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Extreme solution for fractional differential equation with
nonlinear boundary condition

FUFAN LUO, PIAO LIU and WEIBING WANG

ABSTRACT. In this paper, we investigate a class of fractional equations with nonlinear boundary condition.
We establish a new comparison principle related to linear fractional equation and show the existence of extreme
solution by using monotone iterative method and lower and upper solutions method.

1. INTRODUCTION

In this paper, we consider the following fractional differential equation

(1.1)
{

LC
0 Dα

t u(t) +NIβu(t) = f(t, u(t)), t ∈ (0, T ],
g(u(0), u(1)) = 0,

where 0 < T < ∞, 0 < α < 1, β ≥ α, N ≤ αΓ(β)
Tβ+αΓ(1−α)

, LC
0 Dα

t is Liouville-Caputo frac-
tional derivative and Iβ is Riemann-Liouville fractional integral. The nonlinear functions
f and g are assumed to satisfy certain conditions, which will be specified later.

Fractional-order models have proven to be a valuable tool describing many phenom-
ena in various fields of science and engineering. For example, in the study of a sphere
subjected to gravity, Basset [3, 4] introduced a special hydraulic force which was inter-
preted by Mainardi [15] in terms of a fractional derivative of order 1

2 of the velocity of the
particle relative to the fluid. In 1994, Led S. Westerlund [11] used the equality with frac-
tional order derivative to generalize Newton’s second law. A comprehensive references
on fractional order models, including an extensive list of applications, can be found in
[6, 7, 12, 13, 18, 19] and references therein.

By their popular applications, fractional differential equations has attracted the atten-
tion of many researchers, see [1, 2, 5, 9, 10, 14, 16, 17, 20, 21, 22, 23, 24, 25] and the references
therein. For boundary value problem with nonlinear boundary conditions, monotone it-
eration scheme is an interesting and powerful mechanism that offers theoretical existence
results. In [26], Zhang considered the following fractional differential equation

(1.2)
{

LC
0 Dα

t u(t) = f(t, u(t)), t ∈ (0, T ],
g (u(0), u(T )) = 0,

where 0 < α < 1, LC
0 Dα

t is Liouville-Caputo fractional derivative. The author introduced
the definition of coupled lower and upper solutions. A key condition in [26] is that (1.2)
has coupled lower and upper solutions U and V respectively, that is,

U ≤ V, LC
0 Dα

t U(t) ≤ f(t, U(t)), LC
0 Dα

t V (t) ≥ f(t, V (t)),

g(U(0), V (T )) ≤ 0 ≤ g(V (0), U(T ))
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Combining with lipschitz-like condition for f and monotonicity condition about two vari-
ables of g, the author showed that (1.2) has a solution between U and V by using mono-
tone iterative approach.

In [27], the fractional differential equation

(1.3)
{

LC
0 Dα

t u(t)− du(t) = h(t), t ∈ (0, T ],
g(u(0)) = u(T ),

was considered, where d ≥ 0, h ∈ C1[0, T ], 0 < α < 1. The author obtained the existence
result for (1.3) by means of the upper and lower solutions method in reverse order

In [8], Fazli, Sun, Aghchi and Nieto studied the following fractional differential equa-
tion

(1.4)
{

u(m)(t) +MLC
0 Dα

t u(t) = f(t, u(t)),m− 1 < α < m, t ∈ (0, T ],
g
(
u(k)(t0), u

(k)(t1), · · · , u(k)(tr)
)
= 0, k = 0, 1, · · · ,m− 1,m

where 0 = t0 < t1 < t2 < · · · < tr = T,m ∈ N and LC
0 Dα

t is Liouville-Caputo fractional
derivative of order α. The authors established the comparison theorem and applied the
monotone iterative approach to show the existence of the extremal solutions.

Motivated by the work above, in this study, we established the existence result of ex-
tremal solutions for (1.1). Compared with (1.2), fractional integral term Iβ is added to
(1.1), which makes the system more complex and be difficult to handle. The comparison
principle in [26] is not valid to (1.1). Moreover, we relax the restriction for f and g. Our
result is new ever if N = 0.

The paper is organized as follows. In Section 2, we recall some theorems and derive
some necessary lemmas. In Section 3, we show the existence of extremal solutions by
utilizing the monotone iterative technique.

2. PRELIMINARIES

Throughout the paper, AC[0, T ] denotes the set of absolutely continuous functions on
[0, T ].

Definition 2.1. The Riemann-Liouville fractional integral of order γ > 0 for the function
u : [0, T ] → R is defined as

Iγu(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1u(s)ds,

provided that the right-hand side integral exists and is finite.

Definition 2.2. The Liouville-Caputo fractional derivative of order γ > 0 of a function
u : [0, T ] → R is defined as

LC
0 Dγ

t u(t) = (In−γu(n))(t) =
1

Γ(n− γ)

∫ t

0

(t− s)n−γ−1u(n)(s)ds,

where n − 1 < γ ≤ n and n ∈ N, provided that the right-hand side integral exists and is
finite.

Definition 2.3. The Riemann-Liouville fractional derivative of order γ > 0 of a function
u : [0, T ] → R is defined as

R
0 D

γ
t u(t) =

dn

dtn
(In−γu)(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

(t− s)n−γ−1u(s)ds,

where n − 1 < γ ≤ n and n ∈ N, provided that the right-hand side integral exists and is
finite.



Extreme solution for fractional differential equation with nonlinear boundary condition 683

Definition 2.4. For a > 0 and b ∈ R, the two-parameter Mittag-Leffler function Ea,b(z) is
defined by

Ea,b(z) =

∞∑
j=0

zj

Γ(aj + b)
, z ∈ R

and

dk

dzk
Ea,b(z) ≡ E

(k)
a,b (z) =

∞∑
j=0

(k + j)!zj

j!Γ(a(k + j) + b)
, z ∈ R.

Lemma 2.1. If a ∈ [0, 1], b ≥ a and x > 0, then

E
(k)
a,b (−x) ≥ 0, k = 0, 1, 2, ...,

Proof. By [12], Ea,b(−x) is completely monotone on R+. Hence, we have

(−1)k
dkEa,b(−x)

dxk
≥ 0, x > 0, k = 0, 1, · · · ,

that is,

(−1)k
dkEa,b(−x)

dxk
= (−1)2kE

(k)
a,b (−x) ≥ 0,

which implies that E(k)
a,b (−x) ≥ 0. □

Consider the linear problem

(2.5)
{

LC
0 Dα

t u(t) +Mu(t) +NIβu(t) = h(t), t ∈ (0, T ],
u(0) = x0,

where M,N, x0 are real constants and h : [0, T ] → R is continuous.

Lemma 2.2. Let 0 < α < 1 and β ≥ α, then (2.5) has a unique solution u ∈ AC[0, T ] with

u(t) =

∞∑
k=0

(−1)k
Nk

k!
x0t

k(α+β)E
(k)
α,kβ+1(−Mtα)

+

∫ t

0

h(s)

∞∑
k=0

(−1)k
Nk

k!
(t− s)α(k+1)+kβ−1E

(k)
α,α+kβ(−M(t− s)α)ds,(2.6)

Proof. From Lemma 2.7 and Lemma 2.9 of [12], we have

L[Iβu](s) = s−βL[u](s), L[LC
0 Dα

t u](s) = sαL[u](s)− sα−1u(0).

where L denotes the Laplace transform operator, L[u] denotes the Laplace transform of u.
We do Laplace transform to (2.5) and obtain that

sαU(s)− sα−1u(0) +MU(s) +Ns−βU(s) = H(s),
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where U,H denote the Laplace transform of u and h. Hence,

U(s) =
H(s) + sα−1u(0)

sα +M +Ns−β
=

H(s) + sα−1u(0)

sα +M

1

1 + Ns−β

sα+M

=
H(s) + sα−1u(0)

sα +M

∞∑
k=0

(−1)k
(

Ns−β

sα +M

)k

= (H(s) + sα−1u(0))

∞∑
k=0

(−1)k
(Ns−β)k

(sα +M)k+1

=

∞∑
k=0

(−1)kNk

(
sα−kβ−1u(0)

(sα +M)k+1
+

s−kβH(s)

(sα +M)k+1

)
.

From the following equality in [6]∫ ∞

0

e−pttαk+β−1E
(k)
α,β(±atα)dt =

k!pα−β

(pα ∓ a)k+1
,

we have

L
[
tk(α+β)E

(k)
α,kβ+1(−Mtα)

]
(s) =

k!sα−kβ−1

(sα +M)k+1
,

and

L
[
tα(k+1)+kβ−1E

(k)
α,α+kβ(−Mtα)

]
(s) =

k!s−kβ

(sα +M)k+1
.

Therefore, by the inverse Laplace transform, we can obtain (2.6). Since h is continuous, u
is continuous. From Proposition 4.6 of [12], one can obtain that u ∈ AC[0, T ] . The proof
is completed. □

Remark 2.1. If u ∈ AC[0, T ] satisfied equation (2.5), where h ∈ L1(0, T ), then u satisfies
(2.6).

Remark 2.2. Under the condition of Lemma 2.2, one can define an operator A in C[0, 1]
by Ah = u, that is,

Ah(t) : =

∞∑
k=0

(−1)k
Nk

k!
x0t

k(α+β)E
(k)
α,kβ+1(−Mtα) +

∫ t

0

h(s)K(t, s)ds,

where K(t, s) =
∑∞

k=0(−1)k Nk

k! (t − s)α(k+1)+kβ−1E
(k)
α,α+kβ(−M(t − s)α). Moreover A :

C[0, T ] → C[0, T ] is compact.

Proof. Let D ⊂ C[0, T ] be a bounded set and u ∈ D, t1, t2 ∈ [0, T ], t1 ≥ t2, then

|(Au)(t1)− (Au)(t2)| ≤
∞∑
k=0

|N |k

k!
x0

∣∣∣tk(α+β)
1 E

(k)
α,kβ+1(−Mtα1 )− t

k(α+β)
2 E

(k)
α,kβ+1(−Mtα2 )

∣∣∣
+

∫ t1

t2

|u(s)||K(t1, s)|ds+
∫ t2

0

|u(s)||K(t1, s)−K(t2, s)|ds,

Since functions tk(α+β)E
(k)
α,kβ+1(−Mtα) : [0, T ] → R and K : [0, T ]2 → R are continuous, it

follows that
|(Au)(t1)− (Au)(t2)| → 0 as |t1 − t2| → 0.

The proof is completed. □
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Lemma 2.3. [12] If 0 < α ≤ 1 and u ∈ AC[0, T ], then

R
0 D

α
t u(t) =

LC
0 Dα

t u(t) +
t−α

Γ(1− α)
u(0+).

Lemma 2.4. (Comparison principle) Let 0 < α < 1, β ≥ α, M ≥ 0 and N ≤ αΓ(β)
Tβ+αΓ(1−α)

. If
u ∈ AC[0, T ] satisfies

(2.7)
{

LC
0 Dα

t u(t) +Mu(t) +NIβu(t) ≥ 0, t ∈ (0, T ],
u(0) = x0 ≥ 0.

Then u(t) ≥ 0,∀t ∈ [0, T ].

Proof. Assume that the assertion is not true. From u(0) = x0 ≥ 0, there exist t0, t1 ∈ [0, T ]
such that u(t0) = 0, u(t1) < 0 and u(t) ≥ 0 for t ∈ [0, t0], u(t) < 0 for t ∈ (t0, t1]. We
discussed the following two cases.

Case 1 M ≥ 0 and N > 0. By Lemma 2.3, we have

R
0 D

α
t u(t)−

t−α

Γ(1− α)
x0 +Mu(t) +NIβu(t) ≥ 0, t ∈ (0, T ],

which implies that

R
0 D

α
t u(t) +Mu(t) +NIβu(t) ≥ 0, ∀t ∈ (t0, t1].

Hence ∫ t

t0

(R0 D
α
s u(s) +NIβu(s))ds ≥ 0, ∀t ∈ (t0, t1].

From Definition 2.3, we obtain that

(2.8) I1−αu(t)− I1−αu(t0) +

∫ t

t0

NIβu(s)ds ≥ 0,∀t ∈ (t0, t1].

If t0 = 0, we have

I1−αu(t)−I1−αu(0)+

∫ t

0

NIβu(s)ds =

∫ t

0
(t− s)−αu(s)ds

Γ(1− α)
+N

∫ t

0

Iβu(s)ds < 0,∀t ∈ (0, t1]

since u(t) < 0 for t ∈ (0, t1], which contradicts (2.8).
If t0 > 0, for t ∈ (t0, t1], we have

I1−αu(t)− I1−αu(t0)

=
1

Γ(1− α)

∫ t

0

(t− s)−αu(s)ds− 1

Γ(1− α)

∫ t0

0

(t0 − s)−αu(s)ds

=
1

Γ(1− α)

∫ t0

0

((t− s)−α − (t0 − s)−α)u(s)ds+
1

Γ(1− α)

∫ t

t0

(t− s)−αu(s)ds

≤ 1

Γ(1− α)

∫ t0

0

((t− s)−α − (t0 − s)−α)u(s)ds

≤ 1

T 2αΓ(1− α)

∫ t0

0

((t0 − s)α − (t− s)α)u(s)ds,
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t0

NIβu(s)ds =
N

Γ(β)

∫ t

t0

∫ r

0

(r − s)β−1u(s)dsdr

=
N

Γ(β)

(∫ t0

0

∫ t

t0

(r − s)β−1u(s)drds+

∫ t

t0

∫ t

s

(r − s)β−1u(s)drds

)
=

N

Γ(β + 1)

(∫ t0

0

((t− s)β − (t0 − s)β)u(s)ds+

∫ t

t0

(t− s)βu(s)ds

)
≤ N

Γ(β + 1)

∫ t0

0

((t− s)β − (t0 − s)β)u(s)ds.

From (2.8), we obtain that

0 ≤ρ :=

∫ t0

0

[(
1

Γ(1− α)T 2α
(t0 − s)α − N

Γ(β + 1)
(t0 − s)β

)
−

(
1

Γ(1− α)T 2α
(t− s)α − N

Γ(β + 1)
(t− s)β

)]
u(s)ds, t ∈ (t0, t1].

Let

(2.9) y(x) =
1

Γ(1− α)T 2α
xα − N

Γ(β + 1)
xβ , x ∈ [0, T ],

then for ∀x ∈ (0, T ],

y′(x) =
α

Γ(1− α)T 2α
xα−1 − N

Γ(β)
xβ−1 =

α
Γ(1−α)T 2α − N

Γ(β)x
β−α

xα−1
≥ 0.

So y is strictly increasing and(
1

Γ(1− α)T 2α
(t0 − s)α − N

Γ(β + 1)
(t0 − s)β

)
−

(
1

Γ(1− α)T 2α
(t− s)α − N

Γ(β + 1)
(t− s)β

)
< 0

for 0 ≤ s ≤ t0 < t ≤ t1, which implies that ρ < 0 since u > 0 for t ∈ (0, t0), which
contradicts (2.8).

Case 2 M ≥ 0, N ≤ 0 . From Theorem 2.1 of [12], LC
0 Dα

t u(t) ∈ L1(0, T ) if u ∈ AC[0, T ].
Let

LC
0 Dα

t u(t) +Mu(t) +NIβu(t) = h(t), h ∈ L1(0, T ).

From N ≤ 0, x0 ≥ 0, h ≥ 0,(2.6), Lemma 2.1 and Remark 2.1, we can obtain that u(t) ≥
0. □

3. MAIN RESULT

Definition 3.5. The function u ∈ AC[0, T ] is called a lower solution of (1.1) if

(3.10)
{

LC
0 Dα

t u(t) +NIβu(t) ≤ f(t, u(t)), t ∈ (0, T ],
g(u(0), u(1)) ≤ 0

and it is an upper solution of (1.1) if the above inequalities are reverted.
We list the following assumptions for the convenience.

(H0) The constant N ≤ αΓ(β)
Tβ+αΓ(1−α)

.

(H1) Problem (1.1) has lower and upper solutions u0, v0 respectively, and u0 ≤ v0 for
t ∈ [0, T ].

(H2) f : [0, T ] × R → R is continuous and there exists constant M > 0 such that for
u0 ≤ x ≤ y ≤ v0,

f(t, x) +Mx ≤ f(t, y) +My.
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(H3) g : R2 → R is continuous and there exist constants λ > 0, µ ≥ 0 such that for
u0 ≤ ti ≤ ti ≤ v0, i = 1, 2,

g(t1, t2)− g(t1, t2) ≤ λ(t1 − t1)− µ(t2 − t2).

Theorem 3.1. Suppose that conditions (H0) − (H3) hold. There exist sequences {un} , {vn} ⊆
AC[0, T ] such that un → u∗, vn → v∗ in C[0, T ] and u∗, v∗ are minimal, maximal solutions of
(1.1) in [u0, v0] = {u ∈ C[0, T ] : u0 ≤ u ≤ v0}.

Proof. The proof is divided into four steps. Step 1. Consider the linear problems

(3.11)
{

LC
0 Dα

t un+1(t) +Mun+1(t) +NIβun+1(t) = f(t, un(t)) +Mun(t), t ∈ (0, T ],
un+1(0) = ηn(0) := un(0)− 1

λg(un(0), un(1)),

(3.12)
{

LC
0 Dα

t vn+1(t) +Mvn+1(t) +NIβvn+1(t) = f(t, vn(t)) +Mvn(t), t ∈ (0, T ],
vn+1(0) = σn(0) := vn(0)− 1

λg(vn(0), vn(1)).

From Lemma 2.2, (3.11) ( or (3.12)) has a unique solution un ∈ AC[0, T ] (or vn ∈ AC[0, T ])
for n = 1, 2, 3, ... and

un+1(t) =

∞∑
k=0

(−1)k
Nk

k!
ηn(0)t

k(α+β)E
(k)
α,kβ+1(−Mtα)

+

∫ t

0

(f(s, un(s))+Mun(s))

∞∑
k=0

(−1)k
Nk

k!
(t− s)α(k+1)+kβ−1E

(k)
α,α+kβ(−M(t− s)α)ds,

vn+1(t) =

∞∑
k=0

(−1)k
Nk

k!
σn(0)t

k(α+β)E
(k)
α,kβ+1(−Mtα)

+

∫ t

0

(f(s, vn(s))+Mvn(s))

∞∑
k=0

(−1)k
Nk

k!
(t− s)α(k+1)+kβ−1E

(k)
α,α+kβ(−M(t− s)α)ds.

Step 2. We prove that

u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ vn+1 ≤ vn ≤ · · · ≤ v1 ≤ v0.

Note that

(3.13)
{

LC
0 Dα

t u1(t) +Mu1(t) +NIβu1(t) = f(t, u0(t)) +Mu0(t),
u1(0) = u0(0)− 1

λg(u0(0), u0(1)).

Let p = u1 − u0. From Definition 3.1, we have

(3.14)
{

LC
0 Dα

t p(t) +Mp(t) +NIβp(t) ≥ 0,
p(0) = − 1

λg(u0(0), u0(1)) ≥ 0.

By Lemma 2.4, we obtain that p ≥ 0 for t ∈ [0, T ], so u1 ≥ u0. Now, from (3.13) and
(H2), (H3), we have

LC
0 Dα

t u1(t)+NIβu1(t) = f(t, u0(t)) +M(u0(t)− u1(t)) ≤ f(t, u1(t)),

g(u1(0), u1(1)) ≤g (u0(0), u0(1)) + λ(u1(0)− u0(0))− µ(u1(1)− u0(1))

=− µ(u1(1)− u0(1)) ≤ 0.

Therefore, u1 is a lower solution of (1.1). We can repeat the argument above to deduce
u2 ≥ u1, t ∈ [0, T ] and then an induction verifies that un+1 ≥ un, t ∈ [0, T ]. In the same
way, we can prove that vn ≥ vn+1, t ∈ [0, T ].

Let w = v1 − u1. We have

(3.15)
{

LC
0 Dα

t w(t) +Mw(t) +NIβw(t) ≥ 0,
w(0) ≥ µ

λ (v0(1)− u0(1)) ≥ 0.
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By Lemma 2.4, we obtain that w ≥ 0 for t ∈ [0, T ], so that v1 ≥ u1. Using mathematical
induction, we obtain that vn ≥ un.

Step 3. The sequence of {un} , {vn} are uniformly bounded and equicontinuous in
[u0, v0]. There exist u∗, v∗ ∈ C[0, T ] such that

lim
n→∞

un(t) = u∗(t), lim
n→∞

vn(t) = v∗(t),

uniformly on [0, T ], u∗, v∗ ∈ [u0, v0] and the limit functions u∗, v∗ satisfy

x(t) =

∞∑
k=0

(−1)k
Nk

k!
(x(0)− λ−1g(x(0), x(1)))tk(α+β)E

(k)
α,kβ+1(−Mtα)

+

∫ t

0

(f(s, x(s)) +Mx(s))
∞∑
k=0

(−1)k
Nk

k!
(t− s)α(k+1)+kβ−1E

(k)
α,α+kβ(−M(t− s)α)ds.

By Lemma 2.2, the above function x satisfies

(3.16)
{

LC
0 Dα

t x(t) +Mx(t) +NIβx(t) = f(t, x(t)) +Mx(t), t ∈ (0, T ],
x(0) = x(0)− λ−1g(x(0), x(1)).

Hence, u∗, v∗ are solutions of (1.1).
Step 4. Finally, we prove that u∗ and v∗ are the extremal solutions of (1.1) in [u0, v0]. Let

x ∈ [u0, v0] be any solution of (1.1) and un ≤ x ≤ vn for some n ∈ N. By (H2), we have

LC
0 Dα

t un+1(t) +Mun+1(t) +NIβun+1(t) = f(t, un(t)) +Mun(t) ≤ f(t, x(t)) +Mx(t)

=C
0 Dα

t x(t) +Mx(t) +NIβx(t),

un+1(0)− x(0) =un(0)−
1

λ
g(un(0), un(1))− x(0) +

1

λ
g(x(0), x(1))

≤− µ

λ
(x(1)− un(1)) ≤ 0.

Hence un+1 ≤ x. Similarly, x ≤ vn+1. Hence, un ≤ x ≤ vn for n = 0, 1, 2, · · · . Taking
n → ∞, we obtain that u∗ ≤ x ≤ v∗. Thus u∗ and v∗ are the extremal solutions of (1.1) in
[u0, v0]. □

Example 3.1. Consider the following fractional differential equation

(3.17)

{
LC
0 D

1
2
t u(t)− 1

4I
5
4u(t) = t− u2(t)− u(t), t ∈ (0, 1],

5u2(0)− u(0) = 5u(1)− 1
2u

2(1).

In fact,

α =
1

2
, β =

5

4
, T = 1, N = −1

4
, f(t, x) = t− x2 − x, g(x, y) = 5x2 − x− 5y +

1

2
y2.

Clearly, N ≤ αΓ(β)/Tα+βΓ(1−α) =
Γ( 5

4 )

2Γ( 1
2 )

. Taking u0 = 0, v0 = 4− t,M = 10, λ = 40, µ =
1
2 . Then

LC
0 D

1
2
t u0(t)−

1

4
I

5
4u0(t) = 0 ≤ t = f(t, u0),

LC
0 D

1
2
t v0(t)−

1

4
I

5
4 v0(t) = −2

√
t√
π

− 1

4Γ( 54 )
(
4

9
t
9
4 − 4

3
t
7
4 ) ≥ −11 ≥ f(t, v0),

g(u0(0), u0(1)) = 0, g(v0(0), v0(1)) = 65.5.
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Hence, u0 is a lower solution and v0 is an upper solution. For 0 ≤ x ≤ y ≤ 4− t,

f(t, y) +My − f(t, x)−Mx = t− y2 − y + 10y − t+ x2 + x− 10x

=− (y2 − x2)− (y − x) + 10(y − x)

=(−(y + x)− 1 + 10)(y − x) ≥ 0.

Let 0 ≤ x1 ≤ x2 ≤ 4− t, 0 ≤ y1 ≤ y2 ≤ 4− t, then

40(x2 − x1)−
1

2
(y2 − y1)− g(x2, y2) + g(x1, y1)

=40(x2 − x1)−
1

2
(y2 − y1)− (5x2

2 − x2 − 5y2 +
1

2
y22) + (5x2

1 − x1 − 5y1 +
1

2
y21)

=40(x2 − x1)−
1

2
(y2 − y1)− 5(x2

2 − x2
1) + (x2 − x1) + 5(y2 − y1)−

1

2
(y22 − y21)

=41(x2 − x1) +
9

2
(y2 − y1)− 5(x2

2 − x2
1)−

1

2
(y22 − y21)

= (41− 5(x2 + x1)) (x2 − x1) +

(
9

2
− 1

2
(y2 + y1)

)
(y2 − y1) ≥ 0.

Hence, (H2) and (H3) are satisfied. Therefore, (3.17) has extremal solutions u∗, v∗ ∈
[u0, v0]. Moreover, the result of [26] cannot be applied to (3.17) ever if N = 0 because
the function g does not satisfy the condition (2.8) of [26].

Example 3.2. Consider the following fractional differential equation

(3.18)

{
LC
0 D

1
3
t u(t) +

1
10I

2
3u(t) = t

100 (1 + u2(t)), t ∈ (0, 1],
u2(0) sin(u(0)) = u(1).

In fact,

α =
1

3
, β =

2

3
, T = 1, N =

1

10
, f(t, x) =

t

100
(1 + x2), g(x, y) = x2 sinx− y.

Clearly, N ≤ αΓ(β)/Tα+βΓ(1− α) = 1
3 . Taking uj

0(t) = 2πj − 2t, vj0(t) = 2πj + 1 + 2t, j =

1, 2,M = 1, λ = 300, µ = 1
2 . Then

LC
0 D

1
3
t u

j
0(t) +

1

10
I

2
3uj

0(t) = − 3

Γ( 23 )
t
2
3 +

1

10Γ( 23 )

(
3πjt

2
3 − 9

5
t
5
3

)
≤ 0 ≤ f(t, uj

0),

LC
0 D

1
3
t v

j
0(t) +

1

10
I

2
3 vj0(t) =

3

Γ( 23 )
t
2
3 +

1

10Γ( 23 )

(
3(2πj + 1)

2
t
2
3 +

9

5
t
5
3

)
≥ f(t, vj0),

g(uj
0(0), u

j
0(1)) = −2πj + 2 < 0, g(vj0(0), v

j
0(1)) = (2πj + 1)2 sin 1− 2πj − 3 > 0.

Hence, uj
0 and vj0 are lower and upper solutions of (3.18). In addition, it is easy to verify

that (H2) and (H3) are satisfied. Therefore, (3.18) has extremal solutions u∗j , v∗j ∈ [uj
0, v

j
0].

4. CONCLUSIONS

This paper focuses on the existence of extreme solution for the Liouville-Caputo frac-
tional differential equation with nonlinear boundary condition. We obtain the specific ex-
pression of the solution for the corresponding linear problem using the laplace transform
and establish a new comparison principle. We prove the existence of extreme solution by
using monotone iterative method. Since the case that 0 < α < 1 is considered in present
paper, we will discuss the existence of solutions for the Liouville-Caputo fractional differ-
ential equation when n− 1 < α < n in follow-up research.



690 Fufan Luo, Piao Liu and Weibing Wang

REFERENCES

[1] Agarwal, R. P.; Benchohra, M.; Haman, S. A survey on existence results for boundary value problems of
nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033.

[2] Benchohra, M.; Bouriah, S.; Nieto, J. J. Existence and Ulam stability for nonlinear implicit differential equa-
tions with Riemann-Liouville fractional derivative. Demonstr. Math. 52 (2019), no. 1, 437–450.

[3] Basset, A. B. A Treatise on Hydrodynamics, Vol. 2. Cambridge UniverBsity Press, 1888.
[4] Basset, A. B. On the descent of a sphere in a viscous liquid. Quart. J. Math. 41 (1910), 369-381.
[5] Cabada, A.; Kisela, T. Existence of positive periodic solutions of some nonlinear fractional differential equa-

tions. Commun. Nonlinear Sci. 50 (2017), 51–67.
[6] Doetsch, G. Anleitung zum praktischen Gebrauchder Laplace-Transformation und der Z-Transformation.

Munich: R. Oldenbourg Verlag, Munich, 1985.
[7] Dietthelm, K. The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
[8] Fazli, H.; Sun, H. G.; Aghchi, S.; Nieto, J. J. On a class of nonlinear nonlocal fractional differential equations.

Carpathian J. Math. 37 (2021), no. 3, 441–448.
[9] Fazli, H.; Sun, H. G.; Aghchi, S. Existence of extremal solutions of fractional Langevin equation involving

nonlinear boundary conditions. Int. J. Comput. Math. 98 (2021), no. 1, 1–10.
[10] Hu, L.; Zhang, S. Existence of positive solutions to a periodic boundary value problems for nonlinear

fractional differential equations at resonance. J. Fract. Calc. Appl. 8(2017), no. 2, 19–31.
[11] Igor, P. Fractional differential equations : an introduction to fractional derivatives, fractional differential

equations, to methods of their solution and some of their applications. 1999.
[12] Jin, B. T. Fractional differential equations, an approach via fractional derivatives.Switzerland, Springer,

Cham, 2021.
[13] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations,

in: North-Holland Mathematices Studies. Elsevier Science B.V., Amsterdam, 2006.
[14] Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and uniqueness results for nonlinear implicit Riemann-

Liouville fractional differential equations with nonlocal conditions. Filomat 34 (2020), no. 14, 4881–4891.
[15] Mainardi, F. The fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons

and Fractals 7. (1996), No 9 , 1461–1477.
[16] Matar, M. M. On existence of positive solution for initial value problem of nonlinear fractional differential

equations of order 1 < α ≤ 2. Acta Math. Univ. Comen. 84 (2015), 51–57.
[17] Nieto, J. J. Maximum principles for fractional differential equations derived from Mittag-Leffler functions.

Appl. Math. Lett. 23(2010), 1248–1251.
[18] Riewe, F. Ninconservative Lagrangian and Hamiltonian mechanics. phys. Rev. E. 53 (1996), no. 2, 1890–1899.
[19] Riewe, F. Mcchanics with fractional derivatives. phys. Rev. E. 55 (1997), no. 3, 3581–3592.
[20] Song, S. Y.; Li, H. Y.; Zou, Y. M. Monotone iterative method for fractional differential equations with integral

boundary conditions. J. Funct. Spaces 2020, Art. ID 7319098, 7 pp.
[21] Wang, G. T.; Agarwal, R. P.; Cabada, A. Existence results and the monotone iterative technique for systems

of nonlinear fractional differential equations. Appl. Math. Lett. 25 (2012), 1019–1024.
[22] Xie, W. Z.; Xiao, J.; Luo, Z. G. Existence of extremal solutions for nonlinear fractional differential equation

with nonlinear boundary conditions. Appl. Math. Lett. 41 (2015), 46–51.
[23] Zuo, X. X.; Wang, W. B. Existence of solutions for fractional differential equation with periodic boundary

condition. AIMS Math. 7 (2022), 6619–6633.
[24] Zhang, H. Iterative solutions for fractional nonlocal boundary value problems involving integral condi-

tions. Bound. Value Probl. (2016), Paper No. 3, 13 pp.
[25] Zhang, S. Q. Monotone iterative method for initial value problem involving Riemann-Liouville fractional

derivatives. Nonlinear Anal. 71 (2009), no. 5-6, 2087–2093.
[26] Zhang, S. Q. Existence of a solution for the fractional differential equation with nonlinear boundary condi-

tions. Comput. Math. Appl. 61 (2011) 1202–1208.
[27] Zhang, S. Q.; Su, X. W. The existence of a solution for a fractional differential equation with nonlinear

boundary conditions considered using upper and lower solutions in reverse order. Comput. Math. Appl. 62
(2011), no. 3, 1269–1274.

DEPARTMENT OF MATHEMATICS

HUNAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

XIANGTAN, HUNAN 411201, P. R. CHINA

Email address: 1074325759@qq.com
Email address: 2282486005@qq.com
Email address: wwbing2013@126.com


