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Asymptotically α−hemicontractive mappings in Hilbert
spaces and a new algorithm for solving associated split
common fixed point problem

A. C. ONAH1 , M. O. OSILIKE2, P. U. NWOKORO2 , J. N. ONAH2, E. E. CHIMA3 and O.
U. OGUGUO2

ABSTRACT. We introduce a novel class of asymptotically α−hemicontractive mappings and demonstrate
its relationship with the existing related families of mappings. We establish certain interesting properties of the
fixed point set of the new class of mappings. Furthermore, we propose and investigate a new iterative algorithm
for solving split common fixed point problem for the new class of mappings. In particular, weak and strong
convergence theorems for solving split common fixed point problem for our new class of mappings in Hilbert
spaces are proved. Moreover, using our method, we require no prior knowledge of norm of the transfer operator.
The results presented in the paper extend and improve the results of Censor and Segal [Censor, Y.; Segal, A. The
split common fixed point problem for directed operators. J. Convex Anal. 16 (2009), no. 2, 587–600.], Moudafi
[Moudafi, A. The split common fixed-point problem for demicontractive mappings. Inverse Problems 26 (2010),
no. 5:055007.; Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators.
Nonlinear Anal. 74 (2011), no. 12, 4083–4087.], Chima and Osilike [Chima, E. E.; Osilike, M. O. Split common
fixed point problem for class of asymptotically hemicontractive mappings. J. Nigerian Math. Soc. 38 (2019), no. 3,
363–390.], Fan et al [Fan, Q.; Peng, J.; He, H. Weak and strong convergence theorems for the split common fixed
point problem with demicontractive operators. Optimization 70 (2021), no. 5-6, 1409–1423.] and host of other
related results in literature.

1. INTRODUCTION

The split common fixed point problem (SCFPP ) in finite-dimensional spaces was first
introduced by Censor and Segal [13] as a generalisation of the split feasibility problem
(SFP). The (SFP) has received a robust attention due to its extensive applications in var-
ious disciplines such as image restoration, computer tomograph, and radiation therapy
treatment planning see [9, 10, 11] and references therein. In order to formulate (SCFPP) in
Hilbert spaces, H1 and H2, Censor and Segal [13] assumed that T and U are directed map-
pings with nonempty fixed point sets, F (T ) and F (U) respectively so that T : H1 → H1

and U : H2 → H2. While, A : H1 → H2 is a bounded linear operator. Then, as presented
in Censor and Segal [13], the split common fixed point problem (SCFPP ) is formulated
as follows:

Find an element x∗ ∈ F (T ) such that Ax∗ ∈ F (U).(1.1)

The split feasibility problem (SFP), introduced by Censor and Elfving [12], is to find a
point

x ∈ C such that Ax ∈ Q.(1.2)

Where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively and A : H1 → H2 is a bounded linear operator. Clearly, (SCFPP ) reduces
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to (SFP ) whenever fixed point sets, F (T ) and F (S) in (1.1) are closed and convex. Many
researchers have studied SFP as well as its generalisations. In his own contribution, Xu
[36] stated that x∗ is a solution of the SFP (1.2) if and only if x∗ is a solution of the fixed
point equation

PC [I − γA∗(I − PQ)A]x∗ = x∗.(1.3)

This suggests that we can use fixed point algorithms to solve SFP as well as its generali-
sation, (SCFPP ). On their part, at the point of introducing (SCFPP ), Censor and Segal
[13] studied, in finite-dimensional spaces, the convergence of the following algorithm for
directed operators U and T :

xn+1 = U(xn + γAt(T − I)Axn), n ≥ 1.(1.4)

Where γ ∈ (0, 2
λ ), with λ being the largest eigenvalue of the matrix AtA (At stands for

matrix transposition) and they proved that the sequence {xn} weakly converges to a so-
lution of the SCFPP (1.1) (if any).
Some improvements have been obtained, which mainly focus on the extension of the fam-
ily of the operators U and T as in [2, 16, 19, 23, 24, 26] and the ease with which the associ-
ated algorithm is implemented as in [14, 21, 35, 37].
We also notice that the choice of the stepsize γ in the above algorithm (1.4) actually de-
pends on the operator norm, ∥A∥ of A, the calculation of which is not always an easy task.
In order to overcome the constraint of computing or estimating the operator norm, many
researchers have developed substitute algorithms for that of Censor and Segal [13]. In
particular, Cui and Wang [17] proposed the following algorithm:

xn+1 = Uλ[xn − ρnA
∗(I − T )Axn], n ≥ 0.(1.5)

Where Uλ = (1 − λ)I + λU, λ ∈ (0, 1 − κ), U is a κ-demicontractive operator with κ < 1
and T is a τ -demicontractive operator with τ < 1. Weak convergence of the algorithm
(1.5) was proved in Cui and Wang [17] with the step size ρn being chosen in the following
way, which is not dependent on the operator norm ∥A∥ of A:

ρn =

{
(I − τ)||(I − T )Axn||2, Axn ̸= T (Axn);

0, otherwise.
(1.6)

In our novel contribution which is dual in purpose, we extend the work of Censor and
Segal [13] to the class of asymptotically α−hemicontractive mappings without requiring
computation or estimation of operator norm. Our new family of mappings is shown to be
a generalisation of asymptotically hemicontractive mappings and all its subclasses while
our new iterative scheme is shown to converge weakly and strongly to the solution of
(1.1) under mild conditions.

2. PRELIMINARIES AND NOTATIONS

Here, we recall some relevant definitions and lemmas which will be needed in the proof
of our main results. In what shall follow, we denote strong and weak convergence by ”→”
and ”⇀” respectively, the fixed point set of a mapping T by F (T ) and the solution set of
(1.1) by Γ.

Definition 2.1. [Demiclosedness principle] Let H be a real Hilbert space and T : H → H
be a mapping, then (I − T ) is said to be demiclosed at zero (see for example Browder [7])
if for any sequence, {xn} ⊂ H with xn ⇀ x∗ and (I − T )xn → 0, we have x∗ = Tx∗.

Definition 2.2. Let H be a real Hilbert space and T : H → H be a mapping, then a single
valued mapping T : H → H is said to be semicompact (see for example Petryshyn [32]) if
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for any bounded sequence {xn} ⊂ H with ∥(I − T )xn∥ → 0 as n → ∞, then there exists a
subsequence {xnk

} of {xn} such that {xnk
} converges strongly to a point p ∈ H.

Definition 2.3. Let H be a real Hilbert space with C ⊂ H being nonempty then a mapping
T : C → C is said to be nonexpansive, see Browder [6], if

∥Tx− Ty∥ ≤ ∥x− y∥ ∀ x, y ∈ C and all n ≥ 1.(2.7)

Definition 2.4. Let (X, ∥.∥) be a linear normed space. A mapping T : X → X is said to be
an enriched nonexpansive mapping (see Berinde [4]) if there exists b ∈ [0,∞) such that,

∥b(x− y) + Tx− Ty∥ ≤ (b+ 1)∥x− y∥ ∀ x, y ∈ C and n ≥ 1.(2.8)

Definition 2.5. Let H be a real Hilbert space with C ⊂ H being nonempty then a mapping
T : C → C is said to be asymptotically nonexpansive, see Goebel and Kirk [20], if there
exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

∥Tnx− Tny∥ ≤ kn∥x− y∥ ∀ x, y ∈ C and all n ≥ 1.(2.9)

Definition 2.6. Let H be a real Hilbert space and C be a nonempty subset of H . A map-
ping T : C → C is said to be uniformly L−Lipschitzian, if there exists a constant L ≥ 0
such that for all (x, y) ∈ C × C,

∥Tnx− Tny∥ ≤ L∥x− y∥.(2.10)

Definition 2.7. Let H be a real Hilbert space with C ⊂ H being nonempty then a mapping
T : C → C is said to be κ-strictly pseudo-contractive, see Browder and Petryshyn [8] and
references therein, if there exists a constant κ ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− Tx− (y − Ty)∥2 ∀x, y ∈ C.(2.11)

Definition 2.8. Let H be a real Hilbert space with C ⊂ H being nonempty then a mapping
T : C → C is said to be α-demi-contractive, see Mǎruşter and Mǎruşter [22] if F (T ) ̸= ∅
and there exist α ≥ 1 and a constant κ ∈ [0, 1) such that

∥Tx− αp∥2 ≤ ∥x− αp∥2 + k∥x− Tx∥2 ∀(x, p) ∈ C × F (T ).(2.12)

Clearly, (2.12) is equivalent to

⟨x− Tx, x− αp⟩ ≥ λ∥x− Tx∥2 ∀(x, p) ∈ C × F (T ) where λ =
1− κ

2
> 0.(2.13)

Definition 2.9. Let H be a real Hilbert space with C ⊂ H being nonempty then a mapping
T : C → C is said to be pseudo-contractive, see Browder and Petryshyn [8], if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥x− Tx− (y − Ty)∥2 ∀x, y ∈ C.(2.14)

It is demonstrated in Rhoades [34] that the class of κ-strictly pseudo-contractive mappings
is a proper subclass of pseudo-contractive mappings.

Definition 2.10. Let H be a real Hilbert space with C ⊂ H being nonempty then a map-
ping T : C → C is said to be hemi-contractive, see Naimpally and Singh [25] and the
references therein, if F (T ) ̸= ∅ and

∥Tx− p∥2 ≤ ∥x− p∥2 + ∥x− Tx∥2 ∀(x, p) ∈ C × F (T ).(2.15)

Clearly, (2.15) is equivalent to

⟨x− Tx, x− p⟩ ≥ 0 ∀(x, p) ∈ C × F (T ).(2.16)
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Definition 2.11. Let H be a real Hilbert space with K ⊂ H being nonempty then a map-
ping T : K → K is said to be a generalised pseudo-contraction, see Berinde [3], if for all
x, y ∈ K there exists a constant r > 0 such that

⟨Tx− Ty, x− y⟩ ≤ r∥x− y∥2 ∀x, y ∈ K.(2.17)

Equivalently, a mapping T : K → K is said to be a generalised pseudo-contraction, if for
all x, y ∈ K there exists a constant r > 0 such that

∥Tx− Ty∥2 ≤ r2∥x− y∥2 + ∥Tx− Ty − r(x− y)∥2(2.18)

Remark 2.1. It is obvious that if r = 1 in (2.18) then, the class of generalised pseudo-
contractions coincided with the class of pseudo-contractive mappings. Thus, the class of
pseudo-contractive mappings together with all its subfamilies including family of
κ-strictly pseudo-contractive mappings is a proper subclass of generalised
pseudo-contractions.
It can easily be shown that the class of enriched nonexpansive mappings is a subclass
of generalised pseudo-contractions. For an arbitrary enriched nonexpansive mapping, T
with the associated b > 0, we have that

∥b(x− y) + Tx− Ty∥2 ≤ (b+ 1)∥x− y∥2.

This in turn implies that b∥x− y∥2 + ∥Tx− Ty∥2 + 2b⟨Tx− Ty, x− y⟩ ≤ (b+ 1)∥x− y∥2.
Hence,

⟨Tx− Ty, x− y⟩ ≤ 1

2b
∥x− y∥2

which is a generalised pseudo-contraction with r = 1
2b . The case of enriched nonexpansive

mappings, T with the associated b = 0 coincides with nonexpansive mappings which is a
subclass of generalised pseudo-contractions.

Definition 2.12. Let H be a real Hilbert space with C ⊂ H being nonempty then a map-
ping T : C → C is said to be α−hemicontractive, see Osilike and Onah [30], if F (T ) ̸= ∅
and there exist α ≥ 1 such that

∥Tx− αp∥2 ≤ ∥x− αp∥2 + ∥x− Tx∥2 ∀(x, p) ∈ C × F (T ).(2.19)

Equivalently, a mapping T : C → C is said to be α−hemicontractive if F (T ) ̸= ∅ and there
exist α ≥ 1 such that

⟨x− Tx, x− αp⟩ ≥ 0 ∀(x, p) ∈ C × F (T ).(2.20)

For additional information, you may see also [1, 2, 18, 26, 27, 28]

Definition 2.13. Let H be a real Hilbert space with C ⊂ H being nonempty then a map-
ping T : C → C is said to be asymptotically hemicontractive, see Qihou [33], if F (T ) ̸= ∅
and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

∥Tnx− p∥2 ≤ κn∥x− p∥2 + ∥x− Tnx∥2 ∀(x, p) ∈ C × F (T ).(2.21)

Equivalently, a mapping T : C → C is said to be asymptotically hemicontractive if F (T ) ̸=
∅ and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that any of the
following equivalent equations are satisfied:

⟨Tnx− x, x− p⟩ ≤ κn − 1

2
∥x− p∥2 ∀(x, p) ∈ C × F (T ) or(2.22)

⟨x− Tnx, x− p⟩ ≥ −κn − 1

2
∥x− p∥2 ∀(x, p) ∈ C × F (T ).(2.23)
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Definition 2.14. Opial property, see Opial [29]. A Banach space E is said to have the Opial
property if for any sequence {xn} with xn ⇀ x∗, we have

lim inf
n→∞

∥xn − x∗∥ < lim inf
n→∞

∥xn − y∥(2.24)

for all y ∈ E with y ̸= x∗. It is known that each Hilbert space possess the Opial property.

We shall need the following well-known results in Hilbert spaces (see for example
Chidume [15]):

Lemma 2.1. Let H be a real Hilbert space. Then,for all x, y ∈ H , we have that

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2.

Lemma 2.2. Let H be a real Hilbert space. Then, for all x, y ∈ H and for all t ∈ [0, 1], we have

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2.

Lemma 2.3. (Osilike and Igbokwe [31]) Let {an}, {bn} and {cn} be sequences of nonnegative
real numbers satisfying

an+1 ≤ (1 + cn)an + bn, ∀n ≥ 1.

If
∞∑

n=1
cn < ∞ and

∞∑
n=1

bn < ∞, then the limit lim
n→∞

an exists.

To the best of our knowledge, nothing has been reported about the class of asymptoti-
cally α−hemicontractive mappings. Thus, the following questions arise naturally.
question 1: Can one introduce the concept of asymptotically α−hemicontractive map-
pings using terminologies that are in conformity with the existing standard?
question 2: Can one display illustrative examples to show the relationship existing among
the new class of mappings and already existing related families of mappings?
question 3: Can one establish the solution of split common fixed point problem for the
new class of mappings even when prior knowledge of operator norm is not required?
question 4: Is there any numerical example to demonstrate such solutions established?
Inspired and motivated by the above innovations as well as the above questions raised,
we introduce in this paper, a new family of mappings, asymptotically α−hemicontractive
mappings which is more general than the class of asymptotically hemicontractive map-
pings in Hilbert space. Illustrative examples given here show that our new class of map-
pings is independent on the closely related class of asymptotically hemicontractive map-
pings when α > 1.

3. MAIN RESULTS

Definition 3.15. Let H be a real Hilbert space with C ⊂ H being nonempty then a map-
ping T : C → C is said to be asymptotically α−hemicontractive if F (T ) ̸= ∅ and there
exist α ≥ 1 and a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ such that

∥Tnx− αp∥2 ≤ kn∥x− αp∥2 + ∥x− Tnx∥2 ∀(x, p) ∈ C × F (T ).(3.25)

Equivalently, a mapping T : C ⊂ H → C is said to be asymptotically α−hemicontractive
if F (T ) ̸= ∅ and there exist α ≥ 1 and a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞
such that any of the following equivalent equations are satisfied:

⟨Tnx− x, x− αp⟩ ≤ κn − 1

2
∥x− αp∥2 ∀(x, p) ∈ C × F (T ); or(3.26)

⟨x− Tnx, x− αp⟩ ≥ −κn − 1

2
∥x− αp∥2 ∀(x, p) ∈ C × F (T ).(3.27)
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Remark 3.2. From, (2.7), (2.13) and (3.25), it can easily be deduced that, for α = 1, the
class of asymptotically quasi nonexpansive mappings is a proper subclass of the class of
asymptotically α−hemicontractive mappings which, in this case, coincides with the class
of asymptotically hemicontractive mappings. However, if α > 1, then the class of asymp-
totically α−hemicontractive mappings and the class of asymptotically hemicontractive
mappings are independent. Below are illustrative examples for verification of their inde-
pendence.

Example 3.1. Here is an example of an asymptotically hemicontractive mapping which
is not asymptotically α−hemicontractive for any α > 1. Let C =

[
1
2 , 2
]
; C1 =

[
1
2 , 1
]

and
C2 = [1, 2]. Define T : C → C by

Tx =
1

x
(3.28)

with F (T ) = {1}. Clearly, 1
2 ≤ Tnx ≤ 2 ∀ x ∈

[
1
2 , 2
]
. Thus, T is a self map.

Case 1 Suppose that x ∈
[
1
2 , 1
]
, then, we show that T is asymptotically hemicontractive

as follows. If n is odd, then, Tnx = 1
x ∈ [1, 2] . Hence,

x− Tnx = x− 1

x

=
(x− 1)(x+ 1)

x
≤ 0.(3.29)

While, x− p = x− 1 ≤ 0.

Thus, for {κn} = {1}, we have,

⟨x− Tnx, x− p⟩ ≥ 0 ≥ −κn − 1

2
∥x− p∥2.

If n is even then, Tnx = x ∈
[
1
2 , 1
]

and x− Tnx = 0. Hence, for κn = {1}, we have

⟨x− Tnx, x− p⟩ = κn − 1

2
∥x− p∥2.

Case 2: If x ∈ [1, 2] and n is odd. Then, we show that T is asymptotically hemicontractive
as follows. Tnx = 1

x ∈
[
1
2 , 1
]
. Hence,

x− Tnx = x− 1

x

=
(x− 1)(x+ 1)

x
≥ 0.(3.30)

While, x− p = x− 1 ≥ 0.

Thus, for {κn} = {1}, we have,

⟨x− Tnx, x− p⟩ ≥ 0 ≥ −κn − 1

2
∥x− p∥2.

If n is even then, Tnx = x ∈
[
1
2 , 1
]

and x− Tnx = 0. Hence, for {κn} = {1}, we have

⟨x− Tnx, x− p⟩ = κn − 1

2
∥x− p∥2.

Therefore, T is asymptotically hemicontractive indeed.
Next, we show that T is not asymptotically α−hemicontractive when α > 1. Suppose
by contradiction that there exist κn ⊆ [1,∞) and α > 1 for which T is asymptotically



Asymptotically α−hemicontractive mappings in Hilbert spaces and a new algorithm ... 697

α−hemicontractive. Then, choose ϵ = 1
4(α−1) so that κn → 1 as n → ∞ implies that there

exists n∗ ∈ N such that
|κn − 1| < ϵ ∀n ≥ n∗.

Thus, for x = 1 + α−1
α ∈

[
1
2 , 2
]
, 1 < x < 2 is satisfied.

Then, for all odd numbers greater than or equal to n∗, we have that

⟨Tnx− x, x− αp⟩ =

〈
−[(α− 1)(3α− 1)]

α(2α− 1)
,
−(α− 1)2

α

〉
=

(α− 1)3(3α− 1)

α2(2α− 1)

>
ϵ

2
∥x− αp∥2

>
κn − 1

2
∥x− αp∥2.

Thus , we have that

⟨Tnx− x, x− αp⟩ > κn − 1

2
∥x− αp∥2.(3.31)

Therefore,from above inequality and from (3.26), the fact that T is not asymptotically
α−hemicontractive is established.

Remark 3.3. Example (3.1) was also shown to be a generalised pseudocontraction in
Berinde [3], enriched nonexpansive in Berinde [4] and strictly pseudocontractive in Berinde
and Berinde [5].

Example 3.2. Here is an example of an asymptotically α−hemicontractive mapping which
is not asymptotically hemicontractive. Let C = [1, 2]. Define T : C → C by

Tx = x+ (x− 1)2(2− x)(3.32)

with F (T ) = {1, 2}. Clearly, (x− 1)2 ≤ 1 ∀x ∈ C, Tx ≥ x, ∀x ∈ C and {Tnx} is monotone
increasing. Hence,

1 ≤ Tnx

= x+ (x− 1)2(2− x)

< x+ (2− x)

= 2.

Thus, T is a self map and so Tnx ∈ C ∀x ∈ C and ∀n ≥ 1.
Suppose that α = 2 then ∀p ∈ F (T ), we have that x − αp ≤ 0. From the definition of T ,
it follows that x ≤ Tx which in turn implies that x ≤ Tnx and x − Tnx ≤ 0. Thus, for
κn = {1}, we have that

⟨x− Tnx, x− αp⟩ ≥ 0 ≥ −κn − 1

2
∥x− αp∥2

is satisfied ∀(x, p) ∈ C × F (T ) and so T is asymptotically α−hemicontractive.
However, T is not asymptotically hemicontractive because for arbitrary κn ⊂ [1,∞) with
κn → 1 as n → ∞. Choose, ϵ = 0.01 so that κn → 1 as n → ∞ implies that there exists
n∗ ∈ N such that

|κn − 1| < ϵ ∀n ≥ n∗.
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Thus, for x = 1.9 ∈ [1, 2] p = 1 then, from the definition of T , it follows that x ≤ Tx ≤ Tnx.
Hence, for all odd numbers greater than or equal to n∗, we have that

⟨Tnx− x, x− p⟩ ≥ ⟨Tx− x, x− p⟩
= ⟨0.081, 0.9⟩
= 0.0729

> 0.00405

=
ϵ

2
(0.81)

>
κn − 1

2
∥x− p∥2.

Thus, we have that

⟨Tnx− x, x− p⟩ > κn − 1

2
∥x− p∥2.(3.33)

Therefore, from (3.33) and from (2.14), the fact that T is not asymptotically hemicontrac-
tive is established.

Example 3.3. Here is an example of an asymptotically α−hemicontractive mapping which
is not α-hemicontractive. Let X = ℓ2. For, each x̄ = (x1, x2, x3, · · · ) ∈ X, define T : X →
X by

T (x1, x2, x3, · · · ) = (0, ρ1x1, ρ2x2, ρ3x3, · · · ).(3.34)

where {ρk}k≥1 is a sequence of real numbers defined for each k ∈ N by ρk =

{
2, k = 1

1− 1
k2 , k > 1.

From (3.34),

T (x1, x2, x3, · · · ) = (0, 2x1, ρ2x2, ρ3x3, · · · ),
T 2(x1, x2, x3, · · · ) = (0, 0, 2ρ2x1, ρ2ρ3x2, ρ3ρ4x3, · · · ),
T 3(x1, x2, x3, · · · ) = (0, 0, 0, 2ρ2ρ3x1, ρ2ρ3ρ4x2, ρ3ρ4ρ5x3, · · · ) etc.

Clearly, F (T ) = {(0, 0, 0, 0, · · · )}. Since, 1− 1
k2 = (k−1)(k+1)

k2 , then
n∏

k=1

ρk = 2× (1)(3)

22
× (2)(4)

32
× (3)(5)

42
× · · · × (n− 2)(n)

(n− 1)2
× (n− 1)(n+ 1)

n2
.

Indeed, by induction, it can be established that
n∏

k=1

ρk = n+1
n = 1 + 1

n as follows.

For base of induction, n = 1, we have
1∏

k=1

ρk = ρ1 = 2 = 1 +
1

1
= 1 +

1

n
.

Similarly, for n = 2, we have
2∏

k=1

ρk = ρ1 × ρ2 = 2×
(
1− 1

22

)
=

6

4
= 1 +

1

2
= 1 +

1

n
.

For inductive hypothesis, we assume that for n = j with j > 1 being an integer, we have
j∏

k=1

ρk = ρ1 × ρ2 × ρ3 × ρ4 × · · · × ρj = 1 +
1

j
.
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Finally, it remains to show that for n = j + 1, we have

j+1∏
k=1

ρk = ρ1 × ρ2 × ρ3 × ρ4 × · · · × ρj × ρj+1 = 1 +
1

j + 1
.

On applying the inductive hypothesis to the above equation, we have

j+1∏
k=1

ρk = ρ1 × ρ2 × ρ3 × ρ4 × · · · × ρj × ρj+1

=

(
1 +

1

j

)
×

(
1− 1

(j + 1)
2

)

=

(
j + 1

j

)
×

(
j2 + 2j

(j + 1)
2

)

=

(
j + 2

j + 1

)
= 1 +

1

j + 1
.

Therefore,
n∏

k=1

ρk = 1 + 1
n ∀n ∈ N. Thus, For arbitrary n ∈ N, and x̄, ȳ ∈ ℓ2 we have that

∥Tnx̄− Tnȳ∥2 ≤

(
n∏

k=1

ρk

)2

∥x̄− ȳ∥2

=

(
1 +

1

n

)2

∥x̄− ȳ∥2

= (κn∥x̄− ȳ∥)2 .

This implies that T is asymptotically nonexpansive with κn =
(
1 + 1

n

)
. Since, F (T ) ̸=

∅, it follows that T is asymptotically quasi-nonexpansive as well as asymptotically α-
hemicontractive.
However, for x̄ = (1, 1, 1

2 , 0, 0, 0, · · · ) ∈ ℓ2, we have, for an arbitrary α ≥ 1, that

⟨x̄− T x̄, x̄− αp⟩ = ⟨(1, 1, 1
2
, 0, 0, 0, · · · )− (0, 2,

3

4
,
4

9
, 0, 0, · · · ), (1, 1, 1

2
, 0, 0, 0, · · · )

−(0, 0, 0, · · · )⟩

=

〈
(1,−1,−1

4
,−4

9
, 0, 0, · · · ), (1, 1, 1

2
, 0, 0, 0, · · · )

〉
= 1− 1− 1

8

= −1

8
< 0.

Therefore, T is not α-hemicontractive.

Example 3.4. Here is an example of an asymptotically α−hemicontractive mapping which
is not a generalised pseudocontraction. It is neither enriched nonexpansive nor κ-strictly
pseudocontractive. In fact, it is not even hemicontractive. Let X = R → R. For, each
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x ∈ X, define T : X → X by

Tx =

{
1

8−16x , x ∈
(
−∞, 1

2

)
x, x ∈

[
1
2 , ∞)

(3.35)

Clearly, F (T ) = { 1
4} ∪

[
1
2 ,∞

)
. To prove that T is asymptotically 2−hemicontractive,

we consider the following cases.
Case 1: Suppose that x ∈

(
−∞, 1

2

)
. Then, x ≤ Tx ≤ Tnx ∀ n ∈ N. Thus, x − Tnx ≤

x − Tx = (4x−1)2

16(x− 1
2 )

≤ 0. While, for arbitrary p ∈ F (T ) and with α = 2, we have that
x− αp ≤ 0. Therefore, (3.27) is satisfied as shown below.

⟨x− Tnx, x− αp⟩ ≥ 0 ≥ −κn − 1

2
∥x− αp∥2

Case 2: Suppose that x ∈
[
1
2 ,∞

)
. Then, x = Tx = Tnx ∀ n ∈ N. Thus, x−Tnx = x−Tx =

0. For arbitrary p ∈ F (T ) and with α = 2, we have that (3.27) is satisfied as shown below.

⟨x− Tnx, x− αp⟩ = 0 ≥ −κn − 1

2
∥x− αp∥2

Therefore, T is asymptotically α−hemicontractive indeed with α = 2.
Next, we show that T is not a generalised pseudocontraction. Following the method used
in Rhoades [33], assume for contradiction purpose that T is a generalised pseudocontrac-
tion. Then, it suffices to show that ∃r > 0 for which (2.17) is satisfied ∀ x, y ∈ R. In
particular, take y = 0 and x ∈ R such that 1

2 − 1
8r < x < 1

2 . Hence,

⟨Tx− Ty, x− y⟩ =

〈
1

8− 16x
− 1

8
, x− 0

〉
=

1

8

〈
2x

1− 2x
, x

〉
=

1

4(1− 2x)
(x2)

> r∥x− y∥2.

It follows that T is not a generalised pseudocontraction as well as its subclasses including
enriched nonexpansive, pseudocontractive and strictly pseudocontractive mappings.
T is not hemicontractive for if p = 1

4 and x = 9
32 , then

⟨x− Tx, x− p⟩ =

〈
(4x− 1)2

16(x− 1
2 )

, x− 1

4

〉
=

〈
− 1

224
,
1

32

〉
< 0.

Remark 3.4. From example (3.1) and example (3.4), it can be deduced that the class of
asymptotically α−hemicontractive mappings is independent on the class of generalised
pseudocontractions together with all its subclasses including enriched nonexpansive and
(strictly) pseudocontractive mappings.

Lemma 3.4. Let C be a closed and convex subset of a real Hilbert space. Let T : C → C be
an arbitrary uniformly L−Lipschitzean asymptotically α-hemicontractive for some α ≥ 1.
Then, for a mapping Gn : C → C defined by

Gn(x) = Tn[(1− β)x+ βTnx],(3.36)
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where β is a positive constants satisfying, β ∈

0,
1√

(k+1)2

4 + L2 + (k+1)
2

 and k = sup
n⩾1

{kn} ,

then, the following hold
(i) F (T ) = F (Gn);

(ii) αp ∈ F (T ) provided that p ∈ F (T ) and αp ∈ D(T );

Proof. For (i), we recall that convexity of C guarantees that Gnx ∈ C, ∀x ∈ C. Hence,
proof of (i) suffices to show that:

(a) F (T ) ⊆ F (Gn) and
(b) F (Gn) ⊆ F (T ).

To show that F (T ) ⊆ F (Gn), let p ∈ F (T ) be arbitrary. Then, Tp = p. Hence,

Gn(p) = Tn[(1− β)p+ βTnp] = p(3.37)

This implies that p ∈ F (Gn) and so F (T ) ⊆ F (Gn), as required in (a). Similarly, to show
that F (Gn) ⊆ F (T ), let p ∈ F (Gn) be arbitrary. Then, Gn(p) = Tn[(1 − β)p + βTnp] = p.
Hence,

∥p− Tnp∥2 = ∥Gn(p)− Tnp∥2

= ∥Tn[(1− β)p+ βTnp]− Tnp∥2

≤ L2β2∥Tnp− p∥2

< (1− 2β)∥Tnp− p∥2.(3.38)

This implies that 2β∥Tnp − p∥2 ≤ 0 and so ∥Tnp − p∥ = 0 ∀n ≥ 1. This, in turn, implies
that Tp = p which means that p ∈ F (T ). Consequently, F (Gn) ⊆ F (T ), as required in (b).
Therefore, F (T ) = F (Gn) which completes the proof of Lemma (3.4)(i).
For the proof of Lemma (3.4)(ii), it suffices to show that: ∥Gn(αp)−αp∥ = 0, where p is an
arbitrary fixed point of T and α is the same as in the definition of T . We have that;

∥Gn(αp)− αp∥2 = ∥Tn[(1− β)αp+ βTn(αp)]− αp∥2

≤ κn∥(1− β)αp+ βTn(αp)− αp∥2

+∥(1− β)αp+ βTn(αp)−Gn(αp)∥2

= κnβ
2∥Tn(αp)− αp∥2

+∥(1− β)(αp−Gn(αp)) + β(Tn(αp)−Gn(αp))∥2

= κnβ
2∥Tn(αp)− αp∥2 + (1− β)∥αp−Gn(αp)∥2

+β∥Tn(αp)−Gn(αp)∥2 − β(1− β)∥Tn(αp)− αp∥2

= β[β(κn + 1)− 1]∥Tn(αp)− αp∥2 + (1− β)∥αp−Gn(αp)∥2

+β∥Tn(αp)− Tn[(1− β)αp+ βTn(αp)]∥2

≤ β[β(κn + 1)− 1]∥Tn(αp)− αp∥2 + (1− β)∥αp−Gn(αp)∥2

+βL2∥αp− (1− β)αp− βTn(αp)]∥2

= β[β(κn + 1)− 1]∥Tn(αp)− αp∥2

+(1− β)∥αp−Gn(αp)∥2 + β3L2∥Tn(αp)− αp]∥2

= (1− β)∥αp−Gn(αp)∥2 − β[1− β(κn + 1)− β2L2]∥Tn(αp)− αp∥2

≤ (1− β)∥αp−Gn(αp)∥2.(3.39)

Hence, β∥αp−Gn(αp)∥2 ≤ 0 and so ∥αp−Gn(αp)∥ = 0. Therefore, Gnαp = αp.
Consequently, from result of Lemma (3.4)(i), it is obvious that for any arbitrary p ∈
F (T ), αp ∈ F (T ), provided that αp ∈ D(T ), completing the proof of Lemma (3.4)(ii). □



702 A. C. Onah, M. O. Osilike, P. U. Nwokoro, J. N. Onah, E. E. Chima and O. U. Oguguo

Lemma 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → C
be a uniformly L− Lipschitzian asymptotically α−hemicontractive mapping. Then, the following
hold:

(i) F (T ) is closed;
(ii) The line segment joining αp1 and αp2 lies in F (T ) ∀p1, p2 ∈ F (T ) and α ≥ 1.

Proof. For (i) above, define {pn}n≥1 ⊆ F (T ) such that pn → p. We prove that p ∈ F (T ).

∥Tnp− p∥ = ∥Tnp− Tnpn + Tnpn − p∥
≤ ∥Tnp− Tnpn∥+ ∥Tnpn − p∥
≤ L∥pn − p∥+ ∥pn − p∥
= (1 + L)∥pn − p∥
→ 0 as n → ∞.(3.40)

Thus, p ∈ F (T ) and F (T ) is closed.
Next, for (ii), let p1, p2 ∈ F (T ) be arbitrary. It follows from Lemma (3.4) that αp1, αp2 ∈
F (T ) also. Define

p = λαp1 + (1− λ)αp2(3.41)

for an arbitrary λ ∈ [0, 1]. We show that p ∈ F (T ). To this end, we set Gn(x) := Tn[(1 −

β)x+ βTnx], where β ∈

0,
1√

(k+1)2

4 + L2 + (k+1)
2

 and k = sup
n⩾1

{kn} .

Clearly, from Lemma (3.4) and (3.41), we have that{
Gn(αp1) = αp1; Gn(αp2) = αp2;
∥p− αp1∥ = (1− λ)∥αp1 − αp2∥ and ∥p− αp2∥ = λ∥αp1 − αp2∥.

(3.42)

Furthermore,

∥Gnp− p∥2 = ∥p−Gnp∥2

= ∥λαp1 + (1− λ)αp2 −Gnp∥2

= ∥λ(αp1 −Gnp) + (1− λ)(αp2 −Gnp)∥2

= λ∥αp1 −Gnp∥2 + (1− λ)∥αp2 −Gnp∥2 − λ(1− λ)∥αp1 − αp2∥2.(3.43)

Moreover,

∥Gnp− αp1∥2 = ∥Tn[(1− β)p+ βTnp]− αp1∥2

≤ κn∥(1− β)p+ βTnp− αp1∥2 + ∥(1− β)p+ βTnp−Gnp∥2

= κn∥(1− β)(p− αp1) + β(Tnp− αp1)∥2

+∥(1− β)(p−Gnp) + β(Tnp−Gnp)∥2

= κn(1− β)∥p− αp1∥2 + βκn∥Tnp− αp1∥2 − β(1− β)κn∥Tnp− p∥2

+(1− β)∥p−Gnp∥2 + β∥Tnp− Tn[(1− β)p+ βTnp]∥2

−β(1− β)∥Tnp− p∥2

≤ κn(1− β)∥p− αp1∥2 + βκn[κn∥p− αp1∥2 + ∥Tnp− p∥2]
−β(1− β)κn∥Tnp− p∥2 + (1− β)∥p−Gnp∥2 + β3L2∥Tnp− p∥2

−β(1− β)∥Tnp− p∥2

= κn[1 + β(κn − 1)]∥p− αp1∥2 + (1− β)∥p−Gnp∥2

−β[1− β(κn + 1)− β2L2]∥Tnp− p∥2.
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Thus,

∥Gnp− αp1∥2 ≤ κn[1 + β(κn − 1)]∥p− αp1∥2 + (1− β)∥p−Gnp∥2.(3.44)

Similarly,

∥Gnp− αp2∥2 ≤ κn[1 + β(κn − 1)]∥p− αp2∥2 + (1− β)∥p−Gnp∥2.(3.45)

Substituting (3.44), (3.45) and (3.42) in (3.43), we have

∥Gnp− p∥2 ≤ λ[κn[1 + β(κn − 1)]∥p− αp1∥2 + (1− β)∥p−Gnp∥2]
+(1− λ)[κn[1 + β(κn − 1)]∥p− αp2∥2 + (1− β)∥p−Gnp∥2]
−λ(1− λ)∥αp1 − αp2∥2

= λκn[1 + β(κn − 1)](1− λ)2∥αp1 − αp2∥2 + λ(1− β)∥p−Gnp∥2

+(1− λ)κn[1 + β(κn − 1)]λ2∥αp1 − αp2∥2

+(1− β)(1− λ)∥p−Gnp∥2 − λ(1− λ)∥αp1 − αp2∥2

= λ(1− λ)(κn − 1)(1 + βκn)∥αp1 − αp2∥2 + (1− β)∥p−Gnp∥2.
Thus,

β∥Gnp− p∥2 ≤ λ(1− λ)(κn − 1)(1 + βκn)∥αp1 − αp2∥2.(3.46)

Since kn → 1 as n → ∞, we obtain from (3.46) that

lim
n→∞

∥Gnp− p∥ = 0.(3.47)

Also,

∥Tnp− p∥ = ∥Tnp−Gnp+Gnp− p∥
≤ ∥Tnp−Gnp∥+ ∥Gnp− p∥
= ∥Tnp− Tn[(1− β)p+ βTnp]∥+ ∥Gnp− p∥
≤ L∥p− [(1− β)p+ βTnp]∥+ ∥Gnp− p∥
≤ Lβ∥Tnp− p∥+ ∥Gnp− p∥.

Thus, (1− Lβ)∥Tnp− p∥ ≤ ∥Gnp− p∥, which implies that

lim
n→∞

∥Tnp− p∥ = 0.(3.48)

Therefore, Tnp → p as n → ∞. This in turn implies that

p = lim
n→∞

Tnp = T lim
n→∞

(Tn−1p) = Tp.(3.49)

Hence, p ∈ F (T ) . □

Theorem 3.1. Suppose H1 and H2 are real Hilbert spaces with A : H1 → H2 being a bounded
linear operator. While, T : H1 → H1 as well as S : H2 → H2 are uniformly Lipschitzian
asymptotically α−hemicontractive mapping with the respective sequences {cn} ⊂ [1,+∞) and

{dn} ⊂ [1,+∞) such that
∞∑

n=1
(c2n − 1) < ∞ and

∞∑
n=1

(d2n − 1) < ∞. Let the Uniformly Lip-

schitzian constants of T and S be L1 and L2 respectively with L = Max{L1, L2} and let
κn = Max{cn, dn}. Suppose in addition that I − T and I − S are demiclosed at the origin
and Γ = {u ∈ F (T ) : Au ∈ F (S)} ≠ ∅. Then, for arbitrary u0 ∈ H1 the iterative scheme defined
for all n ∈ N by{

xn = un + γnA
∗[enI + (1− en)S

n[(1− bn)I + bnS
n]− I]Aun

un+1 = (1− an)xn + anT
n[(1− βn)xn + βnT

nxn]
(3.50)

where the following conditions are satisfied:
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(i) the step size, γn > 0 is chosen in such a way that for Dn = enI+(1−en)S
n[(1− bn)I+

bnS
n] we have for small enough ϵ > 0 that

γn =

{
tn if un /∈ Γ

ϵ, otherwise
(3.51)

Where tn ∈
(
ϵ, (1−en)||(Dn−I)Aun||2

||A∗(Dn−I)Aun||2

)
.

(ii) {an} and {βn} are real sequences in [0, 1] satisfying 0 < a ≤ an ≤ βn ≤ β < 1

with β ∈

0,
1√

(k+1)2

4 + L2 + (k+1)
2

 and 0 < e ≤ 1 − en < bn ≤ b < 1 with

b ∈

0,
1√

(k+1)2

4 + L2 + (k+1)
2

 .

While, k = sup
n⩾1

{kn} .

Then, the sequence {un} generated by (3.50) converges weakly to a solution of problem (1.1).

Proof. Firstly, we prove that lim
n→∞

∥un−p∥ exists for any p ∈ Γ. To this end and for purpose

of simplicity, let Gi = T i[(1 − βn)I + βnT
i] and hi = Si[(1 − bn)I + bnS

i]. From the
assumption, Γ ̸= ∅, let p ∈ Γ be arbitrary then p ∈ F (T ) for consistency and Ap ∈ F (S)
which by lemma(3.4) together with linearity of A implies that αp ∈ F (T ) and A(αp) =
αAp ∈ F (S). Thus, αp ∈ Γ also. Assuming that u1 /∈ Γ, then, from (3.50) (a) and Lemma
(2.2), we have:

∥un+1 − αp∥2 = ∥(1− an)xn + anGnxn − αp∥2

= ∥(1− an)(xn − αp) + an(Gnxn − αp)∥2

= (1− an)∥xn − αp∥2 + an∥Gnxn − αp∥2 − an(1− an)∥xn −Gnxn∥2

= (1− an)∥xn − αp∥2 + an∥Tn[(1− βn)I + βnT
n]xn − αp∥2

−an(1− an)∥xn −Gnxn∥2

≤ (1− an)∥xn − αp∥2 + anκn∥[(1− βn)xn + βnT
nxn]− αp∥2

+an∥[(1− βn)xn + βnT
nxn −Gnxn∥2]− an(1− an)∥xn −Gnxn∥2

= (1− an)∥xn − αp∥2 + anκn∥(1− βn)(xn − αp) + βn(T
nxn − αp)∥2

+an∥(1− βn)(xn −Gnxn) + βn(T
nxn −Gnxn)∥2

−an(1− an)∥xn −Gnxn∥2

= (1− an)∥xn − αp∥2 + anκn(1− βn)∥xn − αp∥2 + anβnκn∥Tnxn − αp∥2

−anκnβn(1− βn)∥xn − Tnxn∥2 + an(1− βn)∥xn −Gnxn∥2

+anβn∥Tnxn −Gnxn∥2 − anβn(1− βn)∥xn − Tnxn∥2

−an(1− αn)∥xn −Gnxn∥2

≤ (1− an)∥xn − αp∥2 + anκn(1− βn)∥xn − αp∥2 + anβnκ
2
n∥xn − αp∥2

+anβnκn∥xn − Tnxn∥2 − anκnβn(1− βn)∥xn − Tnxn∥2

+an(1− βn)∥xn −Gnxn∥2 + anβ
3
nL

2∥xn − Tnxn∥2

−anβn(1− βn)∥xn − Tnxn∥2 − an(1− an)∥xn −Gnxn∥2

= [1 + an(κn − 1)(1 + βnκn)]∥xn − αp∥2

−anβn[1− βn(κn + 1)− β2
nL

2]∥xn − Tnxn∥2

−an(βn − an)∥xn −Gnxn∥2.(3.52)
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Furthermore,

∥hn(Aun)−A(αp)∥2 ≤ κn∥(1− bn)Aun + bnS
nAun −A(αp)∥2

+∥(1− bn)Aun + bnS
nAun − hn(Aun)∥2

= κn∥(1− bn)(Aun −A(αp)) + bn(S
nAun −A(αp))∥2

+∥(1− bn)[Aun − hn(Aun)] + bn[S
nAun − hn(Aun)]∥2

= κn(1− bn)∥Aun −A(αp)∥2 + κnbn∥SnAun −A(αp)∥2

−κnbn(1− bn)∥Aun − SnAun∥2 + (1− bn)∥Aun − hn(Aun)∥2

+bn∥SnAun − hn(Aun)∥2 − bn(1− bn)∥Aun − SnAun∥2

≤ κn(1− bn)∥Aun −A(αp)∥2 + bnκn[κn∥Aun −A(αp)∥2

+∥Aun − SnAun∥2]− bn(1− bn)(1 + κn)∥Aun − SnAun∥2

+(1− bn)∥Aun − hn(Aun)∥2

+bn∥SnAun − Sn[(1− bn)I + bnS
n]Aun∥2

= κn[1 + bn(κn − 1)]∥Aun −A(αp)∥2 + bnκn∥Aun − SnAun∥2

−bn(1− bn)(1 + κn)∥Aun − SnAun∥2

+(1− bn)∥Aun − hn(Aun)∥2

+bnL
2∥Aun − [(1− bn)Aun + bnS

nAun]∥2

= κn[1 + bn(κn − 1)]∥Aun −A(αp)∥2 + (1− bn)∥Aun − hn(Aun)∥2

−bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2.(3.53)

By applying the above result, we have that

∥Dn(Aun)−A(αp)∥2 = ∥enAun + (1− en)hn(Aun)−A(αp)∥2

= ∥en(Aun −A(αp)) + (1− en)[hn(Aun)−A(αp)]∥2

= en∥Aun −A(αp)∥2 + (1− en)∥hn(Aun)−A(αp)∥2

−en(1− en)∥Aun − hn(Aun)∥2

≤ en∥Aun −A(αp)∥2

+(1− en){κn[1 + bn(κn − 1)]∥Aun −A(αp)∥2

+(1− bn)∥Aun − hn(Aun)∥2

−bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2}

−en(1− en)∥Aun − hn(Aun)∥2

= {en + (1− en)κn[1 + bn(κn − 1)]}∥Aun −A(αp)∥2

+(1− en)[1− bn − en]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

= {1 + (1− en)(κn − 1)(1 + bnκn)}∥Aun −A(αp)∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2.(3.54)
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∥xn − αp∥2 = ∥un + γnA
∗[enI + (1− en)S

n[(1− bn)I + bnS
n]− I]Aun − αp∥2

= ∥(un − αp) + γnA
∗[(Dn − I)Aun]∥2

= ∥un − αp∥2 + γ2
n∥A∗[(Dn − I)Aun]∥2

+2γn⟨A∗[(Dn − I)Aun], un − αp⟩
= ∥un − αp∥2 + γ2

n∥A∗[(Dn − I)Aun]∥2

+2γn⟨(Dn − I)Aun, Aun −A(αp)⟩
= ∥un − αp∥2 + γn(1− en)∥(Dn − I)Aun∥2 − γn∥(Dn − I)Aun∥2

+γn(∥Dn(Aun)−Aαp∥2 − ∥Aun −Aαp∥2).
≤ ∥un − αp∥2 − enγn∥(Dn − I)Aun∥2 + γn(∥Dn(Aun)−Aαp∥2

−∥Aun −Aαp∥2)
≤ ∥un − αp∥2 − enγn∥(Dn − I)Aun∥2

+γn{1 + (1− en)(κn − 1)(1 + bnκn)}∥Aun −A(αp)∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

−∥Aun −Aαp∥2).
= ∥un − αp∥2 − enγn∥(Dn − I)Aun∥2

+γn(1− en)(κn − 1)(1 + bnκn)∥Aun −A(αp)∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

≤ ∥un − αp∥2 − enγn∥(Dn − I)Aun∥2

+γn(1− en)(κn − 1)(1 + bnκn)∥A∥2∥un − αp∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

= (1 + γn(1− en)(κn − 1)(1 + bnκn)∥A∥2)∥un − αp∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

−enγn∥(Dn − I)Aun∥2

≤ (1 + (κn − 1)(1 + bnκn))∥un − αp∥2

−(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

−enγn∥(Dn − I)Aun∥2.(3.55)

Setting rn = (κn − 1)(1 + bnκn) and δn = (κn − 1)(1 + βnκn) , then, from (3.52) and
(3.55), we have

∥un+1 − αp∥2 ≤ (1 + rn)(1 + δn)∥un − αp∥2

−(1 + rn)(1− en)[bn + en − 1]∥Aun − hn(Aun)∥2

−(1 + rn)(1− en)bn[1− bn(1 + κn)− b2nL
2]∥Aun − SnAun∥2

−(1 + rn)enγn∥(Dn − I)Aun∥2

−anβn[1− βn(κn + 1)− β2
nL

2]∥xn − Tnxn∥2

−an(βn − an)∥xn −Gnxn∥2.(3.56)
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Consequently, we have that

∥un+1 − αp∥2 ≤ [1 + (δn + rn + rnδn)]∥un − αp∥2.(3.57)

From the assumption that
∞∑

n=1
(κ2

n − 1) < ∞, we have that

∞∑
n=1

(δn + rn + rnδn) =

∞∑
n=1

δn +

∞∑
n=1

rn +

∞∑
n=1

δnrn

<

∞∑
n=1

[(κn − 1)(1 + κn)] +

∞∑
n=1

[(κn − 1)(1 + κn)]

+

∞∑
n=1

[(κn − 1)(1 + κn)]
2

=

∞∑
n=1

(κ2
n − 1) +

∞∑
n=1

(κ2
n − 1) +

∞∑
n=1

(κ2
n − 1)2

< ∞.

Hence, applying Lemma (2.3) on (3.57), we have that {∥un − αp∥} converges. Thus, {un},
{xn} and {∥un − αp∥} are bounded.
By linearity of A, {∥Aun − A(αp)∥} = {∥A(un − αp)∥} is also convergent. Thus, (3.56)
yields that

lim
n→∞

∥Aun − SnAun∥ = lim
n→∞

∥(Dn − I)Aun∥

= lim
n→∞

∥xn − Tnxn∥

= lim
n→∞

∥xn −Gnxn∥

= lim
n→∞

∥Aun − hn(Aun)∥ = 0.(3.58)

From the condition on γn, we have that

ϵ < γn <
(1− en)||(Dn − I)Aun||2

||A∗(Dn − I)Aun||2
.

This implies that γn||A∗(Dn − I)Aun||2 < (1− en)||(Dn − I)Aun||2 which in turn implies
that

γn||A∗(Dn − I)Aun||2 < (1− en)||(Dn − I)Aun||2 → 0.

Thus,

lim
n→∞

||A∗(Dn − I)Aun|| = 0.(3.59)

Again, from (3.50) and (3.59), we have that

∥xn − un∥ = ∥γnA∗[enI + (1− en)S
n[(1− bn)I + bnS

n]− I]Aun∥
= γn∥A∗[(Dn − I)Aun]∥
→ 0.

Thus,

lim
n→∞

∥xn − un∥ = 0.(3.60)

This, in turn, implies that

lim
n→∞

∥xn∥ = lim
n→∞

∥un∥ and lim
n→∞

∥xn − αp∥ = lim
n→∞

∥un − αp∥.(3.61)
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Hence,

∥un − Tnun∥ = ∥un − xn + xn − Tnxn + Tnxn − Tnun∥
≤ ∥un − xn∥+ ∥xn − Tnxn∥+ ∥Tnxn − Tnun∥
≤ ∥un − xn∥+ ∥xn − Tnxn∥+ L∥xn − un∥
= (1 + L)∥un − xn∥+ ∥xn − Tnxn∥
→ 0.

This means that

lim
n→∞

∥un − Tnun∥ = 0.(3.62)

Next, we show that

lim
n→∞

∥un+1 − un∥ = lim
n→∞

∥xn+1 − xn∥ = 0.

From (3.50), (3.58) and (3.60)

∥un+1 − un∥ = ∥(1− an)xn + anT
n[(1− βn)xn + βnT

nxn]− un∥
= ∥(1− an)xn + anGnxn − un∥
= ∥xn − un + an(Gnxn − xn)∥
≤ ∥xn − un∥+ an∥Gnxn − xn∥
→ 0.

Hence,

lim
n→∞

∥un+1 − un∥ = 0.(3.63)

Similarly, from (3.50), (3.59) and (3.63) we have that if yn = ∥xn+1 − xn∥, then

yn = ∥xn+1 − xn∥
= ∥[un+1 + γn+1A

∗[Dn+1(Aun+1)−Aun+1]∥]− [un + γnA
∗[Dn(Aun)−Aun]∥

= ∥(un+1 − un) + γn+1A
∗[Dn+1(Aun+1)−Aun+1] + (−γnA

∗[Dn(Aun)−Aun]∥)
≤ ∥un+1 − un∥+ ∥γn+1A

∗[Dn+1(Aun+1)−Aun+1]∥+ ∥γnA∗[Dn(Aun)−Aun]∥)
→ 0.

Thus,

lim
n→∞

∥xn+1 − xn∥ = 0.(3.64)

Consequently,

∥un − Tun∥ ≤ ∥un − un+1∥+ ∥un+1 − Tn+1un+1∥+ ∥Tn+1un+1 − Tn+1un∥
+∥Tn+1un − Tun∥

≤ ∥un − un+1∥+ ∥un+1 − Tn+1un+1∥+ L∥un+1 − un∥
+L∥Tnun − un∥ → 0 as n → ∞.

While,

∥Aun − S(Aun)∥ ≤ ∥Aun −Aun+1∥+ ∥Aun+1 − Sn+1Aun+1∥
+∥Sn+1Aun+1 − Sn+1Aun∥+ ∥Sn+1Aun − S(Aun)∥

≤ ∥Aun −Aun+1∥+ ∥Aun+1 − Sn+1Aun+1∥
+L∥Aun+1 −Aun∥+ L∥SnAun −Aun∥

→ 0 as n → ∞.
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Hence,

lim
n→∞

∥un − Tun∥ = lim
n→∞

∥Aun − S(Aun)∥ = 0.(3.65)

Consequently, for any subsequence {unj
} ⊆ {un}, we have that

lim
j→∞

∥unj − Tunj∥ = lim
n→∞

∥Aunj − S(Aunj )∥ = 0.(3.66)

Finally, we prove that un ⇀ u∗, xn ⇀ u∗, and u∗ is a solution of problem (SFP ). To this
end, we note from boundedness of {un} that there exists a subsequence {unj

} ⊆ {un}
such that unj ⇀ u∗ ∈ H1.
Since lim

n→∞
||unj − Tunj || = 0, we obtain from demiclosedness of I − T at zero that u∗ ∈

F (T )
From the fact that A is a bounded linear operator and un ⇀ u∗, we have that Aun ⇀
Au∗ ∈ H2. Thus, we can deduce from (3.66) and demiclosedness of I − S at zero that
Au∗ ∈ F (S). Therefore, u∗ ∈ Γ. Since every Hilbert space satisfies the Opial property and
{un} has a subsequence {unj} which converges weakly to a point u∗ ∈ Γ, it follows from
a standard argument that {un} converges weakly to un ⇀ u∗ ∈ Γ. □

Theorem 3.2. Suppose that the assumptions of theorem (3.1) are met. Assume, in addition, that
the mappings S and T are also semicompact. Then, for any initial point u0 the iterative sequence
{(un}n≥1 derived from (3.50) converges strongly to a solution of problem (1.1).

Proof. Since S, T are semicompact, it follows from boundedness of {(un}n≥1 and (3.65)
that there exists subsequence {unj

} ⊆ {un} such that unj
→ p∗ ∈ F (T ). Since un ⇀ u∗

while the limits lim
n→∞

||un − αp|| exists for all αp ∈ Γ, then u∗ = p∗ and it follows from
(3.65) that un → p∗. This completes the proof of theorem (3.2). □

4. NUMERICAL EXAMPLES

In this section, numerical illustration of the convergence of the iterative scheme (3.50)
is represented. The setting for the numerical example is that of a real Hilbert space. Using
the example, we show , by use of a table of numerical values, the convergence results
discussed in this paper. All codes are written in MATLAB.

Example 4.5. Let H2 = R2. Let the mapping S : H2 → H2 be defined by

(4.67) S(X) = QX,

where, (
0 −1 +

√
2

−1−
√
2 0

)
and X =

(
x1

x2

)
For arbitrary x̄, ȳ ∈ R2 with x̄ = (x1, x2) and ȳ = (y1, y2) we have that

∥Sx̄− Sȳ∥2 =

∥∥∥∥( 0 −1 +
√
2

−1−
√
2 0

)(
x1

x2

)
−
(

0 −1 +
√
2

−1−
√
2 0

)(
y1
y2

)∥∥∥∥2
= ((−1 +

√
2)(x2 − y2))

2 + ((−1−
√
2)(x1 − y1))

2

= (3− 2
√
2)(x2 − y2)

2 + (3 + 2
√
2)(x1 − y1)

2

≤ (3 + 2
√
2)(x2 − y2)

2 + (3 + 2
√
2)(x1 − y1)

2

= (3 + 2
√
2)[(x2 − y2)

2 + (x1 − y1)
2]

= (3 + 2
√
2)∥x̄− ȳ∥2.
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Thus,

∥Sx̄− Sȳ∥ ≤
√

3 + 2
√
2∥x̄− ȳ∥.

Similarly,

∥S2x̄− S2ȳ∥ = ∥ − x̄− (−ȳ)∥
= ∥x̄− ȳ∥.

Furthermore,

∥Sx̄− Sȳ∥2 =

∥∥∥∥( 0 −1 +
√
2

−1−
√
2 0

)(
−x1

−x2

)
−
(

0 −1 +
√
2

−1−
√
2 0

)(
−y1
−y2

)∥∥∥∥2
= ((−1 +

√
2)(y2 − x2))

2 + ((−1−
√
2)(y1 − x1))

2

= (3− 2
√
2)(y2 − x2)

2 + (3 + 2
√
2)(y1 − x1)

2

≤ (3 + 2
√
2)(y2 − x2)

2 + (3 + 2
√
2)(y1 − x1)

2

= (3 + 2
√
2)[(x2 − y2)

2 + (x1 − y1)
2]

= (3 + 2
√
2)∥x̄− ȳ∥2.

Thus,

∥S3x̄− S3ȳ∥ ≤
√
3 + 2

√
2∥x̄− ȳ∥.

While,

∥S4x̄− S4ȳ∥ = ∥x̄− ȳ∥
= ∥x̄− ȳ∥.

This implies that

∥Snx̄− Snȳ∥ ≤
√
3 + 2

√
2∥x̄− ȳ∥ ∀n ∈ N and ∀x̄, ȳ ∈ R2.

Thus, S is uniformly Lipschitzian with Lipschitz constant L =
√
3 + 2

√
2. Next, we show

that S is asymptotically α−hemicontractive for any α ≥ 1. Clearly, F (S) = {(0, 0)} and
for every x̄ = (x, y) ∈ R2 with κn = {1 + 1

n2 } and p ∈ F (S), we have that

⟨x̄− Sx̄, x̄− αp⟩ = ⟨(x, y)− ((−1 +
√
2)y, (−1−

√
2)x), (x, y)− α(0, 0)⟩

= ⟨(x− (−1 +
√
2)y, y − (−1−

√
2)x), (x, y)⟩

= x(x− (−1 +
√
2)y) + y(y − (−1−

√
2)x)

= x2 − (−1 +
√
2)xy + y2 − (−1−

√
2)xy

= x2 + 2xy + y2

= (x+ y)2

≥ 0

≥ −κn − 1

2
∥x̄− αp∥2.
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Similarly,

⟨x̄− S2x̄, x̄− αp⟩ = ⟨(x, y)− (−x,−y), (x, y)− α(0, 0)⟩
= ⟨(2x, 2y), (x, y)⟩
= 2x2 + 2y2

= 2(x2 + y2)

≥ 0

≥ −κn − 1

2
∥x̄− αp∥2.

It also follows that,

⟨x̄− S3x̄, x̄− αp⟩ = ⟨(x, y)− (−(−1 +
√
2)y,−(−1−

√
2)x), (x, y)− α(0, 0)⟩

= ⟨(x+ (−1 +
√
2)y, y + (−1−

√
2)x), (x, y)⟩

= x(x+ (−1 +
√
2)y) + y(y + (−1−

√
2)x)

= x2 + (−1 +
√
2)xy + y2 + (−1−

√
2)xy

= x2 − 2xy + y2

= (x− y)2

≥ 0

≥ −κn − 1

2
∥x̄− αp∥2.

While,

⟨x̄− S4x̄, x̄− αp⟩ = ⟨(x, y)− (x, y), (x, y)− α(0, 0)⟩
= ⟨(0, 0), (x, y)⟩
= 0

≥ −κn − 1

2
∥x̄− αp∥2.

Obviously, values of Snx̄ is cyclic. Thus, S is asymptotically α-hemicontractive with any

α ≥ 1 and κn = {1 + 1
n2 } which satisfies the requirement

∞∑
n=1

(κ2
n − 1) < ∞.

Next, let us consider

Example 4.6. Let H1 = R2. Let the mapping T : H1 → H1 be defined by

T (x, y) = (2− x, 2− y), ∀(x, y) ∈ R2.(4.68)

For arbitrary x̄, ȳ ∈ R2 with x̄ = (x1, x2) and ȳ = (y1, y2) we have that

∥T x̄− T ȳ∥ = ∥(2− x1, 2− x2)− (2− y1, 2− y2)∥
= ∥(y1 − x1, y2 − x2)∥
= ∥x̄− ȳ∥.

Observe that,

∥T 2x̄− T 2ȳ∥ = ∥(x1, x2)− (y1, y2)∥
= ∥(x1 − y1, x2 − y2)∥
= ∥x̄− ȳ∥.

This implies that

∥Tnx̄− Tnȳ∥ ≤ ∥x̄− ȳ∥ ∀n ∈ N and ∀x̄, ȳ ∈ R2.
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Thus, T is uniformly Lipschitzian with Lipschitz constant L = 1. Next, we show that T
is asymptotically α−hemicontractive for α = 1. Clearly, F (T ) = {(1, 1)} and for every
x̄ = (x, y) ∈ R2 with κn = {1 + 1

n2 } and p ∈ F (T ), we have that

⟨x̄− T x̄, x̄− αp⟩ = ⟨(x, y)− (2− x, 2− y), (x, y)− α(1, 1)⟩
= ⟨(2x− 2, 2y − 2), (x− 1, y − 1)⟩
= ⟨2(x− 1, y − 1), (x− 1, y − 1)⟩
= 2⟨(x− 1, y − 1), (x− 1, y − 1)⟩
≥ 0

≥ −κn − 1

2
∥x̄− αp∥2.

Similarly,

⟨x̄− T 2x̄, x̄− αp⟩ = ⟨(x, y)− (x, y), (x, y)− α(1, 1)⟩
= ⟨0, (x− 1, y − 1)⟩
= 0

≥ −κn − 1

2
∥x̄− αp∥2.

Obviously, values of Tnx̄ is cyclic. Thus, T is asymptotically α-hemicontractive with α = 1

and κn = {1 + 1
n2 } which satisfies the requirement

∞∑
n=1

(κ2
n − 1) < ∞.

We have L = max{
√

3 + 2
√
2, 1} =

√
3 + 2

√
2 and

1√
(k+1)2

4 + L2 + (k+1)
2

=
1√

(2+1)2

4 + (
√
3 + 2

√
2)2 + (2+1)

2

=
1

1.5 +
√
5.25 + 2

√
2
.

Thus, we consider an = βn = en = 1
1.5+

√
9
− 1

n2(1.5+
√
9)

and bn = 1− en.
Next, let us consider a bounded linear operator, A : H1 → H2 defined by A(x, y) = (x −
y,−x+y) the adjoint of which is given by A∗ : H1 → H2 defined by A(x, y) = (x+y, x+y).
Using initial point, u0 = (20, 20), ϵ = 0.00001 and S as defined in (4.67) together with the
corresponding Dn(Aun) = enAun + (1− en)S

n[(1− bn)Aun + bnS
n(Aun)] and step size,

γn =

{
0.00001 + (1−en)||(Dn−I)Aun||2

1+||A∗(Dn−I)Aun||2 if un /∈ Γ

0.00001, otherwise.

By using stopping criterion of ∥un − p∥ ≤ 1e− 7 u0 = (20, 20) we have from the table that
(3.50) converges to a point in Γ = {(1, 1)} the solution of the SCFFP, irrespective of the
starting point. We illustrate with .
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s/n un ∥un − p∥ s/n un ∥un − p∥
1 ( 25.42438 ,25.42438) 34.54129 150 ( 1.000021, 1.000021) 0.00003024975
2 (25.42438, 25.42438) 34.54129 151 ( 1.000018, 1.000018) 0.00002502184
3 ( 22.14518, 22.14518) 29.90380 152 ( 1.000018, 1.000018) 0.00002502184
4 ( 22.14518, 22.14518) 29.90380 153 ( 1.000015, 1.000015) 0.00002069743
5 (18.77662, 18.77662) 25.13994 154 ( 1.000015, 1.000015) 0.00002069743
6 (18.77662, 18.77662) 25.13994 155 ( 1.000012, 1.000012) 0.00001712039
7 (15.82598, 15.82598) 20.96710 156 (1.000012, 1.000012) 0.00001712039
8 (15.82598, 15.82598) 20.96710 157 ( 1.000010, 1.000010) 0.00001416154
9 (13.32476, 13.32476) 17.42984 158 ( 1.000010, 1.000010) 0.00001416154

10 (13.32476,13.32476) 17.42984 159 ( 1.000008, 1.000008) 0.00001171405
...

...
...

...
...

...
95 ( 1.003589 ,1.003589) 0.005075390 201 ( 1.000000, 1.000000) 0.0000002178744
96 ( 1.003589, 1.003589) 0.005075390 202 ( 1.000000, 1.000000) 0.0000002178744
97 ( 1.002969, 1.002969) 0.004198342 203 ( 1.000000, 1.000000) 0.0000001802189
98 ( 1.002969, 1.002969) 0.004198342 204 ( 1.000000, 1.000000) 0.0000001802189
99 ( 1.002456, 1.002456) 0.003472846 205 ( 1.000000, 1.000000) 0.0000001490714

100 ( 1.002456, 1.002456) 0.003472846 206 ( 1.000000, 1.000000) 0.0000001490714
101 ( 1.002031, 1.002031) 0.002872714 207 ( 1.000000, 1.000000) 0.0000001233071
102 ( 1.002031, 1.002031) 0.002872714 208 ( 1.000000, 1.000000) 0.0000001233071
103 ( 1.001680, 1.001680) 0.002376286 209 ( 1.000000, 1.000000) 0.0000001019957
104 ( 1.001680, 1.001680) 0.002376286 210 ( 1.000000, 1.000000) 0.0000001019957

...
...

...
...

...
...

In the example given above the stopping criteria is ∥un − p∥ ≤ 10−7. This implies that
the error of approximating the fixed point of the given maps is negligible as seen in the
table. From the table , it is clear that for n ≥ 210, terms of the sequence get close enough
(as close as a difference of 10=7 )to (1,1) which is a fixed point of T with its image under
the bounded linear operator A(1, 1) = (0, 0) which, in turn, is a fixed point of the map S.
Thus, the sequence generated by algorithm (3.50) converges, indeed, to a solution of (1.1).
A lower stopping criterion will make no much difference while a higher stopping criteria
will truncate the computation too early which might lead to higher computational error.

5. CONCLUSIONS

We have introduced an interesting class of asymptotically α−hemicontractive map-
pings and exhibited some of its important relationship with existing related families of
mappings. We further established certain interesting properties of the fixed-point set
of the new class of mappings and proposed and investigated a new iterative algorithm
for solving split common fixed point problem associated with uniformly L-Lipschitzian
asymptotically α−hemicontractive mappings. In particular, weak and strong conver-
gence theorems for solving split common fixed point problem associated with uniformly
L-Lipschitzian asymptotically α−hemicontractive mappings were proved without prior
knowledge of the norm of the transfer operator in Hilbert spaces. Our results extend and
improve the results of Censor and Segal [13], Moudafi [23, 24], Chima and Osilike [16],
Fan et al [19] and host of other related results in literature. It will be interesting to extend
our results to spaces more general than Hilbert spaces. Furthermore, in our results, it is
certainly of interest to relax the uniformly Lipschitzian property requirement on our op-
erators.
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