational Inclusion Prob-
lem (SMVIP) (see [33]), it is given as: Suppose H1 and H2 are Hilbert spaces, mappings
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f1 : H1 → H1 and f2 : H2 → H2 are single- valued, G1 : H1 → 2H1 and G2 : H2 → 2H2 are
maximal monotone, operator T : H1 → H2 is linear and bounded.

(1.4) Find u∗ ∈ H1 that satisfies 0 ∈ f1(u
∗) +G1(u

∗) and 0 ∈ f2(Tu
∗) +G2(Tu

∗).

Suppose we neglect f2 and G2, we arrive at a Monotone Inclusion problem (MIP), which is
a particular case of (SMVIP) (see [32]). Mehra et al. [32] proposed the following algorithm
to solve (MIP):

(1.5)


un = xn + ϵ(xn − xn−1),

vn = (1− αn)un + αnJ
A,B
λ,M (un),

κn = JA,B
λ,M ((1− βn)vn + βnJ

A,B
λ,M (vn)),

xn+1 = γnh(xn) + (1− γn − δn)J
A,B
λ,M (κn) + δnSnκn,

where JA,B
λ,M = (I + λM−1B)−1(I − λM−1A), M is a linear, self-adjoint, positive and

bounded operator. The authors prove a strong convergence of the sequence {xn} gener-
ated by algorithm 1.5 to a point x∗ belonging to solution set of (MIP) and intersection of
Fix(Si), with respect to an M−norm induced by the operator M .
Censor et al. [13] gave these algorithm to solve SVIP; Let T ∗ denote adjoint of T , γ the
spectral radius of the operator T ∗T , and η ∈ (0, 1/γ). For any u1 ∈ H1, generate the
sequence {un} by

(1.6) un+1 = PC(I − λA1)(un + ηT ∗(PQ(I − λA2)− I)Tun), n ≥ 1,

A1 and A2 are α1, α2 - inverse strongly monotone operators, λ ∈ (0, 2α) (where α :=
min{α1, α2}) and for all u that solve (1.3), provided

(1.7) ⟨A1z, PC(I − λA1)(z)− u⟩ ≥ 0 ∀ z ∈ H1.

They proved that {un} converges weakly to a solution of SVIP (1.2) and (1.3).

We highlight that assumption (1.7) is quite restrictive and constitute a drawback to the
method. Recently, some authors have been able to do away with this assumption in solv-
ing SVIP and related problems (see [17, 25, 37]). Unfortunately, their methods still require
that the operators A1 and A2 be inverse strongly monotone (again, a restrictive condition,
for disadvantages of inverse strongly monotone assumption, see Remark 5.3 of [26]).

Inspired by the CQ−algorithm of [9], the following weakly convergent algorithm was
introduced by Moudafi [33] to approximate a solution of (1.4)

(1.8) un+1 = JB1

λ (I − ηf1)(un − λT ∗(I − JB2
η (I − ηf2)))Tun, n ≥ 1.

where η ∈ (0, 1/γ), and γ is the spectral radius of T ∗T . For more on CQ−algorithms see
[4, 41].
Over the solution set of VIP, Tian and Jiang [44] formulated and studied a general class of
SVIP called Generalized Split Feasibility Problem (GSFP). The problem is to

(1.9) find q∗ ∈ C such that ⟨Tq∗, q − q∗⟩ ≥ 0, ∀ q ∈ C and Tq∗ ∈ F (S),

where S is nonexpansive and F (S) is fixed points set of S. To solve GSFP (1.9), they
introduced this algorithm: Pick arbitrary z1 ∈ C, define the sequence {zn} by

vn = PC(qn − τnT
∗(I − S)Tqn),

rn = PC(vn − λnA(vn)),

yn = PC(vn − λnA(rn)),

qn+1 = βnf(zn) + (1− βn)yn, n ≥ 1,

(1.10)
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where {βn} ⊂ (0, 1) with
∑∞

n=1 βn = ∞ and limn→∞ βn = 0, f : H1 → H1 is a contraction
mapping, S : H2 → H2 is a nonexpansive mapping and operator A : C → H1 is monotone
and L−Lipschitz continuous, {τn} ⊂ [a, b] for some a, b ∈ (0, 1/||T ||2), {λn} ⊂ [c, d] for
some c, d ∈ (0, 1/L) and operator T : H1 → H2 is linear and bounded. Strong conver-
gence of sequence {zn} was proved.
Algorithm (1.10) has the following advantages; A is L-Lipschitz continuous and mono-
tone, this assumption is weaker than inverse strong monotonicity assumed by many other
authors (see [17, 25, 37] and the references therein). In establishing strong convergence of
Algorithm (1.10), the restrictive assumption (1.7) of Censor et al. [13] was dispensed with.
These not withstanding, the condition on the step size {λn} is very restrictive and the
method involves evaluation of many projections. The Lipschitz constant L not possible to
compute in most real-world applications (see [26], Remark 5.3). Hence, iterative methods
devoid of knowing the Lipschitz constant L is more desirable and would handle a larger
class of problems. Some important results have been proved in which the methods do
not require knowing the Lipschitz constant ahead of time (see [30, 50] ] and the references
therein). In the light of GSFP, Izuchukwu et.al. [26] recently studied the following GSFP
over solution set of monontone variational inculsion problem (MVIP):

(1.11) Find u∗ ∈ H1 satisfying 0 ∈ (A+B)(u∗) and z∗ = Tu∗ ∈ F (S),

where the operators T : H1 → H2 is linear and bounded, A : H1 → H1 is monotone
and Lipschitz continuous, B : H1 → 2H1 is multivalued and maximal monotone, and
S : H2 → H2 is a nonexpansive map. We can note that a particular case of (1.11) is prob-
lem (1.9) if B is a normal cone. In addition, we can see (1.11) as an interesting generaliza-
tion of the (SMVIP) in Moudafi [33] and the GSFP of Tian and Jiang [44]. It is important
to note that the result of Moudafi [33] assumes the underlying single valued operators is
inverse strongly monotone. Hence, the result in [26] is more encompassing and include a
lot of interesting optimization problems such as; split minimization problems, split com-
mon null point problems, split feasibility problems, and so on (see [27, 39, 42, 43, 49]).
For solving problem (1.11), Izuchukwu et al. [26] constructed the algorithm below, they
proved strong convergence of {un} and that u∗ = lim

n→∞
un solves problem (1.11).



xn = un + αn(un − un−1),

vn = xn − τnT
∗(I − S)Txn

zn = JB
λn

(I − λnA)vn = (I + λnB)−1(I − λnA)vn,

where 0 < b ≤ τn ≤ c < 1/||T ||2.
un+1 = (1− θn − βn)vn + θnqn,

where qn = zn − λn(Azn −Avn) and

(1.12)

λn+1 =

{
min{ µ∥vn−zn∥

∥Avn−Azn|| , λn}, Avn ̸= Azn

λn, otherwise.
(1.13)

Very interesting and remarkable features of algorithm (1.12) studied by Izuchukwu are:
the operator A, is monotone and Lipschitz continuous with Lipschitz constant L, the
stepzize {λn} is self adaptive and independent of L. In addition, we point out that the
parameter {τn} in (1.12) is dependent on the norm ∥T∥ of operator T . This constitutes
a serious draw-back to the efficiency of the scheme (see Remark 5.3 of Izuchukwu et al.
[26]). Furthermore, in the proof process, the authors introduced an auxillairy sequence,
{yn} which depends on the restrictive condition imposed on the parameter {τn}, this
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played a central role in their convergence analysis. This auxilliary sequence was first in-
troduced by Xu [51] and has been used by many authors (see for instance [24, 19, 51] ).
Although the auxilliary sequence method yields correct proof, we consider it labouriuos
and restrictive. In order to extablish boundedness of the sequence (1.12), the authors, de-
ployed Lemma 2.7 of their work. This is indeed superfulous as a simpler argument could
have yielded the boundedness conclusion.
Construction of efficient and fast convergent algorithms has been of interest to many re-
searchers in recent years. Considering discrete analogue of a dynamical system of second
order, the inertial technique was developed, this improved and enhanced the rate of con-
vergence for iterative methods. Polyak [35] first considered this method to solve smooth
convex minimization problems. Nesterov’s [34] went ahead to amplify this method by his
accelerated gradient method [34]. Further development was made for structured convex
minimization problems by Beck and Teboulle [8]. Reader may see [6, 11, 16, 38, 43] where
this approach has helped to enhance rate of convergence for iterative methods.

Drawing motivations from Izuchukwu et al. [26], Tian and Jiang [44] and similar works,
our concern herein is to answer positively, the following questions
Can an iterative scheme be constructed for solving problem (1.11) such that the under-
listed features are preserved.

• none of the iterative parameters should depend on norm of the involved bounded
linear map

• operator A is Lipschitz continuous and monotone
• the step size is independent of the Lipschitz constant
• convergence analysis of the scheme does not involve constructing an auxilliary

sequence
• the scheme involves an inertia term.

Henceforth, we follow these outline; in Section 2 lies the needed definitions and Lemmas,
Section 3, contains our main Theorem, the convergence analysis and some import corol-
laries. Section 4 is devoted to application while Section 5 contains numerical examples.

2. PRELIMINARIES

H is a real Hilbert space henceforth. Let S : H → H , by F (S) we mean the fixed points
set of S.

Definition 2.1. ([31]). Let (U , d) be a metric space, f : U → U is a Meir-Keeler contraction
map if

∀ ε > 0, ∃ σ > 0 s.t ε ≤ d(w, z) < ε+ σ ⇒ d(f(w), f(z)) < ε, ∀ w, z ∈ U .

Remark 2.1. Obviously, the collection of contraction mappings is contained in the class of
Meir-Keeler contraction mappings.

Definition 2.2. A map S : H → H is called;

(i) nonexpansive if ||Sw − Sz|| ≤ ||w − z|| ∀ w, z ∈ H,

(ii) quasi-nonexpansive if ||Sw − p|| ≤ ||w − p|| ∀ w ∈ H, p ∈ F (S),

(iii) κ−demimetric (see Takahashi [45]) if F (S) ̸= ∅ and there is κ ∈ (−∞, 1) such that

⟨w − Sw,w − p⟩ ≥ (1− k)

2
||w − Sw||2 ∀, w ∈ H, p ∈ F (S),
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(iv) demicontractive if F (S) ̸= ∅ and there is τ ∈ (0, 1) satisfying

||Sυ − p||2 ≤ ||υ − p||2 + τ ||υ − Sυ||2 ∀, υ ∈ H, p ∈ F (S).

Remark 2.2. Notice that

||υ − Sυ||2 = ⟨υ − Sυ, υ − Sυ⟩ = ⟨υ − p+ p− Sυ, υ − p+ p− Sυ⟩
= ||υ − p||2 + 2⟨υ − p, p− Sυ⟩+ ||Sυ − p||2(2.14)

From Definition 2.2 (iii) and (2.14), we have

⟨υ − Sυ, υ − p⟩ ≥ (1− κ)

2
||υ − Sυ||2, ∀ υ ∈ H, p ∈ F (S).

So

2⟨υ − Sυ, υ − p⟩ = ||υ − Sυ||2 − κ||υ − Sυ||2

= ||υ − p||2 + 2⟨υ − p, p− Sυ⟩+ ||Sυ − p||2 − κ||υ − Sυ||2,
that is,

2⟨υ − Sυ, υ − p⟩ − 2⟨υ − p, p− Sυ⟩ ≥ ||υ − p||2 + ||Sυ − p||2 − k||υ − Sυ||2.(2.15)

Rearranging (2.15), gives

(2.16) ||Sυ − p||2 ≤ ||υ − p||2 + κ||υ − Sυ||2, ∀ υ ∈ H, p ∈ F (S).

If κ ≤ 0 in (2.16), then

(2.17) ||Sυ − p||2 ≤ ||υ − p||2, ∀ υ ∈ H, p ∈ F (S).

Hence, S is quasi-nonexpansive. Thus every demimetric map in the sense of Takahashi
[45] is quasi-nonexpansive. For κ ∈ (0, 1), then every demimetric map in the sense of
Takahashi [45] is demicontractive.

Lemma 2.1. ([29]) Let H be a real Hilbert space. If the operators A1 : H → H is monotone and
Lipschitz continuous, and A2 : H → 2H is maximal monotone, then (A1 + A2) : H → 2H is a
maximal monotone operator.

Lemma 2.2. ([15] Suppose T : H → H is a k− demicontractive mapping and Tµ := (1− µ)I +
µT for any µ ∈ (0, 1 − k), then ||Tµv − v∗||2 ≤ ||v − v∗||2 − (1 − k − µ)||(I − T )v||2, ∀ v ∈
H, v∗ ∈ F (T ).

Remark 2.3. From Lemma 2.2, it is obvious that Tµ is quasi- nonexpansive with v∗ ∈
F (T ) ⇔ v∗ ∈ F (Tµ).

Lemma 2.3. ([40, 55]) Let X be a Banach space and C ⊂ X be closed and convex. Then, f : C → C
is a Meir-Keeler contraction mapping if and only if for each ε > 0, we can find a number δ ∈ (0, 1)
such that

||w − z|| ≥ ϵ ⇒ ||f(w)− f(z)|| ≤ δ||w − z|| ∀ w, z ∈ C.

Lemma 2.4. The following properties hold, for every w, z ∈ H .
(i) ||w + z||2 = ||w||2 + ||z||2 + 2⟨w, z⟩,

(i) ||w + z||2 ≤ ||w||2 + 2⟨z, w + z⟩,

(iii) ||λw + (1− λ)z||2 = λ||w||2 + (1− λ)||z||2 − λ(1− λ)||w − z||2.

Lemma 2.5. ([47]) Given a nonexpansive map S : H → H with F (S) ̸= ∅, if {un} ⊂ H
converges weakly to u∗ and ||(I − S)un|| strongly converges to z then (I − S)u∗ = z.
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3. MAIN CONTRIBUTIONS

One of the major contributions of this work is presented here.
Assumptions

(A1) H1, H2 are real Hilbert spaces, L : H1 → H2 is a bounded linear operator whose
adjoint operator is L∗ : H2 → H1.

(A2) A : H1 → H1 is monotone and Lipschitz continuous.

(A3) B : H1 → 2H1 is set-valued and maximal monotone.

(A4) f : H1 → H1 is a Meir-Keeler contraction mapping,

(A5) T : H1 → H1 is a k− demicontractive map with (I − T ) demiclosed at 0, where k ∈
[0, 1), F (T ) ̸= ∅ and S : H2 → H2 is ζ− demimetric mapping, with ζ ∈ (−∞, 1), F (S) ̸=
∅.

Self-Adaptive Algorithm for GSFP

Algorithm 3.1. Initialization: Pick αn ∈ [0, α] ⊂ [0, 1), δn ∈ [a, b] ⊂ (0, 1), σn ∈ (0, 1), µ ∈
(0, 1− k). Take u0, u1 ∈ H1. Given the iterate un and un−1, compute

xn = un + αn(un − un−1),

vn = xn − δnL
∗(I − S)Lxn,

zn = JB
λn

(I − λnA)vn,

qn = zn − λn(Avn −Azn),

un+1 = βnf(vn) + (1− βn)(µI + (I − µ)T )qn,

(3.18)

where δn = σnτn, and

τn =

{
(1−ζ)∥(I−S)Lxn∥2

∥L∗(I−S)Lxn||2 , Lxn ̸= SLxn,

0, otherwise,
(3.19)

λn+1 =

{
min{ µ∥vn−zn∥

∥Avn−Azn∥ , λn}, Avn ̸= Azn,

λn, otherwise.
(3.20)

The control sequences {αn} and {βn} satisfy conditions:
C1

∑∞
n=1 βn = ∞, limn→∞ βn = 0.

C2 limn→∞
αn

βn
∥xn − xn−1∥ = 0.

C3 Denote by Γ = {u∗ ∈ (A+B)−1(0) ∩ F (T ) : Lu∗ ∈ F (S)} ≠ ∅ the solution set.

Remark 3.4. Demimetric mappings are crucial in optimization because they contain a lot
of the commonly used operators in optimization. For example, it is known that the class of
k− demimetric mappings with ζ ∈ (−∞, 1) includes the resolvents of maximal monotone
operators and the metric projections (these are very useful tools in solving optimization
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problems) in Hilbert spaces (see e.g. [21, 48]). The class of k− demicontractive mapping
is quite general and contains the class of maps studied for instance in ([9, 19, 26, 33]).
Furthermore, the problem studied in this manuscript, whose solution set is indicated in
condition C3 above is more general than the problem considered in [9, 26]. Hence, we
recover the results of Tian and Jiang [9] and Izuchukwu et al. [26] as important corollaries.
See remark 4.1 below.

4. CONVERGENCE ANALYSIS

Observe that for u∗ ∈ Γ,

||L∗(I − S)Lxn||||xn − u∗|| ≥ ⟨L∗(I − S)Lxn, xn − u∗⟩
= ⟨(I − S)Lxn, Lxn − Lu∗⟩

≥ (1− ζ)

2
||(I − S)Lxn||2 since S is ζ− demimetric.(4.21)

If Lxn ̸= SLxn, Then ||L∗(I − S)Lxn|| > 0. Hence δn is well defined.

Lemma 4.6. Suppose conditions C1,C2,C3 hold, then the sequence {un} given by Algorithm
3.18 is bounded.

Proof. Let u∗ ∈ Γ, if for any ε > 0, ||un − u∗|| ≤ ε then the sequence {un} is bounded. If
on the contrary, ||un − u∗|| ≥ ε then there exists a number ρ ∈ (0, 1) by Lemma 2.3 such
that ||f(un)− f(u∗)|| ≤ ρ||un − u∗||. Using Remark 2.3, we have the following estimate:

∥un+1 − u∗∥ ≤ βn∥f(vn)− f(u∗)∥+ βn∥f(u∗)− u∗∥+ (1− βn)∥(1− µ)I + µTqn − u∗∥
≤ βnρ∥vn − u∗∥+ βn∥f(u∗)− u∗∥+ (1− βn)∥qn − u∗∥.(4.22)

From (3.20)), we have that

∥Avn −Azn∥ ≤ µ

λn+1
∥vn − zn∥.

Utilizing qn in Algorithm 3.18 we get

∥qn − u∗∥2 = ∥zn − λn(Avn −Azn)− u∗∥2

= ∥zn − u∗∥2 + λ2
n∥Azn −Avn∥2 − 2λn⟨zn − u∗, Azn −Avn⟩

= ∥zn − vn∥2 + ∥vn − u∗∥2 + 2⟨zn − vn, vn − u∗⟩+ λ2
n∥Azn −Avn∥2

− 2λ2
n⟨zn − u∗, Azn −Avn⟩

= ∥vn − u∗∥2 + ∥zn − vn∥2 + λ2
n∥Azn −Avn∥2 + 2⟨zn − u∗, zn − vn⟩

− 2⟨zn − vn, zn − vn⟩ − 2λn⟨zn − u∗, Azn −Avn⟩
= ∥vn − u∗∥2 − ∥zn − vn∥2 + 2⟨zn − u∗, zn − vn − λn(Azn −Avn)⟩

+ λ2
n∥Azn −Avn∥2

≤ ∥vn − u∗∥2 − (1− λ2
n

µ2

λ2
n+1

)∥zn − vn∥2 + 2⟨zn − u∗, zn − vn − λn(Azn −Avn)⟩.(4.23)

Using the maximal monotonicity of B, we know from the definition of zn that

1

λn
(vn − λnAvn − zn) ∈ Bzn,

it follows from this fact that

Azn +
1

λn
(vn − λnAvn − zn) ∈ (A+B)zn.
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Since 0 ∈ (A+B)(u∗), we conclude from Lemma 2.1 that

⟨zn − u∗, zn − vn − λn(Azn −Avn)⟩ ≤ 0.(4.24)

Substituting (4.24) into (4.23), we obtain

∥qn − u∗∥2 ≤ ∥vn − u∗∥2 − (1− λ2
n

µ2

λ2
n+1

)∥zn − vn∥2.(4.25)

Clearly, lim
n→∞

λn exists since λn is a monotone nonincreasing. Therefore, without loss of
generality we can assume that limn→∞ λn = λ. Using this idea, we get that

lim
n→∞

(1− λ2
n

µ2

λ2
n+1

) = 1− µ2 > 0.(4.26)

Therefore, using (4.26) in (4.25), we get

∥qn − u∗∥2 ≤ ∥vn − u∗∥2.(4.27)

Consequently,

∥qn − u∗∥ ≤ ∥vn − u∗∥.(4.28)

Observe also from the condition (C2) that

αn

βn
∥un − un−1∥ → 0.(4.29)

So, there is a number K1 > 0 such that
αn

βn
∥un − un−1∥ ≤ K1,∀n ∈ N.(4.30)

Thus, using (4.30) and the definition of {un}, we obtain

∥xn − u∗∥ = ∥un + αn(un − un−1)− u∗∥
≤ ∥un − u∗∥+ αn∥un − un−1∥

= ∥un − u∗∥+ βn
αn

βn
∥un − un−1∥

≤ ∥un − u∗∥+ βnM1,∀n ∈ N.(4.31)

Recall that

2δn⟨Lxn−Lu∗, (I−S)Lxn⟩ ≥ δn(1−ζ)∥(I−S)Lxn∥2, sinceS is ζ−demimetric.(4.32)

Using the definition of zn, (4.32) for all u∗ ∈ Γ, then from Algorithm 3.1, we get

∥vn − u∗∥2 = ∥xn − δnL
∗(I − S)Lxn − u∗∥

= ∥xn − u∗∥2 + δ2n∥L∗(I − S)Lxn∥2 − 2δn⟨xn − u∗, L∗(I − S)Lxn⟩
= ∥xn − u∗∥2 + δ2n∥L∗(I − S)Lxn∥2 − 2δn⟨Lxn − Lu∗, (I − S)Lxn⟩
≤ ∥xn − u∗∥2 + δ2n∥L∗(I − S)Lxn∥2 − δn(1− ζ)∥(I − S)Lxn∥2

= ∥xn − u∗∥2 + δ2n∥L∗(I − S)Lxn∥2 − δnτn∥L∗(I − S)Lxn∥2

≤ ∥xn − u∗∥2 − δn(τn − δn)∥L∗(I − S)Lxn∥2

= ∥xn − u∗∥2 − (1− σn)(1− ζ)δn∥(I − S)Lxn∥2

≤ ∥xn − u∗∥2.(4.33)
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Using (4.22), (4.28), (4.31) and (4.32), we get

∥un+1 − u∗∥ ≤ (1− βn(1− ρ))∥un − u∗∥+ βn(1− ρ)[
∥f(u∗)− u∗∥

(1− ρ)
+

αn∥un − un−1∥
βn(1− ρ)

]

≤ (1− βn(1− ρ))∥un − u∗∥+ βn(1− ρ)K

≤ max{∥un − u∗∥,K}
...
≤ max{∥u1 − u∗∥,K}(4.34)

where K = ∥f(u∗)−u∗∥
(1−ρ) +K2 with K2 = sup αn∥un−un−1∥

βn(1−ρ) > 0.

Therefore, {un} is bounded. Consequently, {vn}, {zn} and {xn} are all bounded sequences.
□

Theorem 4.1. The sequence {un} given by Algorithm 3.18 is convergent in norm to a point
u∗ = PΓf(u

∗) i.e.,

⟨f(u∗)− u∗, u− u∗⟩ ≤ 0 ∀ u ∈ Γ.

Proof. From the definition of Γ, we know Γ is closed and convex. Furthermore, assuming
Γ ̸= ∅ we have that PΓ is well defined. Utilizing (4.33) gives

∥xn − u∗∥2 ≤ ∥xn − u∗∥2 − δn(1− σn)(1− ζ)∥(I − S)Lxn∥2.(4.35)

Set Qn = δn(1− σn)(1− ζ)∥(I − S)Lxn∥2. Notice from Lemma 2.4 (ii) that

∥xn − u∗∥2 ≤ ∥un − u∗∥2 + 2αn⟨xn − u∗, un − un−1⟩
≤ ∥un − u∗∥2 + 2αn∥xn − u∗∥.∥un − un−1∥.(4.36)

By convexity of || · ||2, we obtain;

∥βn(f(vn)− f(u∗)) + (1− βn)[((1− µ)I + µT )qn − u∗]∥2(4.37)

≤ βn∥f(vn)− f(u∗)∥2 + (1− βn)∥((1− µ)I + µT )qn − u∗∥2

≤ βn∥f(vn)− f(u∗)∥+ (1− βn)∥qn − u∗∥2 − µ(1− βn)(1− k − µ)∥(I − T )qn∥2

≤ βnρ
2∥vn − u∗∥2 + (1− βn)∥vn − u∗∥2 − µ(1− βn)(1− k − µ)∥(I − T )qn∥2

= (1− βn(1− ρ2))∥vn − u∗∥2 − µ(1− βn)(1− k − µ)∥(I − T )qn∥2

≤ (1− βn(1− ρ2))∥xn − u∗∥2 − (1− βn(1− ρ2))δn(1− σn)(1− ζ)∥(I − S)Lxn∥2

−µ(1− βn)(1− k − µ)∥(I − T )qn∥2

≤ (1− βn(1− ρ))∥un − u∗∥2 + 2(1− βn(1− ρ))αn∥xn − u∗∥∥un − un−1∥
−(1− βn(1− ρ))Qn − µ(1− βn)(1− k − µ)∥(I − T )qn∥2.(4.38)
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Also, from Lemma 2.4 (ii) and (4.37), we get that

∥un+1 − u∗∥2 ≤ ∥βn(f(vn)− f(u∗)) + (1− βn)[((1− µ)I + µT )qn − u∗]∥2

+2βn⟨f(u∗)− u∗, un+1 − u∗⟩
≤ (1− βn(1− ρ))∥un − u∗∥2 + 2(1− βn(1− ρ))αn∥xn − u∗∥∥un − un−1∥

+2βn⟨f(u∗)− u∗, un+1 − u∗⟩ − (1− βn(1− ρ))Qn

−µ(1− βn)(1− k − µ)∥(I − T )qn∥.(4.39)

Set Rn = ∥un −u∗∥2, θn = βn(1− ρ), Cn = (1− θn)Qn +µ(1− βn)(1− k−µ)∥(I −T )qn∥2,
dn = 2(1− θ)αn∥xn − u∗∥.∥un − un−1∥+ 2βn⟨f(u∗)− u∗, un+1 − u∗⟩, and bn = dn

θn
. Then,

Rn+1 ≤ (1− θn)Dn + bnβn

and
Rn+1 ≤ Dn − Cn + dn,∀n ≥ 1.

By condition C1, we have {θn} ⊂ (0, 1),
∑∞

n=1 θn = ∞ and limn→∞ dn = 0.
Assume that limk→∞ Cnk

= 0 for any subsequence {Cnk
} of {Cn}.

Then,

(4.40) lim
k→∞

Qnk
= 0 = lim

k→∞
||(I − T )qnk

||2.

It follows that

(4.41) lim
k→∞

∥L∗(I − S)Lxnk
∥2 = 0 and lim

k→∞
∥I − S)Lxnk

∥2 = 0, from (4.21).

Furthermore,

(4.42) lim
k→∞

∥xnk
− unk

∥2 = 0.

To conclude the proof, we need the following fact which we state and prove as a proposi-
tion.

Proposition 4.1. Let the sequence {un} given by Algorithm 3.1 satisfy conditions C1, C2 and
C3. Suppose there is a subsequence {unk

} of {un} that converges weakly to a point q ∈ H1 and

lim
k→∞

∥vn
k
− zn

k
∥ = lim

k→∞
∥vn

k
− un

k
∥ = 0.

Then, q ∈ Γ.

Proof. Recalling that {un} is bounded, we can extract a subsequence {unkj
} of {un} con-

verging weakly to a point q ∈ H1 and lim supk→∞⟨f(u∗)−u∗, unk
−u∗⟩ = limj→∞⟨f(u∗)−

u∗, unkj
− u∗⟩. Consequently, using (4.42), {unkj

} converges weakly to q ∈ H1. Further-
more, from the hypothesis we have that {znkj

} and {vnkj
} converge weakly to q. By lin-

earity of L, we conclude that {Lxnkj
}converges weakly to Lq. By (4.41) and Lemma 2.5,

we have that

(4.43) Lq ∈ F (S).

Suppose that (ṽ, v) ∈ G(A + B), then v − Aṽ ∈ B(ṽ). Furthermore, from the Algorithm
(3.18) we get

1

λnkj

(vnkj
− λnkj

Avnkj
− znkj

) ∈ B(znkj
).(4.44)
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Using monotonicity of B we obtain

⟨ṽ − vnkj
, v −Aṽ − 1

λnkj

(vnkj
− λnkj

Avnkj
− znkj

)⟩ ≥ 0.(4.45)

We then obtain from (4.45) above and from the monotonicity of A that

⟨ṽ − znkj
, v⟩ ≥ ⟨ṽ − znkj

, Aṽ +
1

λnkj

(vnkj
− znkj

)−Avnkj
⟩

= ⟨ṽ − znkj
, Aṽ −A(znkj

)⟩+ ⟨ṽ − znkj
, A(znkj

)−A(vnkj
)⟩

+⟨ṽ − znkj
,

1

λnkj

(vnkj
− znkj

)⟩

≥ ⟨ṽ − znkj
, A(znkj

)−A(vnkj
)⟩+ ⟨ṽ − znkj

,
1

λnkj

(wnkj
− ynkj

)⟩.(4.46)

From (4.26), we know that limk→∞ λnkj
> 0. Furthermore, from hypothesis, limk→∞ ∥vnkj

−
znkj

∥ = 0. Using the Lipschitz continuity of A, we get that limk→∞ ∥Avnkj
−Aznkj

∥ = 0.

Thus, we obtain from (4.46) that

⟨ṽ − q, v⟩ ≥ 0.(4.47)

Clearly, A+B is maximal monotone by Lemma 2.1, hence

(4.48) 0 ∈ (A+B)q.

Next, we show that limn→∞ ∥unkj
+1 − unkj

∥ = 0, indeed we have

∥unkj
+1 − qnkj

∥ ≤ βnkj
∥f(vnkj

)− qnkj
∥+ (1− βnkj

)∥((1− µ)I + µT )qnkj
− qnkj

∥
≤ βnkj

∥f(vnkj
)− qnkj

∥+ (1− βnkj
)∥(I − T )qnkj

∥ → 0.(4.49)

Therefore,

(4.50) ∥unkj
+1 − unkj

∥ ≤ ∥unkj
+1 − qnkj

∥+ ∥qnkj
− xnkj

∥+ ∥xnkj
− unkj

∥ → 0.

It follows that

(4.51) ∥unkj
− qnkj

∥ ≤ ∥unkj
− unk+1

∥+ ∥unkj
+1 − qnkj

∥ → 0.

Since {unkj
} converges weakly to q ∈ H1, then (4.51) implies that {qnkj

} also converges
weakly to q ∈ H1. Utilizing conclusion (4.40) and Lemma 2.5, we get

(4.52) q ∈ F (T ).

Combining (4.43), (4.48) and (4.52), we immediately get that q ∈ Γ. This concludes proof
of the proposition. □

Now, we can conclude the proof of Theorem 4.1. From (4.39) we get lim supk→∞⟨f(u∗)−
u∗, unk

− u∗⟩ ≤ 0. Also, αnkj

∥xnk
−u∗∥∥unk

−unk−1∥
βnkj

(1−ρ) → 0.

This gives lim supk→∞ bnk
≤ 0. Using Lemma 2.5, we get ∥un − u∗∥ → 0, which means,

un → u∗ = PΓf(u
∗). The proof of Theorem 4.1 is completed. □

Remark 4.5. According to Remark 2.1, the class of Meir-Keeler contraction mappings
studied in Theorem 4.1 properly contains the class of contraction mappings. So, if we
take the mapping f in Algorithm 3.18 to be a contraction map, Theorem 4.1 still holds.
Furthermore, if we take the mapping S in Algorithm 3.18 to be nonexpansive, Theorem
4.1 also holds. Hence, Theorem 4.1 includes the main result of Izuchukwu et al. [26].
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Many authors (see e.g Xu [51]) have studied a very interesting problem of finding a vector
of minimum norm in different applications. In the next result, we solve minimum norm
problem by applying Theorem 4.1.
Observe that if f ≡ 0, then Algorithm 3.18 reduces to:

xn = un + αn(un − un−1),

vn = xn − δnL
∗(I − S)Lxn,

zn = JB
λn

(I − λnA)vn,

qn = zn − λn(Avn −Azn),

un+1 = (1− βn)(µI + (I − µ)T )qn,

(4.53)

where δn = σnτn, and

τn =

{
∥(I−S)Lxn∥2

∥L∗(I−S)Lxn||2 , Lxn ̸= SLxn,

0, otherwise,
(4.54)

λn+1 =

{
min{ µ∥vn−zn∥

∥Avn−Azn∥ , λn}, Avn ̸= Azn,

λn, otherwise.
(4.55)

Theorem 4.2. Assume that (A1) − (A3) and (A5) of Algorithm 3.18 hold and that conditions
(C1)−(C3) of Algorithm 3.18 are also satisfied. Then, {un} the sequence generated by Algorithm
4.53 converges in norm to u∗ = PΓ(0). This means the minimum-norm element of Γ is u∗.

Proof. It is directly derived from the proof of Theorem 4.1. □

Remark 4.6. (1) If T is k−strictly pseudo-contractive with F (T ) ̸= ∅, then it is
k−demicontractive and the complement (I − T ) is demiclosed at 0.
(2). Quasi-nonexpansive mappings are 0− demicontractive mappings and include the
nonexpansive mappings having nonempty fixed point sets.
If we set the map T to be either k−strictly pseudo-contractive mapping with F (T ) ̸= ∅
or Quasi-nonexpansive mapping, in Algorithm (3.18), Therorem 4.1 still holds. There-
fore Theorem 4.1 of this article is an important generalization and improvement on many
existing results in the literature (see [10, 28, 33, 37] ).

Remark 4.7. Note that if we set S = JM
λ (I − λf), with the operators M : H2 → 2H2

maximal monotone and f : H2 → H2 being α− inverse strongly monotone, and λ ∈
(0, 2α). Then S is nonexpansive, since it is an averaged-nonexpansive mapping.

5. APPLICATIONS

The split linear inverse problem
Let H1, H2 be Hilbert paces. Let F : H1 → R be a continuously differentiable and convex
function, and G : H1 → R be a lower semi-continuous and convex function. Let T : H1 →
H2 be a bounded linear operator and S : H2 → H2 a non-linear single-valued mapping.
We consider the problem

Find u∗ ∈ H1 such that F(u∗) + G(u∗) = min[F(u) + G(u)], and Tu∗ ∈ F (S).(5.56)

The problem (5.56) is a finite dimensional Split Linear Inverse Problem (SLIP) (see [15]).

Assuming u∗ ∈ Ψ the solution set of (5.56). It is known that whenever F is continuously
differentiable and convex, then the gradient of F i.e., ∇F is continuous and monotone.
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Also, the subdifferential ∂G of G is always maximal monotone whenever G is lower semi-
continuous and convex (see [15]). Obviously,

F(u∗) + G(u∗) = min[F(u) + G(u)] ⇔ 0 ∈ ∇F(u∗) + ∂G(u∗).(5.57)

Setting A = ∇F , B = ∂G and S to be nonexpansive in Algorithm 3.18, we deduce the
following method for SLIP (5.56).

Algorithm 5.1: Adaptation of Algorithm (3.18) to SLIP 5.56

Initialization: Take αn ∈ [0, α] ⊂ [0, 1), δn ∈ [a, b] ⊂ (0, 1), θn ∈ (0, 1), µ ∈ (0, 1 − k).
Take u0, u1 ∈ H1. Given the iterate un and un−1,
Compute 

xn = un + αn(un − un−1),

vn = xn − δnT
∗(I − S)Txn,

zn = JB
λn

(I − λnA)vn = (I + λn∂G)−1(I − λn∇F)vn,

qn = zn − λn(∇Fvn −∇Fzn),

un+1 = βnf(vn) + (1− βn)((µI) + (I − µ)T )qn,

(5.58)

where δn = σnτn, and

δn =

{
∥(I−S)Txn∥
∥T∗(I−S)Txn

, Txn ̸= STxn

0, otherwise,
(5.59)

λn+1 =

{
min{ µ∥vn−zn∥

∥∇Fvn−∇Fzn∥ , λn + ρn},∇Fvn ̸= ∇Fzn,

λn, otherwise.
(5.60)

Remark 5.8. We remark that the Least Absolute Selection and Shrinking Operator (LASSO)
problem is indeed a particular case of the SLIP (5.56) in that, for F(u) = 1

2∥Du− z∥22, and
gradient ∇F(u) = D∗(Du − z) is monotone and ||D||2− Lipschitz continuous. Thus, the
LASSO problem becomes the minimization problem:

min
u∈RN

1

2
∥Du− z∥22 + λ∥u∥1,(5.61)

where λ > 0, z ∈ RN and D ∈ RM×N is a matrix (see [8, 52] for detials).

We note that the minimization problem (5.61) can be recast into a problem of second-order
cone programming, which is central in the development of two classical algorithms: the It-
eration Shrinking Thresholding Algorithm (ISTA) and the Fast Iteration Shrinking Thresh-
olding Algorithm (FISTA). Both are known to efficiently solve SLIP (5.56) (see [8, 14, 52] ).

Remark 5.9. The following example indicates that approximation or computation of Lip-
schitz constants of Lipschitz continuous operators or norm of operators is generally dif-
ficult. Consequently, the applicability of the results in [33, 40, 44] to the LASSO problem
may be affected negatively.

Theorem 5.3 ([23] Theorem 2.3). Let a rational number p ∈ [1,∞), p ̸= 1, 2 be given. Except
for p = np, no algorithm exists to compute the p−norm of a matrix having its entries in {−1, 0, 1}
to relative error with running time polynomial in the dimensions.
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Therefore, our algorithm (3.18) which is independent of the Lipschitz constant and norm
of the associated bounded linear map is better for application purposes than the results in
[26, 33, 44].

6. NUMERICAL ILLUSTRATIONS

In infinite dimensional real Hilbert spaces, we consider an example to demonstrate that
our algorithm is implementable. Furthermore, efficiency of our scheme is compared with
those of Izuchukwu et al [26]. All our codes were written in MATLAB R2021a. The specifi-
cation of the personal computer used in our computations is; 11th Gen Intel(R) Core(TM)
i7-1165G7, 2.80 GHz with 16.00 Gb-RAM and 64-bit-OS.
The vectors u0, u1 ∈ H1 = L2([0, 1]). In Algorithm (3.18) of our work and Algorithm 1.12
of Izuchukwu et al. [26], we generate the step size λn at each iteration. In Algorithm (1.12)
taking α = 4, 8, 10, we compute αn at each iteration step by choosing 0 ≤ αn ≤ ᾱn, where

ᾱn :=


min

{
n− 1

n− 1 + α
,

εn
∥un − un−1∥

}
, if un ̸= un−1,

n− 1

n− 1 + α
, otherwise.

Meanwhile, for our Algorithm (3.18), αn ∈ (0, 1) is easily chosen and is fixed. Our stop-
ping criteria is set as ∥en∥ = ∥un+1 − un∥L2([0,1]) ≤ 10−4.

Example 6.1. Let H1 = H2 = L2([0, 1]). We define an inner product and norm on H1, H2

as;

⟨u, z⟩ :=
∫ 1

0

u(t)z(t)dt ∀u, z ∈ L2([0, 1])

and

∥u∥L2([0,1]) :=

(∫ 1

0

|u(t)|2dt
)1/2

∀u ∈ L2([0, 1]).

Let the operators A,B : L2([0, 1]) → L2([0, 1]) be defined by

Au(t) =
1

2
u(t), and Bu(t) = max{0, u(t)}, t ∈ [0, 1], u ∈ L2([0, 1]).

Clearly, A is monotone and Lipschitz while B is maximal monotone, on L2([0, 1]) (see
[22]), moreover, we have

JB
λn

u(t) = (I + λnB)−1u(t) :=


1

1 + λn
u(t), if u(t) > 0,

u(t), if u(t) ≤ 0.

We define L : L2([0, 1]) → L2([0, 1]) by

Lu(s) =

∫ 1

0

K(s, t)u(t)dt ∀u ∈ L2([0, 1]),

where K : [0, 1] × [0, 1] → R is continuous. Thus, L is a bounded linear operator whose
adjoint is

L∗u(s) =

∫ 1

0

K(t, s)u(t)dt ∀u ∈ L2([0, 1]).

We define g : L2([0, 1]) → [0,∞) by g(u) = ∥u∥L2([0,1]). We take S = J∂g
γ the resolvent

of ∂g (subdifferential of g) with respect to γ > 0. Obviously, g is continuous, convex
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and maximal monotone. We deduce that the resolvent of ∂g given as J∂g
γ = (I+γ∂g)−1 is

(−1)−demimetric (see [46]). In addition, S is nonexpansive and we can explicitly compute
S as (see [7] Example 24.20):

Su = J∂g
γ u = Proxγ∥·∥L2([0,1])

u =

(
1− γ

max{∥u∥L2([0,1]), γ}

)
u.

Next, we take the operator T ≡ I, the identity map on L2([0, 1]), consequently, T is 0-
demicontractive. Furthermore, let’s define f : L2([0, 1]) → L2([0, 1]) as

fu(t) =

∫ 1

0

t

2
u(s)ds, t ∈ [0, 1].

Therefore, f is a Mier-Keeler contraction map, because it is clearly a contraction map.
The following scenarios are studied for our numerical results appearing in the figures and
tables below.
Case 1: Take u0(t) = et, u1(t) = t2 + 1;
Case 2: Take u0(t) = t, u1(t) = tet;
Cases 3: Take u0(t) = t2 + 1, u1(t) = cos t+ 2t;
Cases 4: Take u0(t) = et, u1(t) = t sin(t2).

TABLE 1. Comparison of our proposed Algorithm (3.18) and Algorithm (1.12),
with S = J∂g

γ .

λ1 CASES αn = 10−2 Time Iter. α = 4 Time Iter.

Alg. (3.18) Alg. (1.12)

0.01 I 3.9755 15 6.9229 24

II 3.9304 15 6.3071 22

III 6.6694 20 31.5942 31

IV 1.1627 5 1.8860 7

λ1 CASES αn = 10−3 Time Iter. α = 8 Time Iter.

Alg. (3.18) Alg. (1.12)

0.5 I 3.3784 13 5.9493 21

II 3.0593 12 5.7421 20

III 5.5292 17 8.2208 28

IV 0.8742 4 1.5470 6

λ1 CASES αn = 10−4 Time Iter. α = 10 Time Iter.

Alg. (3.18) Alg. (1.12)

1 I 3.0800 12 5.6116 20

II 2.7826 11 5.4660 19

III 5.3319 16 7.8963 27

IV 0.8648 4 1.6077 6

Remark 6.10. The following parameters were used for generating Table 1. S = J∂g
γ for

both Algorithm (3.18) and Algorithm (1.12). σn =
1

2
in Algorithm (3.18) and Algorithm



670 C. D. Enyi, J. N. Ezeora, G. C. Ugwunnadi, F. Nwawuru, S. E. Mukiawa

(1.12), respectively. θn =
1

2
− βn, εn =

βn

n0.01
, and γ = 0.01, µn = 0.01 and βn =

1

5n+ 2
in

both Algorithms . It is inferred from Table 1 that Algorithm (3.18) has better performance
than Algorithm (1.12), based on number of iterations and speed of convergence. Also,
as seen from Table 1 the best performance recorded by our proposed Algorithm (3.18) is
when λ1 = 1, αn = 10−4.

Now, for the purpose of further numerical comparison, we recall the operator S : L2([0, 1]) →
L2([0, 1]) given by Izuchukwu et al [26] and define by

Su(t) =

∫ 1

0

tu(s)ds, t ∈ [0, 1].

S is nonexpansive, since

∥S(u)− S(z)∥2L2([0,1])
=

∫ 1

0

|Su(t)− Sz(t)|2 ≤ ∥u− z∥2L2([0,1])
.

Therefore, for any 0 ≤ ζ < 1, S is a ζ−strict pseudo-contraction, thus S is ζ−demimetric
for any 0 ≤ ζ < 1.

TABLE 2. Comparison of our proposed Algorithm (3.18) with Algorithm (1.12),

when Su(t) =

∫ 1

0

tu(s)ds.

λ1 CASES αn = 10−2 Time Iter. α = 4 Time Iter.

Alg. (3.18) Alg. (1.12)

0.01 I 5.5851 17 8.0885 24

II 5.4368 17 6.7190 23

III 120.1772 25 172.2655 33

IV 1.2314 5 1.9669 7

λ1 CASES αn = 10−3 Time Iter. α = 8 Time Iter.

Alg. (3.18) Alg. (1.12)

0.5 I 3.9468 14 7.9246 23

II 3.4981 13 6.3024 21

III 6.8531 20 164.7988 31

IV 0.8939 4 1.5869 6

λ1 CASES αn = 10−4 Time Iter. α = 10 Time Iter.

Alg. (3.18) Alg. (1.12)

1 I 3.6095 13 6.8195 22

II 3.2789 12 6.2676 20

III 6.6391 19 225.1881 30

IV 0.9347 4 1.3055 5

Remark 6.11. For Table 2 we considered the operator Sx(t) =

∫ 1

0

tx(s)ds. We take

σn =
1

10
in Algorithm (3.18) and in Algorithm (1.12) we take θn =

1

2
− βn, εn =

βn

n0.01
,
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then in both Algorithms we take γ = 0.01, µn = 0.01 and βn =
1

5n+ 2
. Again, the re-

sults shows that for the operator Su(t) =

∫ 1

0

tu(s)ds given in Izuchukwu et al.[21], our

proposed Algorithm (3.18) performed better than Algorithm (1.12), based on the speed of
convergence and number of iterations.

The figures below; Figure 1 and Figure 2 graphically compares the performance of Algo-
rithm (3.18) and Algorithm (1.12) of Izuchukwu et al.[21]. By plotting the error ∥en∥L2([0,1]) =
∥xn+1 − xn∥L2([0,1]) against the number of iterations, our proposed Algorithm (3.18) per-
forms better in terms of speed of convergence and the number of iterations. The parame-
ters in Remark 6.10 were used here.
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FIGURE 1. Error comparisons of the Proposed Alg. (3.18) and Alg. (1.12)
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In the next figures, that is Figures 3 and 4, we present graphical comparison for perfor-
mance of our proposed Algorithm (3.18) with respect to the two operators Su(t) = J∂g

γ u(t)

and Su(t) =
∫ 1

0
tu(s)ds. It is evident that Algorithm (3.18) performs better with Su(t) =

J∂g
γ u(t), both in terms of speed of convergence and number of iteration. This conclusion

is also evident from Table 1 and Table 2.
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FIGURE 3. Comparisons of the Proposed Alg. (3.18), for Su(t) = J∂g
γ u(t)
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γ u(t) and Alg. (1.12) with Su(t) =
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0
tu(s)ds

.

The table below i.e., Table 3 comperes the performance of our proposed Algorithm (3.18)
for different values of αn and different initial points in L2([0, 1]). We take the operator
S = J∂g

γ . The following parameters are considered, in addition to those found on Table 3,

σn =
1

10
, γ = 0.01, λ1 = 0.01, µn = 0.01 and βn =

1

5n+ 2
.
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TABLE 3. Comparison of the effects of different values of αn on our proposed
Algorithm (3.18), with S = J∂g

γ .

λ1 CASES Time Iter. Time Iter. Time Iter. Time Iter.

αn = 10−4 αn = 10−2 αn = 2
3

αn = 3
4

0.5 I 3.1112 12 3.0568 12 2.2834 9 2.6477 10

II 2.8471 11 2.7049 11 8.9506 22 8.0656 23

III 5.1134 16 5.0964 16 7.5916 20 6.4028 21

IV 0.8373 4 0.9292 4 2.0889e+03 36 2.2514e+03 46

λ1 CASES Time Iter. Time Iter. Time Iter. Time Iter.

αn = 10−4 αn = 10−2 αn = 2
3

αn = 3
4

1 I 3.0800 12 2.8611 11 2.2992 9 2.5142 10

II 2.7826 11 2.8485 11 5.1826 18 5.9806 19

III 4.3214 13 4.7041 15 5.5497 16 6.1214 16

IV 0.8648 4 0.8836 4 2.3362e+03 34 2.6567e+03 45

In Figure 5−Figure 6 below, with different initial points in L2([0, 1]) the graphs compares
responses of our Algorithm (3.18) to different values of αn with respect to the operator
S = J∂g

γ . We took λn = 1, µn = 0.01. The results in the graphs are also corroborated by
the numerical data in Table 3.
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FIGURE 5. Comparisons for different αn values for Alg. (3.18) with
Su(t) = J∂g

γ u(t)
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FIGURE 7. Comparisons for different αn values for Alg. (3.18) with
Su(t) = J∂g

γ u(t)

Example 6.2.

For the purpose of further validating the performance of our proposed algorithm, we
make use of the following preconditioning forward-backward splitting algorithm intro-
duced by Altiparmak and Karahan [5], they proved that the scheme converges strongly
to solution set of (MIP):

(6.62)


un = xn + ϵn(xn − xn−1),

vn = JA,B
λ,M ((1− βn)un + βnJ

A,B
λ,M (un)),

xn+1 = (1− γn)J
A,B
λ,M + γnh(xn),

where ϵn ∈ [0, θ] with θ ∈ [0, 1), βnγn ∈ (0, 1), while h : H → H is a k−contraction
mapping with respect to M−norm.
In the current example, we compare the performances of Algorithm 1.5, Algorithm 3.18
and Algorithm 6.62, by solving a Monotone Inclusion Problem (MIP). In line with Exam-
ple 6.1, we set L ≡ 0 and S ≡ 0 which implies δn = 0 in Algorithm 3.18. We also take
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M ≡ I in Algorithm 1.5 and Algorithm 6.62, where I is the identity operator.
The following scenarios are studied for our numerical results appearing in the figures and
tables below.
Case 1: Take u0(t) = et, u1(t) = t2 + 1;
Case 2: Take u0(t) = et, u1(t) = et sin t;
Cases 3: Take u0(t) = t2 + 1, u1(t) = cos t+ 2t;
Cases 4: Take u0(t) = t3, u1(t) = t sin(t2).

TABLE 4. Comparison of our proposed Algorithm 3.18, Algorithm 1.5 (with λ =
0.5) and Algorithm 6.62 (with λ = 0.5).

λ1 CASES Time Iter. Time Iter. Time Iter.

Alg. (3.18), αn = 10−1 Alg. (1.5), ϵ = 10−1 Alg. (6.62), ϵ = 10−1

0.5 I 0.8726 4 1.7342 7 1.5012 6

II 1.8811 6 3.1398 13 2.9701 10

III 2.7124 8 4.1015 16 3.7832 12

IV 1.0258 4 2.1323 9 1.7945 7

λ1 CASES Time Iter. Time Iter. Time Iter.

Alg. (3.18), αn = 10−2 Alg. (1.5), ϵ = 10−2 Alg. (6.62), ϵ = 10−2

0.01 I 1.0795 4 1.1040 5 1.0907 5

II 2.2125 7 4.0865 16 3.7209 13

III 2.4709 8 4.3520 29 4.2845 22

IV 0.9884 4 2.3351 5 1.8724 5

TABLE 5. Comparison of our proposed Algorithm 3.18, Algorithm 1.5 (with λ =
1) and Algorithm 6.62 (with λ = 1).

λ1 CASES Time Iter. Time Iter. Time Iter.

Alg. (3.18), αn = 10−3 Alg. (1.5), ϵ = 10−3 Alg. (6.62), ϵ = 10−3

1 I 0.9166 4 2.0922 8 1.7213 6

II 1.6105 6 3.6934 12 3.201 10

III 2.6667 7 4.3122 14 3.9213 11

IV 0.8590 4 1.8212 8 1.4371 7

λ1 CASES Time Iter. Time Iter. Time Iter.

Alg. (3.18), αn = 10−4 Alg. (1.5), ϵ = 10−4 Alg. (6.62), ϵ = 10−4

1 I 0.8236 4 1.6342 8 1.3210 6

II 1.5425 6 2.4302 12 2.014 11

III 1.5874 7 2.6677 14 2.1942 12

IV 0.8383 4 1.4689 8 1.3584 6
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FIGURE 8. Error comparisons of the Proposed Alg. (3.18), Alg. (1.5) and
Alg. (6.62)
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FIGURE 9. Error comparisons of the Proposed Alg. (3.18), Alg. (1.5) and
Alg. (6.62)

By plotting the error ∥en∥L2([0,1]) = ∥xn+1 − xn∥L2([0,1]) against the number of iterations,
Table 4 and Figure 8−Figure 9 show that our proposed Algorithm (3.18) performs better
than Algorithm (1.5) in speed of convergence and number of iterations.

Remark 6.12. From the examples given above and from the Tables and Figures, most
glaringly from Table 3−Table 5 and Figure 5−Figure 7 our proposed algorithm has the
most optimal performance when λ1 = 1 and αn = 10−4.

7. CONCLUSION

We proposed and studied inertia-based iterative scheme to solve generalised split feasi-
bility problem over the solution set of monotone variational inclusion problem. We es-
tablished strong convergence of the scheme under a mild assumption that the stepsize is
independent of any knowledge of Lipschitz constant of the involved single-valued op-
erator and the norm of the bounded linear operator. The associated nonlinear maps are
quite general and contains for instance nonexpansive and the projection maps, they are
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highly used in solving optimization problems in real Hilbert space as has been explained
in Remark 3.4 above. Important Corollaries of our result were given; Remark 4.5, Theo-
rem 4.2 and Remark 4.7. As application, we study split linear inverse problem, precisely,
the LASSO problem. Furthermore, with the aid of numerical examples, we compared
our method with the methods studied in [5, 26, 32]. In our comparison, we saw that our
method performs better than the methods in [5, 26, 32]. Hence, our method is more gen-
eral and improves many important results in the literature, for instance [5, 9, 26, 32, 33, 44].
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