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Periodic cycles for an extension of generalized 3x+ 1
functions

SUTTHIPONG SINDEE, PARINYA SA NGIAMSUNTHORN and SONGPON SRIWONGSA

ABSTRACT. The Collatz conjecture is an open problem involving the 3x+1 function. The function belongs to
a class of generalized 3x+ 1 functions of relatively prime type. This paper focuses on exploring periodic cycles
for an extension of a generalized 3x + 1 function of relatively prime type. By extending its domain to R, the
result shows that every integer periodic point is isolated in the usual topology on R. Moreover, every positive
integer periodic cycle for the extension is attracting if the generalized 3x+1 function is specified by parameters
under some conditions.

1. INTRODUCTION

The Collatz conjecture was proposed by L. Collatz in 1937. It is also known as the 3x+1
conjecture, the Ulam conjecture, the Twaites hypothesis, or the Syracuse problem [8]. To
explain this conjecture, suppose that x is a positive integer as an initial number. Divide x
by 2 if x is even. Otherwise, multiply x by 3 then add 1. These two arithmetic operations
could be defined as the Collatz function C : N −→ N, given by

C (x) =

{
x
2 if x ≡ 0 (mod 2),

3x+ 1 if x ≡ 1 (mod 2).

The 3x+ 1 function T : N ∪ {0} −→ N ∪ {0} is an alternative function for exploring the
conjecture, defined by

T (x) =


x
2 if x ≡ 0 (mod 2),

3x+1
2 if x ≡ 1 (mod 2).

Let the sequence OrbT (x) :=
{
x, T (x) , T 2 (x) , . . .

}
be an orbit of x iterated by T . In 1976,

R. Terras [14] showed that there is a point in the orbit OrbT (x) that is less than the initial
number x for almost all integers x. We note that the technical term “almost all” is defined
in the sense of natural density. C. J. Everett independently proposed this result in 1977
[6] and several authors improved it later (see more in [1, 7]). Especially, in 2022, T. Tao
[13] showed that for almost every integer x (in the sense of logarithmic density), there is a
point in the orbit OrbC (x) that is less than f (x), where f : N −→ R is a function satisfying
f (x) −→ ∞ as x −→ ∞.

Based on the definition provided by K. R. Matthews and A. M. Watts [8, 11, 10], the
following definition could be used to generalize the 3x+ 1 function:

Definition 1.1 ([10], Definition 1). A function T(d,m⃗,r⃗) : Z −→ Z is called a generalized
3x + 1 function if there are parameters d ∈ N \ {1}, d-tuple of non-zero integers m⃗ =
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(m0, . . . ,md−1), and d-tuple of integers r⃗ = (r0, . . . , rd−1) satisfying rj ≡ jmj (mod d),
such that

T(d,m⃗,r⃗) (x) =
mjx− rj

d
if x ≡ j (mod d).

In addition, it is said to be relatively prime if gcd (mj , d) = 1 for all j ∈ {0, . . . , d− 1}.

Note that the Collatz function and the 3x+1 function are both special cases of general-
ized 3x+1 functions. Specifically, the 3x+1 function is relatively prime, while the Collatz
function is not.

Embedding a problem within a larger class of problems is another strategy for solving
problems. It provides more tools for exploring the problem. In 1996, M. Chamberland [2]
proposed the smooth extension of the 3x+ 1 function T̃1 : R −→ R, defined by

(1.1) T̃1 (x) =
(x
2

)
cos2

(xπ
2

)
+

(
3x+ 1

2

)
sin2

(xπ
2

)
.

The results show that every positive integer periodic cycle for T̃1 is attracting. Moreover,
this function has a negative Schwarzian on R+, which provides strong constraints for
fixed and periodic points by applying Singer’s theorem. In 2003, J. P. Dumont and C. A.
Reiter [4] explored the real dynamics of the alternative function T̃2 : R −→ R, defined by

T̃2 (x) =
3sin

2(πx
2 )x+ sin2

(
πx
2

)
2

.

The results from this extension are similar to the results from M. Chamberland. Moreover,
there is evidence that this extension is a natural extension of the 3x + 1 function, which
follows from the sense of the real dynamics of this extension related to the τ -stopping
time of R. Terras [14].

In the most recent literature published in 2010, the latest paper involving an extension
of generalized 3x+ 1 functions was proposed by M. Pierantoni and V. Curéié in 1996 [8].
The extension found in this reference was defined from R to C and explored by using the
discrete Fourier transform and its inverse. Although extensions of the 3x+1 function were
proposed, there is no extension defined from R to itself for generalized 3x + 1 functions.
Moreover, papers studying in this manner have rarely been proposed since 2010.

This paper aims to demonstrate the process of constructing an extension of generalized
3x + 1 functions. The extension is a function defined from R to itself. Integer periodic
cycles for this extension in the case of relatively prime type will be explored. We will see
that every integer periodic point is isolated in the usual topology on R. Moreover, every
positive integer periodic cycle is attracting if the extension is specified by parameters d ∈
N \ {1}, d-tuple of positive integers m⃗, and d-tuple of non-positive integers r⃗. It shows
that Chamberland’s extension is also a natural extension of the 3x + 1 function in the
same sense.

The structure of the paper is as follows: In Section 2, the extension of generalized 3x+1
functions is established. In Section 3, results involving periodic cycles for a generalized
3x+ 1 function of relatively prime type are proposed. Numerical results are presented in
Section 4 to verify the theoretical results from the previous section. For the last section,
some conclusions are provided.

2. EXTENSION OF GENERALIZED 3x+ 1 FUNCTIONS

In this section, an extension of generalized 3x+1 functions defined from R to itself will
be provided. The extension is established by using squared trigonometric functions. To
accomplish this, we begin with the following definition:
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Definition 2.2. A function I(d,r) : R −→ R is called an indicator function if there are pa-
rameters d ∈ N \ {1} and r ∈ {0, . . . , d− 1}, such that

I(d,r) (x) =
4d−1

d2

d−1∏
j=0
j ̸=r

sin2
(
(x− j)π

d

)
.

Lemma 2.1. Let I(d,r) : R −→ R be an indicator function. Then,
(i) I(d,r) (x) = 1 for all x ∈ Z with x ≡ r (mod d);

(ii) I(d,r) (x) = 0 for all x ∈ Z with x ̸≡ r (mod d).

Proof. Let x ∈ Z with x ≡ r (mod d) and consider the Euclidean division of x by d, that
is x = dq + r for some q ∈ Z and r ∈ {0, . . . , d− 1}. (i) can be proved by applying
sin2 (qπ + θ) = sin2 θ for all θ ∈ R and the formula for the product of sines of multiple
arcs in [12], that is

∏d−1
j=1 sin

(
jπ
d

)
= d

2d−1 to show that I(d,r) (x) = 1 for all x ∈ Z with
x ≡ r (mod d). To prove (ii), let x ∈ Z with x ̸≡ r (mod d). Clearly, there are q ∈ Z
and r ̸= r∗ ∈ {0, . . . , d− 1} such that x ≡ r∗ (mod d) and x = dq + r∗. By applying
sin2 (qπ + θ) = sin2 θ for all θ ∈ R, it follows that I(d,r) (x) = 0 for all x ∈ Z with x ̸≡ r
(mod d). □

Since the squared trigonometric functions are infinitely differentiable on R, it follows
that indicator functions are smooth. Thus, it goes without saying that derivatives of the
indicator functions must exist. Moreover, the first-order derivative of these functions van-
ishes for all integer points, which is claimed in the following lemma:

Lemma 2.2. Let I(d,r) : R −→ R be an indicator function. Then, the first-order derivative of
I(d,r) vanishes for all integer points.

Proof. By Definition 2.2, the first-order derivative of I(d,r) with respect to x is given by

I ′(d,r) (x) =
2 · 4d−1π

d3

d−1∑
ℓ=0
ℓ ̸=r

sin

(
(x− ℓ)π

d

)
cos

(
(x− ℓ)π

d

)

×
d−1∏
j=0

j ̸=r∧j ̸=ℓ

sin2
(
(x− j)π

d

)
.(2.2)

In the case of x ≡ r (mod d), we observe that sin
(

(x−ℓ)π
d

)
̸= 0 for all ℓ ∈ {0, . . . , d− 1} \

{r}. By Lemma 2.1 (i), (2.2) can be written as

I ′(d,r) (x) =
2π

d

d−1∑
ℓ=0
ℓ̸=r

cot

(
(x− ℓ)π

d

)
I(d,r) (x) = −2π

d

d−1∑
ℓ=0
ℓ ̸=r

cot

(
(ℓ− r)π

d

)
.

After shifting the index ℓ and applying the remark from §A7. Sums of cot2p
(
kπ
n

)
in [3],

which is
∑d−1

ℓ=1 cot
(
ℓπ
d

)
= 0. It follows that I ′(d,r) (x) = 0 for all x ≡ r (mod d). Let us

consider the case of x ̸≡ r (mod d), (2.2) can be written as

I ′(d,r) (x) =
2 · 4d−1π

d3

d−1∑
ℓ=0
ℓ ̸=r

cos

(
(x− ℓ)π

d

) d−1∏
j=0

j ̸=r∧j ̸=ℓ

sin

(
(x− j)π

d

) d−1∏
j=0
j ̸=r

sin

(
(x− j)π

d

)
.

It follows that I ′(d,r) (x) = 0 for all x ̸≡ r (mod d). Therefore, I ′(d,r) (x) = 0 for all x ∈ Z. □
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At this point, we have explored the properties of indicator functions. According to (1.1),
Chamberland’s extension can be written in the form of indicator functions as follows:

T̃1 (x) =
(x
2

)
I(2,0) (x) +

(
3x+ 1

2

)
I(2,1) (x) .

By the similar procedure, we can extend the domain of any generalized 3x + 1 function
T(d,m⃗,r⃗) from Z to R as the function T̃(d,m⃗,r⃗) : R −→ R, defined by

(2.3) T̃(d,m⃗,r⃗) (x) =

d−1∑
j=0

(
mjx− rj

d

)
I(d,j) (x) .

Theorem 2.1. Let T(d,m⃗,r⃗) : Z −→ Z be a generalized 3x + 1 function. Then, the function
T̃(d,m⃗,r⃗) : R −→ R, defined by (2.3) is a smooth extension of T(d,m⃗,r⃗) from Z to R.

Proof. Since the linear function fj : R −→ R, defined by fj (x) =
mjx−rj

d is well-defined
on R for all j ∈ {0, . . . , d− 1}, the product between fj and I(d,j) is also well-defined on R.
It follows that f0I(d,0)+ · · ·+ fd−1I(d,d−1) is well-defined on R. Next, we note that Lemma

2.1 (i) and (ii) imply that T̃(d,m⃗,r⃗)

∣∣∣
Z
= T(d,m⃗,r⃗). For the last part, T̃(d,m⃗,r⃗) is smooth since fj

and I(d,j) are infinitely differentiable on R for all j ∈ {0, . . . , d− 1}. □

Before moving to the next section, we consider in the case of parameters d = 2, m⃗ =
(1, 3), and r⃗ = (0,−1). These parameters correspond to the 3x + 1 function. By Theorem
2.1, T̃(d,m⃗,r⃗) is an extension of the 3x + 1 function. Moreover, the extension T̃(d,m⃗,r⃗) is
exactly the same as Chamberland’s extension T̃1.

3. MAIN RESULTS

In this section, we illustrate some results involving integer periodic cycles for the exten-
sion of generalized 3x+ 1 functions in the case of relatively prime type, which is claimed
by Theorem 2.1. The first result shows that every integer periodic K-point is isolated in
the usual topology on R. This evidence demonstrates that each integer periodic point of
the extension might be characterized by the stability of fixed or periodic points. By show-
ing that all positive integer periodic cycles are attracting, it follows that Chamberland’s
extension is also a natural extension of the 3x+ 1 function. Indeed, the extensions T̃1 and
T̃2 are natural extensions of the 3x+ 1 function in the sense of the real dynamics of these
extensions related to the τ -stopping time of R. Terras [14].

Again, let the sequence Orbf (x) :=
{
x, f (x) , f2 (x) , . . .

}
be an orbit of x iterated by

any function f . An orbit Ω is said to be a periodic cycle (or periodic K-cycle) for f if there is a
positive integer K such that fK (ω) = ω for all ω ∈ Ω. Every point in Ω is called a periodic
point (or periodic K-point). In the case of K = 1, the single point in Ω is called a fixed point
of f . We remark that this notation allows us to interpret all periodic 2-cycles and periodic
3-cycles to be periodic 6-cycles.

Theorem 3.2. Let T̃(d,m⃗,r⃗) be the extension of the generalized 3x+ 1 function of relatively prime
type T(d,m⃗,r⃗) defined by (2.3) and PK be a union of periodic K-cycles for T̃(d,m⃗,r⃗). Then, every
integer point in PK is isolated in the usual topology on R.

Proof. It is easy to see that for every ω ∈ PK , we have T̃K
(d,m⃗,r⃗) (ω) = ω. Suppose that

there is an integer point ω∗ ∈ PK such that ω∗ is not isolated. Without loss of generality,
there is a sequence in PK , denoted by {ωj}j∈N such that ωj −→ ω∗ as j −→ ∞ together
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with ωj+1 ̸= ωj and ωj ̸= ω∗ for all j ∈ N. Let f = T̃K
(d,m⃗,r⃗), we have f (ω∗) = ω∗ and

f (ωj) = ωj for all j ∈ N. Note that for every j ∈ N, we have

f (Mj)− f (mj)

Mj −mj
= 1,

where mj = min {ωj , ωj+1} and Mj = max {ωj , ωj+1}. Since f is differentiable on R, there
is ξj ∈ (mj ,Mj) such that f ′ (ξj) = 1 for all j ∈ N by Mean Value Theorem. Thus, we
obtain f ′ (ω∗) = 1. Since T(d,m⃗,r⃗) is a generalized 3x+ 1 function of relatively prime type,
gcd (mj , d) = 1 for all j ∈ {0, . . . , d− 1}. The first-order derivative of T̃(d,m⃗,r⃗) with respect
to x is given by

(3.4) T̃ ′
(d,m⃗,r⃗) (x) =

d−1∑
j=0

[(mj

d

)
I(d,j) (x) +

(
mjx− rj

d

)
I ′(d,j) (x)

]
.

Let ω0 := ω∗ be an integer point in PK . If K ̸= 1, there are ω1, . . . , ωK−1 ∈ PK such
that {ω0, . . . , ωK−1} is an integer periodic K-cycle for T̃(d,m⃗,r⃗). By applying Chain Rule, it
follows that

f ′ (ω∗) = T̃ ′
(d,m⃗,r⃗) (ω0) · · · T̃ ′

(d,m⃗,r⃗) (ωK−1) .

By Lemma 2.1 (i) and (ii) together with Lemma 2.2, we observe that

f ′ (ω∗) =
m̂0 · · · m̂K−1

dK
= 1

for some m̂0, . . . , m̂K−1 ∈ {m0, . . . ,md−1}. Thus, we have d | m̂0 · · · m̂K−1. So, there is
j ∈ {0, . . . , d− 1} such that d |mj . This is a contradiction, which completes the proof. □

According to Chamberland’s extension, it can be seen that there is no interval of peri-
odic points of T̃1 on R+. It follows from Singer’s theorem with the negative Schwarzian of
T̃1 on R+. This is similar to the result from Theorem 3.2 when focusing only on all integer
periodic points with parameters d = 2, m⃗ = (1, 3), and r⃗ = (0,−1). While these two re-
sults are similar, the result from Theorem 3.2 does not require the Schwarzian derivative.

Theorem 3.2 also implies that for every integer point ω in the union of periodic K-
cycles PK , there is a sufficiently small δ > 0 such that ((ω − δ, ω + δ) ∩ PK) \ {ω} = ∅.
This also means that every point in the neighborhood cannot perform a periodic K-cycle,
excluding ω. It is possible that the orbit of x ∈ (ω − δ, ω + δ) \ {ω} iterated by T̃K

(d,m⃗,r⃗)

might converge to ω, diverge, or neither. This involves the stability of fixed and periodic
points. The following definition can be used to determine fixed and periodic points.

Definition 3.3 ([9]). A fixed point ω of a smooth function f : R −→ R is said to be attracting
if there is a sufficiently small δ > 0 such that for every x ∈ (ω − δ, ω + δ), fk (x) −→ ω as
k −→ ∞. On the other hand, it is said to be repelling if there is a sufficiently small δ > 0
such that for every x ∈ (ω − δ, ω + δ)\{ω}, there is k ∈ N such that fk (x) /∈ (ω − δ, ω + δ).
In general, a periodic K-cycle Ω for f is said to be attracting (repelling) if for every ω ∈ Ω,
( Ω is an attracting (a repelling)) fixed point of fK .

Proposition 3.1 ([9]). Let Ω = {ω0, . . . , ωK−1} be a periodic K-cycle for a smooth function
f : R −→ R. Then, Ω is attracting if |f ′ (ω0) · · · f ′ (ωK−1)| < 1. On the other hand, Ω is
repelling if |f ′ (ω0) · · · f ′ (ωK−1)| > 1.

As mentioned, M. Chamberland showed that every positive integer periodic cycle for
the extension T̃1 is attracting [2]. We observe that the stability of their periodic cycles
could be proved by using the parameter r⃗ = (0,−1). For generalized 3x+1 functions, this
observation can be stated as the following lemma:
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Lemma 3.3. Let T(d,m⃗,r⃗) be a generalized 3x + 1 function of relatively prime type and Ω be an
integer periodic cycle for T(d,m⃗,r⃗) without zero. Then, there is ω ∈ Ω, such that ω ≡ j (mod d)
for some j ∈ {0, . . . , d− 1} satisfying rj ̸= 0.

Proof. Let Ω = {ω0, . . . , ωK−1} be an integer periodic K-cycle for T(d,m⃗,r⃗) without zero.
We define the index set J = {j ∈ {0, . . . , d− 1} : rj ̸= 0}. It is easy to see that the case
J = {0, . . . , d− 1} is trivial. Let us consider the case of J ̸= {0, . . . , d− 1}, we have
{0, . . . , d− 1}\J ̸= ∅. Suppose that for every ω ∈ Ω, ω ̸≡ j (mod d) for all j ∈ J . So, there
is jω ∈ {0, . . . , d− 1} \ J such that ω ≡ jω (mod d). Since Ω is an integer periodic K-cycle
for T(d,m⃗,r⃗) without zero, we have

ω0 =
mjω0

· · ·mjωK−1
ω0

dK
=⇒ d |mjω0

· · ·mjωK−1
.

Thus, there is ω∗ ∈ Ω such that d |mjω∗ . This is a contradiction, which completes the
proof. □

Since the generalized 3x + 1 function of relatively prime type T(d,m⃗,r⃗) is considered,
the extension T̃(d,m⃗,r⃗) defined by (2.3) is an extension of T(d,m⃗,r⃗). In the case of T(d,m⃗,r⃗)

specified by parameters d-tuple of positive integers m⃗ and d-tuple of non-positive integers
r⃗, the stability of positive integer periodic cycles for T̃(d,m⃗,r⃗) is shown in the following
theorem:

Theorem 3.3. Let T(d,m⃗,r⃗) ba a generalized 3x + 1 function of relatively prime type specified by
parameters d-tuple of positive integers m⃗ and d-tuple of non-positive integers r⃗. Also, let T̃(d,m⃗,r⃗)

be the extension of T(d,m⃗,r⃗) defined by (2.3). Then, every positive integer periodic cycle for T̃(d,m⃗,r⃗)

is attracting.

Proof. Let Ω be a positive integer periodic K-cycle for T̃(d,m⃗,r⃗). By Lemma 3.3, there is
ω∗ ∈ Ω such that ω∗ ≡ j∗ (mod d) for some j∗ ∈ {0, . . . , d− 1} satisfying rj∗ ̸= 0. Hence,
rj∗ > 0. According to S. Eliahou [5], we have∏

ω∈Ω

ω =
∏
ω∈Ω

T̃(d,m⃗,r⃗) (ω) =⇒
∏
ω∈Ω

∣∣∣∣∣ T̃(d,m⃗,r⃗) (ω)

ω

∣∣∣∣∣ = 1.

We consider

1 =
∏
ω∈Ω

∣∣∣∣∣ T̃(d,m⃗,r⃗) (ω)

ω

∣∣∣∣∣ = (mj∗

d
− rj∗

dω∗

) ∏
ω∈Ω\{ω∗}

d−1∑
j=0

(mj

d
− rj

dω

)
I(d,j) (ω)

 .

Since − rj
dω ≥ 0 for all j ∈ {0, . . . , d− 1} and − rj∗

dω∗ > 0, we obtain

1 >
mj∗

d

∏
ω∈Ω\{ω∗}

d−1∑
j=0

(mj

d

)
I(d,j) (ω)

 =
∏
ω∈Ω

d−1∑
j=0

(mj

d

)
I(d,j) (ω)

 .

Since the first-order derivative of T̃(d,m⃗,r⃗) with respect to x is given by (3.4), we obtain

∏
ω∈Ω

∣∣∣T̃ ′
(d,m⃗,r⃗) (ω)

∣∣∣ = ∏
ω∈Ω

d−1∑
j=0

(mj

d

)
I(d,j) (ω)

 < 1

by Lemma 2.2. Therefore, Ω is attracting. □

Next, let {Xk}∞k=0 be a sequence of functions defined from N ∪ {0} to {0, 1}. For every
k ∈ N ∪ {0}, Xk defined by Xk (x) = 0 if T k (x) is even. Otherwise, Xk (x) = 1.
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Theorem 3.4 ([14], Theorem 1.1). Let x ∈ N ∪ {0}. Also, let

λk =
3X0+···+Xk−1

2k
and ρk =

λk

2

(
X0

λ1
+ · · ·+ Xk−1

λk

)
for all k ∈ N. Then, the integer TK (x) can be written as TK (x) = λK (x)x+ ρK (x).

We observe that every positive integer periodic K-cycle for Chamberland’s extension
relates to the coefficient function λK . This fact is expressed in the following proposition:

Proposition 3.2. Let ω be a positive integer periodic K-point of T̃1. Then,
(
T̃K
1

)′
(ω) = λK (ω).

Moreover, λK (ω) < 1.

Proof. Let ω0 = ω. If K ̸= 1, there are ω1, . . . , ωK−1 ∈ N such that {ω0, . . . , ωK−1} is a
periodic K-cycle for T̃1. By applying Chain Rule, it follows that(

T̃K
1

)′
(ω) = T̃ ′

1 (ω0) · · · T̃ ′
1 (ωK−1) =

K−1∏
j=0

T̃ ′
1 (ωj) .

Since the first-order derivative of T̃(d,m⃗,r⃗) with respect to x is given by (3.4), we apply it
with parameters d = 2, m⃗ = (1, 3), and r⃗ = (0,−1) to obtain(

T̃K
1

)′
(ω) =

K−1∏
j=0

[
1

2
sin2

(
(ωj − 1)π

2

)
+

3

2
sin2

(ωjπ

2

)]
=

3X0(ω0)+···+X0(ωK−1)

2K

=
3X0(ω0)+···+XK−1(ω0)

2K
= λK (ω) .

To see that λK (ω) < 1, it follows from the proof of Theorem 3.3. □

As discussed in [4], the stopping time of a real number x for T̃1 is defined as the small-
est positive integer k such that T̃ k

1 (x) < x. Otherwise, the stopping time is ∞. Likewise,
the τ -stopping time of a real number x for T̃1 is defined as the smallest positive integer
k such that λk (x) < 1. Otherwise, the τ -stopping time is ∞. In fact, the τ -stopping time
is less than or equal to the stopping time [14]. Since Proposition 3.2 shows a relation-
ship between Chamberland’s extension and the τ -stopping time of R. Terras based on any
positive integer periodic cycle of integers, it also shows that Chamberland’s extension is a
natural extension of the 3x+1 function, which follows from the sense of the real dynamics
of this extension related to the τ -stopping time.

4. SOME NUMERICAL RESULTS

Let us consider Chamberland’s extension T̃1, which is an extension of the 3x+ 1 func-
tion. After applying Theorem 3.2 with the parameters d = 2, m⃗ = (1, 3), and r⃗ = (0,−1),
we see that every integer periodic K-point is isolated in the usual topology on R. This
result is similar to the result from M. Chamberland, which is obtained from Singer’s the-
orem by showing that T̃1 has a negative Schwarzian on R+ [2]. Since {1, 2} is a periodic
2-cycle for T̃1, we can choose the initial numbers x = 1.02 and x = 1.98 for testing the
stability. The stability result around the point x = 2 is illustrated in Figures 1, which
corresponds to Theorem 3.4.

Next, we consider the generalized 3x + 1 function of relatively prime type T(d,m⃗,r⃗)

specified by parameters d = 3, m⃗ = (2, 4, 4), and r⃗ = (0,−2,−4). Also, let T̃(d,m⃗,r⃗) be the
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x

T̃
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(x
)

T̃ 2
1 (x)

x

FIGURE 1. Stability testing around the point x = 2 with the initial num-
ber x = 1.98 iterated by T̃ 2

1

extension of T(d,m⃗,r⃗) defined by (2.3). Some integer periodic cycles for T̃(d,m⃗,r⃗) are given
by

{−4} , {−2} , {0} , {4, 6} , {8, 12} , and {−12,−10,−8} .
Since all periodic cycles listed above can be interpreted as a periodic 6-cycle, the union of
the listed periodic cycles is a subset of the union of all periodic 6-cycles, denoted by P6.
Clearly, every point in P6 must be a root of the equation T̃ 6

(d,m⃗,r⃗) (x) − x = 0. Figure 2
illustrates that all listed integer periodic points ω ∈ P6 such that |ω| ≤ 8, marked by red
dots, are isolated points of P6 in the usual topology on R.

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

x

T̃
6 (d
,m⃗

,r⃗
)
(x
)
−
x

FIGURE 2. Every integer periodic point ω ∈ P6 such that |ω| ≤ 8 marked
by red dot is an isolated root of the equation T̃ 6

(d,m⃗,r⃗) (x)− x (in the usual
topology on R), where d = 3, m⃗ = (2, 4, 4), and r⃗ = (0,−2,−4).

For the stability of the positive integer periodic 2-cycle {4, 6}, we can choose the initial
numbers x = 3.965 and x = 5.98 for testing the stability of {4, 6}. The stability result
around the point x = 6 is illustrated in Figures 3, which also corresponds to Theorem 3.4.
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(x
)

T̃ 2
(d,m⃗,r⃗) (x)

x

FIGURE 3. Stability testing around the point x = 6 with the initial num-
ber x = 5.98 iterated by T̃ 2

(d,m⃗,r⃗), where d = 3, m⃗ = (2, 4, 4), and
r⃗ = (0,−2,−4)

5. CONCLUSION

This paper provides an extension of generalized 3x + 1 functions. This extension is a
function defined from R to itself. We see that every integer periodic point is isolated in
the usual topology on R. Also, every positive integer periodic cycle is attracting if the
extension is specified by parameters d ∈ N \ {1}, d-tuple of positive integers m⃗, and d-
tuple of non-positive integers r⃗. It shows that Chamberland’s extension is also a natural
extension of the 3x+ 1 function in the sense of the real dynamics of this extension related
to the τ -stopping time of R. Terras. Finally, some numerical results are presented to verify
the theoretical results.
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