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Some remarks on expansive mappings in metric spaces

OVIDIU POPESCU and CRISTINA MARIA PĂCURAR

ABSTRACT. The aim of this paper is to generalize the results on expansive mappings of Yeşilkaya and Aydin
from Fixed Point Results of Expansive Mappings in Metric Spaces [see Yeşilkaya, S. S.; Aydin, C. Fixed Point Results
of Expansive Mappings in Metric Spaces. Mathematics 8 (2020), 1800]. In the present paper we show that the
conditions imposed on the function θ can be relaxed. Thus, we present more general fixed point results for
q-expansive mappings in metric spaces and prove some fixed point theorems for this class of mappings, via a
different approach. Finally, we present some examples to support the new results.

1. INTRODUCTION AND PRELIMINARIES

In 1984, Wang et. al. [19] started the study of expansive mappings and proved some
fixed point theorems for such mappings, which correspond to some contractive map-
pings in metric spaces. Thereafter, several authors generalised and extended the results
of Wang, see [3], [5], [7], [8], [11], [16], [18]. Recently, Yeşilkaya and Aydin (see [20]) in-
troduced the concept of θ-expansive mappings in ordered metric spaces and extended
the main results for expansive mappings from the current literature. For example, they
obtained a common fixed point theorem of two weekly compatible mappings in metric
spaces.

In 1982, Sessa [17] defined the concept of weak commutativity for two mappings and
proved a common fixed point theorem for such mappings. In 1986, Jungck [10] introduced
the concept of weakly compatible mappings.

Definition 1.1. [17] Let U and V be self mappings of a set M . A point x ∈ M is called a
coincidence point of U and V if and only if Uz = V z. In this case, w = Uz = V z is called
a coincidence of U and V .

Definition 1.2. [10] Two self mappings U and V of a metric space (M,d) are said to be
weakly compatible if and only if at every point z ∈ M which is a coincidence point of U
and V , the mappings commute, that is UV z = V Uz.

Remark 1.1. It is worth noting that the condition UV z = V Uz for weakly compatible
mappings in Definition 1.2 is equivalent to the condition U2z = V 2z. In other words, if u
is the a coincidence point of U and V , then it is also a coincidence point of U2 and V 2.

The following fixed point result for expansive mappings that was proved by Wang in
[19] is essential for the current paper.

Theorem 1.1. [19] Let (M,d) be a complete metric space and U a self mapping of M . If U is
surjective and satisfies

d(Ux,Uz) ≥ qd(x, z),

for all x, z ∈ M , with q > 1, then U has a unique fixed point in M .

Received: 30.03.2023. In revised form: 01.11.2023. Accepted: 12.04.2024
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. metric spaces, q-expansive mappings, fixed point, coincidence point.
Corresponding author: Popescu Ovidiu; ovidiu.popescu@unitbv.ro

717



718 Popescu O. and Păcurar C.

In 2004, Ran and Reurings [15] proved a fixed point theorem in a partially ordered
metric space.

Theorem 1.2. [15] Let (M,≤) be an ordered set and d be a metric on M such that (M,d) is a
complete metric space. Let U : M → M be a nondecreasing mapping, i.e. Ux ≤ Uy, for every
x, y ∈ M with x ≤ y. Suppose that there exists x0 ∈ M with x0 ≤ Ax0 and L ∈ [0, 1) such that

d(Ux,Uy) ≤ Ld(x, y),

for every x, y ∈ M with x ≤ y. If U is continuous, then it has a fixed point in M .

Thereafter, many authors considered the problem of the existence of a fixed point for
contraction type mappings on partially ordered set, see [1], [2], [4], [12], [13]. In 2014,
Jleli and Samet introduced in [9] the class of θ-contractions. They considered Θ, the set of
functions θ : (0,∞) → (1,∞) satisfying the following conditions:

(θ1) θ is non-decreasing;
(θ2) for each sequence {tn} ∈ (0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0+;

(θ3) there exists r ∈ (0, 1) and l ∈ (0,∞] such that

lim
t→0+

θ(t)− 1

tr
= l.

The following lemma, proved by Górnicki in [6] is an important tool in this theory.

Lemma 1.1. [6] Let (M,d) be a metric space and U : M → M a surjective mapping. Then, U
has a right inverse mapping, i.e., there exists a mapping U∗ : M → M such that U ◦ U∗ = IM ,
where IM is the identity mapping on M .

If (M,≤) is an ordered set and d is a metric on M , we say that (M,≤, d) is an ordered
metric space. If for every increasing sequence {xn} ⊆ M with xn → x∗ ∈ M we have
xn ≤ x∗ for all n ∈ N, then we say that M is a regular ordered metric space.

Very recently, Yeşilkaya and Aydin introduced in [20] the notion of θ-expansive map-
ping in ordered metric spaces.

Definition 1.3. [20] Let (M,d) be an ordered metric space. A mapping U : M → M is said
to be θ-expansive if there exists θ ∈ Θ and η > 1 such that

θ(d(Ux,Uz)) ≥ [θ(d(x, z))]η,

for all (x, z) ∈ M0, where

M0 = {(x, z) ∈ M ×M : x ≤ z, d(Ux,Uz) > 0}.

They proved the following theorems:

Theorem 1.3. [20] Let (M,≤, d) be an ordered complete metric space, U : M → M a surjective
θ-expansive mapping and U∗ a right inverse of U such that U∗ is ≤ increasing. Suppose that there
exists x0 ∈ M such that x0 ≤ U∗x0. If U is continuous or M is regular, then U has a fixed point.

Theorem 1.4. [20] Let (M,d) be a complete metric space and U : M → M a continuous surjec-
tive θ-expansive mapping. If there exists η > 1 such that

θ(d(Ux,Uz)) ≥ [θ(min{d(x, z), d(x, Ux), d(z, Uz)})]η,

for all x, z ∈ M , then U has a fixed point.
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We show that in these theorems it is not necessary that θ ∈ Θ. We can prove that the
results are available even if θ has only the property that it is a non-increasing function.
Thus, our results are much more less restrictive and consequently, more general than the
results existing in literature.

In [20], there is provided the following common fixed point theorem for weakly com-
patible mappings (see Theorem 5).

Theorem 1.5. [20] Let (M,d) be a complete metric space. Let U and V be weakly compatible self
mappings of M and V (M) ⊆ U(M). Suppose that θ ∈ Θ and there exists a constant η > 1 such
that

θ(d(Ux,Uz)) ≥ [θ(d(V x, V z))]η,

for all x, z ∈ M . If one of the subspaces U(M) or V (M) is complete, then U and V have a unique
common fixed point in M .

In this paper we give a more general equivalent of Theorem 1.5 and thus, we provide
a new significant common fixed point result for weakly compatible mappings.

An essential tool in the proofs of our results is the following Lemma proved by Popescu
in [14]:

Lemma 1.2. [14] Let (X, d) be a metric space and {xn} be a sequence in X which is not Cauchy
and lim

n→∞
d(xn, xn+1) = 0. Then there exists ε > 0 and two sequences {xnk

} and {xmk
} of {xn}

such that
lim
k→∞

d(xnk+1, xmk+1) = lim
k→∞

d(xnk
, xmk

) = ε+.

2. MAIN RESULTS

First, let us start with the definition of φ-expansive mappings in ordered metric spaces.

Definition 2.4. Let (M, ≤, d) be an ordered metric space. A mapping U : M → M is said
to be φ-expansive if there exist a non-decreasing function φ : (0,∞) → (1,∞) and η > 1
such that

φ(d(Ux,Uz)) ≥ [φ(d(x, z))]η,

for all (x, z) ∈ M0, where

M0 = {(x, z) ∈ M ×M : x ≤ z, d(Ux,Uz) > 0}.

The first result is a generalization of Theorem 1.3.

Theorem 2.6. Let (M, ≤, d) be an ordered complete metric space, U : M → M be a surjective
φ-expansive mapping and U∗ a right inverse of U such that U∗ is ≤ increasing. Suppose that
there exists x0 ∈ M such that x0 ≤ U∗x0. If U is continuous or M is regular, then U has a fixed
point.

Proof. Let x0 ∈ M with x0 ≤ U∗x0. We define the sequence {xn} by xn+1 = U∗xn. Then,
we have

Uxn+1 = UU∗xn = xn,

for all n = 0, 1, 2, . . .
Since x0 ≤ U∗x0 = x1 and U∗ is increasing, we get

U∗x0 ≤ U∗x1,

i.e., x1 ≤ x2. If there exists n ∈ N such that xn = xn+1, then xn+1 is a fixed point of U .
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Now assume that xn ̸= xn+1, for all n ∈ N. Inductively, by xn ≤ xn+1 we obtain
U∗xn ≤ U∗xn+1, i.e., xn+1 ≤ xn+2, so

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ . . .

Let s =
1

η
. Since η > 1, we have s < 1. Since d(Uxn, Uxn+1) = d(xn−1, xn) > 0 and

xn ≤ xn+1 for all n ∈ N, then (xn, xn+1) ∈ M0. So, we have for all n ∈ N
φ(d(xn−1, xn)) = φ(d(Uxn, Uxn+1)) ≥ [φ(d(xn, xn+1))]

η

by where
φ(d(xn, xn+1)) ≤ [φ(d(xn−1, xn))]

s < φ(d(xn−1, xn)).

Since φ is a non-decreasing function, we get

d(xn, xn+1) < d(xn−1, xn)

for all n ∈ N, hence {d(xn, xn+1)}n≥0 is a decreasing sequence of positive numbers. There-
fore, {d(xn, xn+1)}n≥0 converges to some d ≥ 0.

Suppose d > 0. Then, we have

φ(d+) ≤ φ(d(xn, xn+1))

and
φ(d+) ≤ [φ(d(xn−1, xn))]

s,

for all n ∈ N.
Since φ is non-decreasing, letting n tend to ∞, we obtain

1 < φ(d) ≤ φ(d+) ≤ φ(d+)s,

which is a contradiction. Therefore, d = 0.
Now, we suppose that {xn} is not a Cauchy sequence. Then, by Lemma 1.2, there exist

ε > 0 and two subsequences {xn(k)}, {xm(k)} of {xn} with n(k) > m(k) ≥ k such that

d(xn(k), xm(k)) → ε+, d(xn(k)+1, xm(k)+1) → ε+.

Since (xm(k)+1, xn(k)+1) ∈ M0, we have

φ(d(xn(k), xm(k))) = φ(d(Uxn(k)+1, Uxm(k)+1))

≥ [φ(d(xn(k)+1, xm(k)+1))]
η,

for every k ≥ 1.
Letting k → ∞, we obtain

φ(ε+) ≥ φ(ε+)η ≥ φ(ε) > 1,

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Since (M,d) is complete,
we get that there exists x∗ ∈ M such that lim

n→∞
xn = x∗.

Now we shall show that x∗ is a fixed point of U . If U is continuous, then we have

x∗ = lim
n→∞

xn = lim
n→∞

Uxn+1 = U( lim
n→∞

xn+1) = Ux∗,

i.e., x∗ is a fixed point of U . If M is regular, than xn ≤ x∗ for all n ∈ N. If there exists
n0 ∈ N such that xn0 = x∗, than we have

U∗x∗ = U∗xn0
= xn0+1 ≤ x∗

and
x∗ = xn0

≤ xn0+1 = U∗xn0
= U∗x∗.

Hence U∗x∗ = x∗. Otherwise, we have xn ̸= x∗ for every n ∈ N. If U∗x∗ ̸= x∗, we have

φ(d(xn, x
∗)) = φ(d(Uxn+1, UU∗x∗))
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≥ [φ(d(xn+1, U
∗x∗))]η ≥ φ(d(xn+1, U

∗x∗)).

Then, we get
d(xn, x

∗) ≥ d(xn+1, U
∗x∗).

Letting n tend to ∞, we obtain d(x∗, U∗x∗) ≤ 0, which is a contradiction.
Thus, we conclude that d(x∗, U∗x∗) = 0, that is U∗x∗ = x∗ and UU∗x∗ = Ux∗. There-

fore, x∗ = Ux∗. □

Corollary 2.1. Let (M,d) be a complete metric space and U : M → M be a continuous surjective
φ-expansive mapping. If there exists η > 1 such that

φ(d(Ux,Uz)) ≥ [φ(d(x, z))]η

for all x, z ∈ M , then U has a unique fixed point in M .

Proof. By Theorem 2.6 we have that U has a fixed point x∗ ∈ M . Suppose that y∗ ∈ M is
another fixed point of U . Then

φ(d(x∗, y∗)) = φ(d(Ux∗, Uy∗)) ≥ [φ(d(x∗, y∗))]η.

Since φ(d(x∗, y∗)) > 1 and η > 1, this is a contradiction. Thus, U has a unique fixed
point. □

We provide an example to illustrate our results.

Example 2.1. Let Y =

{
1

r + 1
, r ∈ N ∪ {0}

}
∪ {0} endowed with the metric

d

(
1

r
,

1

r + p

)
=

1

r
and d

(
0,

1

r

)
=

1

r
,

for every r, p ∈ N. Let us consider the order relation ≼ on Y defined as

x ≼ z ⇐⇒ x = z or x < z < 1.

where < is the usual order.
Then (Y,≼, d) is an ordered complete metric space.
Let U : Y → Y be defined as

Ux =


1

r
, x =

1

r + 1
, r ∈ N

0, x = 0

1, x = 1

Taking

U∗x =


1

r + 1
, x =

1

r
, r ∈ N

0, x = 0,

clearly U∗ is ≼-increasing.

Let φ(t) = ee
− 1

t for every t > 0 and let 1 < η < e Then, it is true that

ee
− 1

d(Ux,Uz) ≥ eηe
− 1

d(x,z)
,

for every x, z ∈ Y with x ≼ z, since e−r ≥ ηe−(r+1) for every r ∈ N.
Thus, U satisfies the hypothesis of Theorem 2.6 which implies that it has a unique fixed

point in Y .
The mapping U is not an expansive mapping in metric spaces since

lim
r→∞

d(Ax,Az)

d(x, z)
=

r + 1

r
= 1.
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Remark 2.2. Let us note that the function φ provided does not belong to the class Θ as it
does not verify θ3. Thus, our results are more general than those presented in [20].

The following Theorem is a generalization of Theorem 1.4.

Theorem 2.7. Let (M,d) be a complete metric space and U : M → M a continuous surjective
φ-expansive mapping. If there exists η > 1 such that

(2.1) φ(d(Ux,Uz)) ≥ [φ(min{d(x, z), d(x, Ux), d(z, Uz)})]η

for all x, z ∈ M \ {t ∈ M : Ut = t} with Ux ̸= Uz then U has a fixed point.

Proof. Let x0 be an arbitrary point in M . Since U is surjective, there exists x1 ∈ M such
that x0 = Ux1. In general, if xn ∈ M , we can choose xn+1 ∈ M such that xn = Uxn+1, for
all n = 0, 1, 2, . . . . If there exists n ∈ N such that xn = xn+1, then xn is a fixed point of U .
Otherwise, we have xn ̸= xn+1, for all n ∈ N. Then, from equation (2.1), for x = xn and
z = xn+1, we have

φ(d(xn−1, xn)) = φ(d(Uxn, Uxn+1))

≥ [φ(min{d(xn, xn+1), d(xn, Uxn), d(xn+1, Uxn+1)})]η,

where min{d(xn, xn+1), d(xn, Uxn), d(xn+1, Uxn+1)} = min{d(xn, xn+1), d(xn, xn−1)}.
If d(xn−1, xn) ≤ d(xn, xn+1), then we get

φ(d(xn−1, xn)) ≥ [φ(d(xn−1, xn))]
η,

which is a contradiction. Therefore d(xn−1, xn) > d(xn, xn+1), for all n ∈ N. Then, we
obtain

φ(d(xn−1, xn)) ≥ [φ(d(xn, xn+1))]
η.

Since {d(xn, xn+1)}n≥0 is a decreasing sequence of positive numbers we get that there
exists d ≥ 0 such that lim

n→∞
d(xn, xn+1) = d.

Suppose d > 0. Then, letting n tend to ∞ in the above equation we obtain

φ(d+) ≥ [φ(d+)]η,

which is a contradiction. Therefore, d = 0.
Now, we suppose that {xn} is not a Cauchy sequence. Then, by Lemma 1.2, there exist

ε > 0 and two subsequences {xn(k)}, {xm(k)} of {xn} with n(k) > m(k) ≥ k such that

d(xn(k), xm(k)) → ε+, d(xn(k)+1, xm(k)+1) → ε+.

Taking x = xn(k)+1 and z = xm(k)+1 in equation (2.1) we obtain

φ(d(xn(k), xm(k))) = φ(d(Uxn(k)+1, Uxm(k)+1)) ≥
≥ [φ(min{d(xn(k)+1, xm(k)+1), d(xn(k)+1, Uxn(k)+1), d(xm(k)+1, Uxm(k)+1)})]η,

where

min{d(xn(k)+1, xm(k)+1), d(xn(k)+1, Uxn(k)+1), d(xm(k)+1, Uxm(k)+1)} =

= min{d(xn(k)+1, xm(k)+1), d(xn(k)+1, xn(k)), d(xm(k)+1, xm(k))}.

Since d(xn, xn+1) → 0 as n → ∞, for k large enough we have that d(xn(k)+1, xn(k)) < ε
and d(xm(k)+1, xm(k)) < ε, hence

min{d(xn(k)+1, xm(k)+1), d(xn(k)+1, Uxn(k)+1), d(xm(k)+1, Uxm(k)+1)} =

= min{d(xn(k)+1, xm(k)+1)}.
This implies that

φ(d(xn(k), xm(k))) ≥ [φ(d(xn(k)+1, xm(k)+1))]
η,
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so letting k → ∞, we get

φ(ε+) ≥ φ(ε+)η,

which is a contradiction. Therefore, {xn} is a Cauchy sequence and there exists x∗ ∈ M
such that lim

n→∞
xn = x∗.

Since U is continuous, we have

x∗ = lim
n→∞

xn = limUxn+1 = U( lim
n→∞

xn+1) = Ux∗,

hence x∗ is a fixed point of U . □

Theorem 2.8. Let (M,d) be a complete metric space. Let U and V be weakly compatible self
mappings of M and V (M) ⊆ U(M). Suppose that φ is a non-decreasing function φ : (0,∞) →
(1,∞) and there exists a constant η > 1 such that

(2.2) φ(d(Ux,Uz)) ≥ [φ(d(V x, V z))]η

for all x, z ∈ M with V x ̸= V z. If one of the subspaces U(M) or V (M) is complete, then U and
V have a unique common fixed point in M .

Proof. Let x0 be an arbitrary point in M . Since V (M) ⊆ U(M), choose x1 ∈ M such
that y1 = Ux1 = V x0. In general, for xn ∈ M we can choose xn+1 ∈ M such that
yn+1 = Uxn+1 = V xn.

If yn = yn+1, then we have

yn = Uxn = V xn−1 = Uxn+1 = V xn = yn+1.

Since Uxn = V xn, xn is a coincidence of U and V , so the weak compatibility of U and
V ensures that

UV xn = V Uxn = UUxn = V V xn.

Then, we have two possibilities. If V xn ̸= V V xn, then from (2.2) we get

φ(d(Uxn, UV xn)) ≥ [φ(d(V xn, V V xn))]
η,

but since Uxn = V xn and UV xn = V V xn, the above inequality becomes

φ(d(V xn, V V xn)) ≥ [φ(d(V xn, V V xn))]
η,

which is a contradiction.
On the other hand, if V xn = V V xn, then we obtain

V xn = V V xn = UV xn,

and thus V xn is a common fixed point of U and V .

Now, suppose that yn ̸= yn+1, for all n ∈ N. Let s =
1

η
. Since η > 1, we get s < 1. Then,

from (2.2) for x = yn+1, z = yn+2, we obtain

φ(d(yn+1, yn+2)) = φ(d(V xn, V xn+1)) ≤ [φ(d(Uxn, Uxn+1))]
s

= [φ(d(V xn−1, V xn))]
s = [φ(d(yn, yn+1))]

s.

Like in the proof of Theorem 2.6, we obtain that {yn} is a Cauchy sequence. Since
V (M) ⊆ U(M) and V (M) or U(M) is a complete subspace of M , we get that there exists
w ∈ U(M) such that lim

n→∞
d(yn, w) = 0. So, we can find u ∈ M such that Uu = w. We shall

show that V u = w.
Let us suppose that V u ̸= w. Since yn ̸= yn+1 for every n ∈ N, there exists a subse-

quence {xk(n)} such that V xk(n) ̸= V u. Thus, from (2.2) we have

(2.3) [φ(d(V xk(n), V u))]η ≤ φ(d(Uxk(n), Uu))
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Since lim
n→∞

d(yn(k), w) = lim
n→∞

d(Uxk(n), w) = 0 and d(Uu,w) = 0, we have

lim
n→∞

d(Uxk(n), Uu) = 0

so there exists n0 ∈ N such that for every n ≥ n0 we have

d(Uxk(n), Uu) ≤ d(V u,w)

2
so

(2.4) φ(d(Uxk(n), Uu)) ≤ φ

(
d(V u,w)

2

)
.

On the other hand we have lim
n→∞

d(yn(k)+1, w) = lim
n→∞

d(V xk(n), w) = 0, so

lim
n→∞

d(V xk(n), V u) = lim
n→∞

d(w, V u) > 0.

Hence, there exists n1 ∈ N such that for every n ≥ n1 we have d(V xn(k), V u) ≥ d(w, V u)

2
and

(2.5) φ(d(V xn(k), V u)) ≥ φ

(
d(w, V u)

2

)
.

Combining relations (2.3), (2.4) and (2.5), we obtain

[φ(d(V xn(k), V u))]η ≤ d(V xn(k), V u),

which is a contradiction. Thus, V u = w, and w is a coincidence of U and V and thus we
have

V Uu = UV u.

Moreover, V V u = UV u, which means that V u is a coincidence of U and V .
To prove that u is a common fixed point of U and V , let us assume that V u ̸= u. Then,

we can apply (2.2) and we have

φ(d(UV u,Uu)) ≥ [φ(d(V V u, V u))]η,

which is a contradiction since UV u = V V u and Uu = V u.
Thus, we have V u = Uu = u, so u is a common fixed point of U and V .
Let us suppose that u is not the unique common fixed point of U and V . Then, there

exists t ∈ M , t ̸= u such that Ut = V t = t. Then, we have

φ(d(t, u)) = φ(d(Ut, Uu)) ≥ [φ(d(V t, V u))]η = [φ(d(t, u))]η,

which is a contradiction. □

We provide an example to illustrate our results. The example is similar to the one
provided in [20] to illustrate Theorem 1.5. However, the function θ : (0,∞) → (1,∞)
given by θ(t) = et for every t > 0, does not belong to the class Θ (as it does not verify
θ3), but it is indeed a non-decreasing function as is required in the context of the previous
theorem.

Example 2.2. The space Y = [0, 1] endowed with the usual metric d(x, z) = |x − z|, for
every x, z ∈ Y is a complete metric space. Let U : Y → Y , Ux =

x

4
, for every x ∈ Y and

V : Y → Y , V x =
x

12
, for every x ∈ Y . We have V (Y ) ⊆ U(Y ) and U(Y ) is complete.

Let θ : (0,∞) → (1,∞), given by θ(t) = et, for every t > 0, which is a non-decreasing
function. Then, for every x, z ∈ Y , x ̸= z we have

e
1
4 |x− z| ≥ e

η
12 |x− z|,
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for 1 < η < 3. U and V are weekly compatible mappings and 0 is the unique common
fixed point.

REFERENCES

[1] Abbas, M.; Nazir, T.; Radenovic, S. Common fixed points of four maps in partially ordered metric spaces.
Appl. Math. Lett. 24 (2011), 1520–1526.

[2] Agarwal, R. P.; El-Gebeily, M. A.; O’Regan, D. Generalized contractions in partially ordered metric spaces.
Appl. Anal. 87 (2008), 109–116.

[3] Daffer, P. Z.; Kaneko, H. On expansive mappings. Math. Jpn. 37 (1992), 733–735.
[4] Durmaz, G.; Minak, G.; Altun, I. Fixed points of ordered F-contractions. Hacet. J. Math. Stat. 45 (2016), no.

1, 15–21.
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