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A Fast Forward-Backward Algorithm Using Linesearch and
Inertial Techniques for Convex Bi-level Optimization
Problems with Applications

SUTHEP SUANTAI AND PITI THONGSRI

ABSTRACT. In this research, we study convex bi-level optimization problems for which the inner level con-
sists of the sum of two proper, convex, and lower semi-continuous functions. We propose and analyze a new
accelerated forward-backward algorithm using linesearch and inertial techniques for solving a solution of con-
vex bi-level optimization. We then establish a strong convergence theorem of the proposed method under some
suitable conditions. As an application, we apply our algorithm to solving data classifications of some non-
communicable diseases. We conduct a comparative analysis with existing algorithms to show the effectiveness
of our algorithm. Our numerical experiments confirm that our proposed algorithm outperforms other methods
in the literature.

1. INTRODUCTION

Bilevel optimization represents a specific category of mathematical optimization prob-
lems wherein one optimization problem is nested within another optimization problem.
The solution to the outer problem is dependent on the solution to the inner problem. The
difficulty of such problem is finding the optimal solution to both the leader and the fol-
lower problem simultaneously.

Let H be a real Hilbert space and let h1, h2 be functions that map from H to R. The
outer level problem is the minimization problem of the following form:

(1.1) min
x∈X∗

g(x),

where g : H → R is a continuously differentiable and strongly convex function with
parameter ρ > 0 such that∇g is Lipschitz continuous with constant Lg while X∗ is the set
of all minimizers of the inner level optimization problem of the following form:

(1.2) min
x∈Rn
{h1(x) + h2(x)}.

For solving Problem (1.2), we normally assume the following assumptions
(a) h1 : H → R is convex and differentiable for which ∇h1 is Lh1−Lipschitz continu-

ous, that is,

‖∇h1(x)−∇h1(y)‖ ≤ Lh1‖x− y‖ for all x, y ∈ Rn;

(b) h2 : H → R is proper convex and lower semi-continuous.
The solution to Problem (1.2) can be described according to Theorem 16.3 of Bauschke

and Combettes [1] as follows:

p̄ ∈ X∗ if and only if 0 ∈ ∂h2(p̄) +∇h1(p̄),
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where ∇h1 is the gradient of h1 and ∂h2 is the subdifferential of h1. On the other hand,
Problem (1.2) is equivalent with the following fixed point problem:

p̄ ∈ X∗ if and only if p̄ = proxαh2(I − α∇h1)(p̄),

where proxαh2(x) = argminy∈H(h2(y)+ 1
2α‖x−y‖

2) and α > 0. The operator proxαh2(I−
α∇h1) is called the forward-backward operator of h1 and h2 with respect to α. We also
know that proxαh2

(I − α∇h1) is a nonexpansive operator when α ∈ (0, 2/Lh1
) and Lh1

is
a Lipschitz constant of ∇h1. From basic principle of optimization, we know that p̄ ∈ X∗
is a minimizer of Problem (1.1) if and only if

〈∇g(p̄), x− p̄〉 ≥ 0 for all x ∈ X∗.(1.3)

Throughout the past decade, many researchers have dedicated their efforts to seeking
optimal solutions for the Problem (1.2). Lions and Mercier [2] introduced a method called
Forward-Backward Splitting (FBS) as a simple algorithm to address the Problem (1.2).
Their algorithm was formulated as follows:

xn+1 = proxαkh2(I − αk∇h1)(xk),(1.4)

where the step-size αk ∈ (0, 2/Lh1
).

The inertial technique was initially pioneered by Polyak [3] with the aim of accelerat-
ing the convergence rate of algorithms. Subsequently, this technique has become widely
utilized for this purpose.

For example, Beck and Teboulle [4] introduced a fast iterative shrinkage-thresholding
algorithm (FISTA) by using this technique for solving Problem (1.2) as described by the
following:

x1 = v0 ∈ C, t1 = 1,

vk = proxαkh2
(I − αk∇h1)(xk), α > 0,

tn+1 = (
√

1 + 4t2k + 1)/2,

θk = tn − 1/tn+1,

xn+1 = vk + θk(vk − vk−1).

Moreover, they illustrated that the rate of convergence of FISTA outperforms the other
methods.

Recently, many researchers, including Puangpee and Suantai [5], Jailoka et al. [6] and
Thongsri et al. [7], have employed the inertial technique into their proposed algorithms in
order to accelerate the convergence behavior of their algorithms for solving Problem (1.2).
They proposed common fixed point algorithms for a countable families of nonexpansive
operators. Furthermore, they applied those algorithms to solve some convex minimiza-
tion problems.

In 2017, Sabach and Shtern [8] introduced a new technique called Sequential Averag-
ing Method (SAM) for solving convex bi-level optimization problems. They adapted an
approach from [9], originally designed for a specific fixed point problem, to suit this con-
text. Subsequently, they developed the Bilevel Gradient Sequential Averaging Method
(BiG-SAM) to address the convex bi-level optimization Problems (1.1) and (1.2). The for-
mulation of BiG-SAM was outlined in Algorithm 1.

Subsequently, they demonstrated that the sequence {xk} generated by BiG-SAM con-
verges to a solution of both Problem (1.1) and (1.2), subject to specific control conditions.
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Algorithm 1 Bilevel Gradient Sequential Averaging Method (BiG-SAM)

(1) Input : {αk} ∈ (0, 1/Lh1
), s ∈ (0, 2/(ρ+ Lg)) and {βk} ⊂ (0, 1].

(2) Initialization : choose x1 ∈ Rn.
(3) General step : (k = 1, 2, ...) :

uk = proxαkh2
(xk − αk∇h1(xk)),

wk = xk − s∇g(xk),

xk+1 = βkwk + (1− βk)uk,

where ∇g is the gradient of g.

In 2019, Shehu et al. [10] applied an inertial technique to improve the convergence
behavior of the BiG-SAM. They presented a new algorithm named the inertial Bilevel
Gradient Sequential Averaging Method (iBiG-SAM), formally defined in Algorithm 2:

Algorithm 2 Inertial Bilevel Gradient Sequential Averaging Method (iBiG-SAM)

(1) Input : a ≥ 3, {αk} ∈ (0, 1/Lh1), and s ∈ (0, 2/(ρ+ Lg)) and {βk} ⊂ (0, 1].
(2) Initialization : choose x0, x1 ∈ Rn.
(3) Step 1 For k = 1, 2, ...,

µk =

{
min{ k

k+a−1 ,
γk

‖xk−xk−1‖}, if xk 6= xk−1,
k

k+a−1 , otherwise.

(4) Step 2 Compute :

wk = xk + µk(xk − xk−1),

uk = proxαkh2
(wk − αk∇h1(wk)),

vk = wk − s∇g(wk),

xk+1 = βkvk + (1− βk)uk,

where ∇g is the gradient of g.

Very recently, Duan and Zhang [11] presented a new algorithm for solving convex bi-
level optimization problems. This algorithm, called the alternated inertial Bilevel Gradi-
ent Sequential Averaging Method (aiBiG-SAM), is based on the proximal gradient algo-
rithm. The algorithm is formally defined in Algorithm 3.
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Algorithm 3 alternated inertial Bilevel Gradient Sequential Averaging Method (aiBiG-
SAM)

(1) Input : α ≥ 3, {αk} ∈ (0, 1/Lh1) and s ∈ (0, 2/(ρ+ Lg)). Set λ > 0.
(2) Initialization : choose x0, x1 ∈ Rn.
(3) Step 1 For (k = 1, 2, ...) :

ωk =

{
xk + θk(xk − xk−1)), if k is odd,
xk, if k is even.

When k is odd, choose θk such that 0 ≤ |θk| ≤ εk where εk is defined by

εk =

{
min{ k

k+α−1 ,
γk

‖xk−xk−1‖}, if xk 6= xk−1,
k

k+α−1 , otherwise.

(4) Step 2 Compute :

yk = proxαkh2(ωk − αk∇h1(ωk)),

zk = ωk − s∇g(ωk),

xk+1 = βkzk + (1− βk)yk.

(5) Step 3 If ‖xk − xk−1‖ < λ, then stop.

They also provided an analysis of the strong convergence behavior exhibited by the
proposed method under some specific conditions.

Note that all the aforementioned methods require ∇h1 to be L-Lipschitz continuous.
It is noted that this condition is a condition that can be challenging to fulfill in a general
context. Therefore, some improvement are still desirable.

In the sequel, we set the standing hypotheses on Problem (1.2) as follows:
(AI) h1 : H → R is a convex and differentiable function and the ∇h1 is uniformly

continuous on H ;
(AII) h2 : H → R is proper convex and lower semi-continuous.

We see that the assumption (AI) is weaker condition than the Lipchitz continuity condi-
tion on ∇h1.

To relax the continuity assumption on ∇h1, Cruz and Nghia [12] introduced a line-
search technique for finding a suitable step-size of the forward-backward operator of h1

and h2. This technique does not require the Lipschitz continuous assumption on ∇h1.
More precisely, they proposed the following algorithm (Algorithm 4) for solving Problem
(1.2). The algorithm was formally outlined in Algorithm 4.
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Algorithm 4

(1) Input x1 ∈ H , σ > 0, δ > 0, and θ ∈ (0, 1).

xk+1 = proxαkh2(xk − αk∇h1(xk)),

where αk := Linesearch(1)(xk, σ, θ, δ) is defined as follows:
(2) Set α = σ.
(3) While

α‖∇h1(FBα(x))−∇h1(x)‖ > δ‖FBα(x)− x‖,
do α = θα.

(4) End
(5) Output α,
where FBα := proxαkh2(I − αk∇h1)

They demonstrated that Linesearch(1) is well defined and stops after a finite number
of steps, as shown in [[12], Lemma 3.1] and [[13], Lemma 3.4(a)]. Moreover, they proved
a weak convergence theorem of the sequence {xk} generated by Algorithm 4 under some
suitable conditions.

Later, Kankam et al. [14] proposed an algorithm with a modification of Linesearch(1)
defined as follows:

Algorithm 5

(1) Input x1 ∈ H , σ > 0, δ > 0, and θ ∈ (0, 1).

wk = proxαkh2
(xk − αk∇h1(xk)),

uk+1 = proxαkh2
(wk − αk∇h1(wk)),

where αk := Linesearch(2)(xk, σ, θ, δ) is define as follows :
(2) Set α = σ.
(3) While

αmax{‖∇h1(FB2
α(x))−∇h1(FBα(x))‖, ‖∇h1(FBα(x))−∇h1(x)‖}

> δ‖(FB2
α(x))− (FBα(x))‖+ ‖(FBα(x))− (x)‖,

do α = θα
(4) End
(5) Output α,
where FB2

α(x) := FBα(FBα(x)).

Recently, Jailoka et al. [15] introduced an algorithm with a new linesearch (Line-
search(3)) by modification of Linesearch(1) and Linesearch(2) as follows:
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Algorithm 6 Linesearch(3)(xk, σ, θ, δ)

(1) Input x ∈ H , σ > 0, δ > 0, and θ ∈ (0, 1).
(2) Set α = σ.
(3) While

α

2
{‖∇h1(FB2

α(x))−∇h1(FBα(x))‖+ ‖∇h1(FBα(x))−∇h1(x)‖}

> δ(‖FB2
α(x)− FBα(x)‖+ ‖FBα(x)− x‖),

do α = θα
(4) End
(5) Output α,
where FB2

α(x) := FBα(FBα(x)).

They also proved a strong convergence theorem of their algorithm under some suitable
conditions.

Motivated by these previous works, we aim to propose a new efficient algorithm for
solving convex bi-level Problems (1.1) and (1.2). Our goal is to establish a strong conver-
gence theorem for the proposed algorithm under some suitable conditions. Furthermore,
we apply our algorithm to solve data classification of some non-communicable diseases.
The paper is organized as follows. Section 2 offers an overview of the notations and im-
portant lemmas that will be used in the subsequent sections. In Section 3, we present
a novel accelerated algorithm by using Linesearch(3) and inertial technique for solving
Problems (1.1) and (1.2) with assumptions (AI) and (AII). Moving ahead, in Section 4,
we apply our algorithm as a machine learning algorithm for solving some data classifica-
tion problems. Furthermore, we illustrate and analyze the convergence behavior of our
method. Finally, the concluding remarks of our paper are in Section 5.

2. PRELIMINARIES

In this section, we provide essential tools that will be utilized in the later sections. The
mathematical symbols utilized in this article are defined as follows. R, R+, R++ are the set
of real numbers, the set of nonnegative real numbers, and the set of positive real numbers,
respectively. Throughout this paper, we represent weak and strong convergence of the
sequence {xk} to x as xk ⇀ x and xk → x, respectively.

Let C be a nonempty closed convex subset of a Hilbert space H . An operator T : C →
H is said to be L-Lipschitz if there exist L > 0 such that

‖Tx− Ty‖ ≤ L ‖x− y‖ for all x, y ∈ C.

If T is Lipschitz continuous with a coefficient L = 1, then T is called a nonexpansive. The
operator T is said to be contraction if L ∈ (0, 1).

The metric projection from H onto C, denoted by PC , is defined as follows. For each
x ∈ H , PCx is the unique element in C such that ‖x− PCx‖ = infz∈C ‖x− z‖. It is known
that

p∗ = PCx⇐⇒ 〈x− p∗, z − p∗〉 ≤ 0, for all z ∈ C.

Note that if g : H → R ∪ {∞} is a proper, lower semi-continuous and convex function,
then the proxg(x) exists and unique for all x ∈ Rn; see [16].

Let g : H → R ∪ {∞} be a proper, lower semi-continuous and convex function. The
subdifferential ∂g of g is defined by

∂g(x) := {z ∈ H : g(x) + 〈z, y − x〉 ≤ g(y), for all y ∈ H}, for all x ∈ H.
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Here, we give certain relationships between the proximity operator and the subdifferen-
tial operator. For α > 0 and x ∈ H , then

proxαg = (Id + α∂g)−1 : H → dom g,(2.5)

x− proxαg(x)

α
∈ ∂g(proxαg(x))(2.6)

We end this part with the following useful lemmas.

Lemma 2.1. ([17, 18]) For any x, y ∈ H and µ ∈ [0, 1], the following statements hold:
(i) ‖µx+ (1− µ)y‖2 = µ‖x‖2 + (1− µ)‖y‖2 − µ(1− µ)‖x− y‖2;

(ii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2 for all x, y ∈ H ;
(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, x+ y〉 for all x, y ∈ H .

Lemma 2.2. ([19]) Let g : H → R∪{∞} be a proper, lower semi-continuous and convex function.
Let {xk} and {zk} be a two sequences in H such that zk ∈ ∂g(xk) for all k ∈ N. If xk ⇀ x and
zk → z, then z ∈ ∂g(x).

Lemma 2.3. [20] Let {ak} be a sequence of nonnegative real numbers and {bk} a sequence of real
numbers. Let {ζk} be asequence of real numbers in (0, 1) such that

∑∞
n=1 ζk =∞. Assume that

ak+1 ≤ (1− ζk)ak + ζkbk, k ∈ N.
If lim supi→∞ bki ≤ 0 for every subsequence {aki} of {ak} satisfying

lim inf
i→∞

(aki+1
− ak) ≥ 0,

then limn→∞ ak = 0.

Proposition 2.1. [8] Suppose g : Rn → R is strongly convex with convexity parameter σ > 0
and continuously differentiable function such that ∇g is Lipschitz continuous with constant Lg .
Then, the mapping I − σ∇g is contraction for all σ ≤ 2

Lh1
+ρ , where I is the identity operator.

That is ‖x− σ∇g(x)− (y − σ∇g(y))‖ ≤
√

1− 2σρLh1

ρ+Lh1
‖x− y‖, for all x, y ∈ Rn.

3. MAIN RESULTS

In this section, by using Linesearch(3), we propose a new accelerated forward-backward
algorithm based on the viscosity approximation method with an inertial technique for
solving the convex bi-level optimization problem. We thoroughly analyze and establish a
strong convergence result of our proposed algorithm.

We shift our attention to Problem (1.2) under the assumptions (AI) and (AII). To sim-
plify notation, we denote FBα := proxαkh2(I − αk∇h1) for α > 0 and let h := h1 + h2.
Denote that, Γ is the set of minimizers of h. Also, we assume that Γ 6= ∅.
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Algorithm 6 Linesearch(3)(xk, σ, θ, δ)

(1) Input x ∈ H , σ > 0, δ > 0, and θ ∈ (0, 1).
(2) Set α = σ.
(3) While

α

2
{‖∇h1(FB2

α(x))−∇h1(FBα(x))‖+ ‖∇h1(FBα(x))−∇h1(x)‖}

> δ(‖FB2
α(x)− FBα(x)‖+ ‖FBα(x)− x‖),

do α = θα
(4) End
(5) Output α.

It is evident that the condition for the while loop in Linesearch(3) is weaker than that
Linesearch(2). Consequently, based on the well-definedness of Linesearch(2), we can con-
clude that Linesearch(3) also stops after finitely many steps, see [[14], Lemma 3.2].

Employing Linesearch(3), we introduce a novel accelerated forward-backward algo-
rithm incorporating the inertial term, formulated as follows.

Algorithm 7

(1) Initialization: Take x1 = y0 ∈ dom h2 arbitrarily, σ > 0, δ ∈ (0, 1/8), t1 = 0 and
θ ∈ (0, 1) . Let S : H → H be a contraction with a coefficient η ∈ (0, 1).
Pick {γk}, {τk} ⊂ R++, and let {µk} ⊂ R+ be a bounded sequence. Let S : H → H be
a contraction with coefficient η ∈ (0, 1).
(2) For k ≥ 1, set

βk =

{
min{ tk−1

tk+1
, τk
‖yk−yk−1‖}, if yk 6= yk−1,

tk−1
tk+1

, otherwise,
(3.7)

where tk+1 =
1+
√

1+4t2k
2 .

(3) Step1. Calculate the forward-backward step:

zk = FBαk
(xk) = proxαkh2

(xk − αk∇h1(xk)),(3.8)

yk = FBαk
(zk) = proxαkh2

(zk − αk∇h1(zk)),(3.9)

where αk := Linesearch(3)(xk, σ, θ, δ).
(4) Step2. Compute uk and xk+1 using:

uk = yk + βk(yk − yk−1),(3.10)

xk+1 = (1− γk)uk + γkS(yk),(3.11)

Then, update k := k + 1 and return to Step 1.

Lemma 3.4. Let {xk} be a sequence generated by Algorithm 7 and p ∈ H Then the following
holds:

‖xk − p‖2 − ‖yk − p‖2 ≥ 2αk[h(yk) + h(zk)− 2h(p)]

+ (1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2), ∀k ∈ N.

Proof. From (2.6) and definition of zk, yk, we get
xk − zk
αk

−∇h1(xk) ∈ ∂h2(zk) and
zk − yk
αk

−∇h1(zk) ∈ ∂h2(yk).
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Let p ∈ H . By definitions of subdifferential of h2, the above expressions give

h2(p)− h2(zk) ≥ 〈xk − zk
αk

−∇h1(xk), p− yk〉

=
1

αk
〈xk − zk, p− zk〉+ 〈∇h1(xk), zk − p〉(3.12)

and

h2(p)− h2(yk) ≥ 〈zk − yk
αk

−∇h1(zk), p− zk〉

=
1

αk
〈zk − yk, p− yk〉+ 〈∇h1(zk), yk − p〉(3.13)

By (AI), we obtain the fact

h1(x)− h1(y) ≥ 〈∇h1(y), x− y〉, ∀x, y ∈ H.(3.14)

From (3.14), we get

h1(p)− h1(xk) ≥ 〈∇h1(xk), p− xk〉(3.15)

and

h1(p)− h1(zk) ≥ 〈∇h1(zk), p− zk〉(3.16)

Combining (3.12), (3.13), (3.15) and (3.16), we have

2h(p)− h(zk)− h2(yk)− h1(xk) ≥ 〈∇h1(xk), zk − p〉+ 〈∇h1(zk), yk − p〉+ 〈∇h1(xk), p− xk〉

+ 〈∇h1(zk), p− zk〉+
1

αk
[〈xk − zk, p− zk〉+〈zk − yk, p− yk〉]

= 〈∇h1(xk), zk − xk〉+ 〈∇h1(zk), yk − zk〉

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉]

= 〈∇h1(xk)−∇h1(zk), zk − xk〉+ 〈∇h1(zk), zk − xk〉
+ 〈∇h1(yk), yk − zk〉+ 〈∇h1(zk)−∇h1(yk), yk − zk〉

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉]

≥ 〈∇h1(zk), zk − xk〉+ 〈∇h1(yk), yk − zk〉
− ‖∇h1(xk)−∇h1(zk)‖‖zk − xk‖
− ‖∇h1(zk)−∇h1(yk)‖‖yk − zk‖

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉].
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Again, applying (3.14), the above inequality becomes

2h(p)− h(zk)− h2(yk)− h1(xk) ≥ h1(yk)− h1(xk)

− ‖∇h1(xk)−∇h1(zk)‖‖zk − xk‖
− ‖∇h1(zk)−∇h1(yk)‖‖yk − zk‖

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉]

≥ h1(yk)− h1(xk)

− ‖∇h1(xk)−∇h1(zk)‖(‖yk − zk‖+ ‖zk − xk‖)
− ‖∇h1(zk)−∇h1(yk)‖(‖yk − zk‖+ ‖zk − xk‖)

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉]

= h1(yk)− h1(xk)

+
1

αk
[〈xk − zk, p− zk〉+ 〈zk − yk, p− yk〉]

− (‖∇h1(xk)−∇h1(zk)‖+
‖∇h1(zk)−∇h1(yk)‖)(‖yk − zk‖+ ‖zk − xk‖).(3.17)

From αk := Linesearch(3)(xk, σ, θ, δ), we get
αk
2
{‖∇h1(yk)−∇h1(zk)‖+ ‖∇h1(zk)−∇h1(xk)‖} ≤ δ(‖yk − zk‖+ ‖zk − xk‖).(3.18)

From (3.17) and (3.18), we have
1

αk
[〈xk − zk, zk − p〉+ 〈zk − yk, yk − p〉] ≥ h(yk) + h(zk)− 2h(p)

− (‖∇h1(xk)−∇h1(zk)‖+
‖∇h1(zk)−∇h1(yk)‖)(‖yk − zk‖+ ‖zk − xk‖)
≥ h(yk) + h(zk)− 2h(p)

− 2δ

αk
(‖yk − zk‖+ ‖zk − xk‖)2

≥ h(yk) + h(zk)− 2h(p)

− 4δ

αk
(‖yk − zk‖2 + ‖zk − xk‖2).(3.19)

By Lemma 2.1(ii), we get

〈xk − zk, zk − p〉 =
1

2
(‖xk − p‖2 − ‖xk − zk‖2 − ‖zk − p‖2),(3.20)

and

〈zk − yk, yk − p〉 =
1

2
(‖zk − p‖2 − ‖zk − yk‖2 − ‖yk − p‖2).(3.21)

Hence, we can conclude from (3.19)-(3.21) that

‖xk − p‖2 − ‖yk − p‖2 ≥ 2αk[h(yk) + h(zk)− 2h(p)](3.22)

+ (1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2).(3.23)

�

Theorem 3.1. Let {xk} ⊂ H be a sequence generated by Algorithm 7. Then:
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(i) For p ∈ Γ, we have

‖xk+1 − p‖ ≤ max

{
‖xk − p‖,

βk

γk
‖yk − yk−1‖+ ‖S(p)− p‖

1− η

}
, ∀k ∈ N.(3.24)

(ii) If the sequences {αk}, {γk} and {τk} satisfy the following condition:
(Ci) supk αk ≥ α for some α ∈ R++;

(Cii) γk ∈ (0, 1) such that limk→∞ γk = 0 and
∑∞
k=1 γk =∞

(Cii) limn→∞ τk/γk = 0

Then {xk} converges strongly to an element p∗ ∈ Γ, where p∗ = PΓS(p∗).

Proof. Let p ∈ Γ. Applying Lemma 3.4, we have

‖xk − p‖2 − ‖yk − p‖2 ≥ 2αk[h(yk) + h(zk)− 2h(p)]

+ (1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2)

≥ (1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2)(3.25)

≥ 0.(3.26)

From (3.25), we get

‖yk − p‖2 ≤ ‖xk − p‖2 − (1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2)

From above inequality, we get

‖yk − p‖ ≤ ‖xk − p‖(3.27)

By (3.10), we have

‖uk − p‖ = ‖yk + βk(yk − yk−1)− p‖
≤ ‖yk − p‖+ βk‖yk − yk−1‖(3.28)

From (3.11) and (3.27), we have

‖xk+1 − p‖ = ‖(1− γk)uk + γkS(yk)− p‖
≤ γk‖S(yk)− S(p)‖+ γk‖S(p)− p‖+ (1− γk)‖uk − p‖
≤ γkη‖yk − p‖+ γk‖S(p)− p‖+ (1− γk)‖uk − p‖

≤ (1− γk(1− η))‖yk − p‖+ γk(
βk
γk
‖yk − yk−1‖+ ‖S(p)− p‖)

≤ (1− γk(1− η))‖xk − p‖+ γk(
βk
γk
‖yk − yk−1‖+ ‖S(p)− p‖)

≤ max

{
‖xk − p‖,

βk

γk
‖yk − yk−1‖+ ‖S(p)− p‖

1− η

}
.

Therefore, (i) is obtained. By (3.7) and condition (Cii), we have βk

γk
‖yk − yk−1‖ → 0 as

k →∞. There exist M > 0 such that βk

γk
‖yk − yk−1‖ < M for all k ∈ N, and hence

‖xk+1 − p‖ ≤ max

{
‖xk − p‖,

M + ‖S(p)− p‖
1− η

}
.

By mathematical induction, we deduce that

‖xk − p‖ ≤ max

{
‖x1 − p‖,

M + ‖S(p)− p‖
1− η

}
∀k ∈ N.
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Hence, {xk} is bounded. One can see that the operator PΓS is a contraction. By the Banach
contraction principle, there is a unique point p∗ ∈ Γ such that p∗ = PΓS(p∗). It follows
from the characterization of PΓ that

〈S(p∗)− p∗, p− p∗〉 ≤ 0, ∀p ∈ Γ.(3.29)

By definition of {uk}, we have

‖uk − p∗‖2 ≤ ‖yk + βk(yk − yk−1)− p∗‖2

= ‖yk − p∗‖2 + 2〈yk − p∗, βk(yk − yk−1)〉+ β2
k‖yk − yk−1‖2

≤ ‖yk − p∗‖2 + 2βk‖yk − p∗‖‖yk − yk−1‖+ β2
k‖yk − yk−1‖2.(3.30)

Using Lemma 2.1(i),(iii) and (3.25),we have

‖xk+1 − p∗‖2 = ‖(1− γk)uk + γkS(yk)− p∗‖2

= ‖(1− γk)(uk − p∗) + γk(S(yk)− S(p∗)) + γk(S(p∗)− p∗)‖2

≤ ‖(1− γk)(uk − p∗) + γk(S(yk)− p∗)‖2 + 2γk〈S(p∗)− p∗, xk+1 − p∗〉
≤ (1− γk)‖uk − p∗‖2 + γk‖S(yk)− p∗‖2 + 2γk〈S(p∗)− p∗, xk+1 − p∗〉
≤ (1− γk)[‖yk − p∗‖2 + 2βk‖yk − p∗‖‖yk − yk−1‖+ β2

k‖yk − yk−1‖2]

+ γkη‖yk − p∗‖2 + 2γk〈S(p∗)− p∗, xk+1 − p∗〉+ γk‖S(p∗)− p∗‖
≤ (1− γk(1− η))‖yk − p∗‖2 + 2βk‖yk − p∗‖‖yk − yk−1‖+ β2

k‖yk − yk−1‖2

+ 2γk〈S(p∗)− p∗, xk+1 − p∗〉+ γk‖S(p∗)− p∗‖
≤ (1− γk(1− η))‖xk − p∗‖2 + 2βk‖yk − p∗‖‖yk − yk−1‖+ β2

k‖yk − yk−1‖2

+ 2γk〈S(p∗)− p∗, xk+1 − p∗〉+ γk‖S(p∗)− p∗‖
− (1− γk(1− η))(1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2)

= (1− γk(1− η))‖xk − p∗‖2 + γk(1− η)bk

− (1− γk(1− η))(1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2),(3.31)

where

bk : =
1

1− η

(
2〈S(p∗)− p∗, xk+1 − p∗〉+ 2

βk
γk
‖yk − p∗‖‖yk − yk−1‖

)
+

1

1− η

(
β2
k

γk
‖yk − yk−1‖2 + ‖S(p∗)− p∗‖

)
.

It follows that

(1− γk(1− η))(1− 8δ)(‖xk − zk‖2 + ‖zk − yk‖2) ≤ ‖xk − p∗‖2 − ‖xk+1 − p∗‖2

+ γk(1− η)M∗,(3.32)

where M∗ = sup{bk : k ∈ N}.
Next, we show that {xk} converge to p∗. Set ak := ‖xk − p∗‖2 and ζk := γk(1 − η). From
(3.31), we have the following inequality:

ak+1 ≤ (1− ζk)ak + ζkbk.

To apply Lemma 2.3, we have to show that lim supi→∞ bki ≤ 0 whenever a subsequence
{aki} of {ak} satisfies

lim inf
i→∞

(aki+1 − aki) ≥ 0(3.33)
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To do this, suppose that {aki} ⊆ {ak} is a subsequence satisfying (3.33). Then, by (3.32)
and (Cii), we have

lim sup
i→∞

(1− γki(1− η))(1− 8δ)(‖xki − zki‖2 + ‖zki − yki‖2) ≤ lim sup
i→∞

(aki − aki+1)

+ (1− η)M∗ lim
i→∞

γki

= − lim inf
i→∞

(aki+1 − aki)

≤ 0,

which implies

lim
i→∞

‖xki − zki‖ = lim
i→∞

‖zki − yki‖ = 0.(3.34)

Using (Cii), (Ciii) and (3.34), we have

‖xki+1 − xki‖ = ‖(1− γki)uki + γkiS(yki)− xki‖
≤ γki‖S(yki)− xki‖+ ‖uki − xki‖
≤ γki‖S(yki)− xki‖+ ‖uki − zki‖+ ‖zki − xki‖

≤ γki‖S(yki)− xki‖+ ‖yki − zki‖+
βki
γki
‖yki − yki−1‖+ ‖zki − xki‖

→ 0, as i→∞.(3.35)

We next show that lim supi→∞ bki ≤ 0. Clearly, it suffices to show that

lim sup
i→∞

〈S(p∗)− p∗, xki+1 − p∗〉 ≤ 0.

Since {xki} is bounded, we can choose a subsequence of {xki} such that

lim
j→∞
〈S(p∗)− p∗, xkij − p

∗〉 = lim sup
i→∞

〈S(p∗)− p∗, xki − p∗〉.(3.36)

and xkij ⇀ p̄ as j → ∞ for some p̄ ∈ H . Thus, we also have zkij ⇀ p̄ as j → ∞. From
(AI), we have ‖∇h1(xkij ) −∇h1(zkij )‖ → 0 as j → ∞. This together with (3.34) and (Ci)
yields

lim
j→∞

∥∥∥∥∥xkij − zkijαkij
+∇h1(zkij )−∇h1(xkij )

∥∥∥∥∥ = 0.(3.37)

By (2.6), we get
xkij − zkij

αkij
+∇h1(zkij )−∇h1(xkij ) ∈ ∂h2(zkij ) +∇h1(zkij ) = ∂h(zkij ).(3.38)

Now, by (3.37), (3.38) and zkij ⇀ p̄, it follows from Lemma 2.2 that 0 ∈ ∂h(p̄). Hence,
p̄ ∈ Γ. From (3.35) and (3.38), we have

lim sup
i→∞

〈S(p∗)− p∗, xki+1 − p∗〉 ≤ lim sup
i→∞

〈S(p∗)− p∗, xki+1 − xki〉

+ lim sup
i→∞

〈S(p∗)− p∗, xki − p∗〉

= lim sup
j→∞

〈S(p∗)− p∗, xkij − p
∗〉

= lim sup
j→∞

〈S(p∗)− p∗, p̄− p∗〉

≤ 0.

By Lemma 2.3, we conclude that {xk} converges to p∗. The proof is now complete. �
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Now, we employ Algorithm 7 for solving Problem (1.1). We obtain the following result
as a consequence of Theorem 3.1.

Theorem 3.2. Let g : Rn → R be a strongly convex function with a parameter ρ > 0. Assume
that g is continuously differentiable and its gradient ∇g is Lipschitz continuous with a constant
Lg . Suppose that h1 and h2 satisfy the assumptions of Problem (1.2). Let {xk} be a sequence
generated by Algorithm 7. Then {xk} converges strongly to p̄ ∈ A where A is the set of all
solutions of Problem (1.1).

Proof. By Theorem 3.1, we get that {xk} converges to p̄ ∈ Γ = X∗ = argminx∈Rn(h1(x) +
h2(x)) and p̄ = Px∗S(p∗). By Proposition 2.1, S = I − s∇g(x) is a k-contraction with

parameter k =
√

1− 2sρLg

ρ+Lg
, whenever s ∈ (0, 2/(ρ + Lg)). It remains to show that p̄ =

arcminx∈X∗g(x). By using p̄ = PX∗S(p̄) and (2.5), we have, for z ∈ X∗,
p̄ = PΓS(p̄)⇔ 〈S(p̄)− p̄, z − p̄〉 ≤ 0

⇔ 〈p̄− s∇g(p̄)− p̄, z − p̄〉 ≤ 0

⇔ 〈s∇g(p̄), z − p̄〉 ≥ 0

⇔ s〈∇g(p̄), z − p̄〉 ≥ 0

⇔ 〈∇g(p̄), z − p̄〉 ≥ 0.

Thus, p̄ is an optimal solution for the Problem (1.1). That is, xk → p̄ ∈ A. �

4. APPLICATIONS

In this section, we utilize Algorithm 7 as a machine learning algorithm applying for
a Single Hidden Layer Feedforward Neural Networks for classifying data, leveraging a
model of SLFNs (Single Hidden Layer Feedforward Neural Networks) and Extrem Learn-
ing Machine. The experiments are performed using the MATLAB computing environ-
ment on an Intel Core-i5 8th with 8 GB RAM.

We begin by revisiting fundamental concepts of Extreme Learning Machine (ELM) con-
cerning data classification problems. Subsequently, we propose our algorithm for ad-
dressing these problems and conduct a comparative performance evaluation involving
another algorithm.

Extreme Learning Machine (ELM) [21] is defined as follows: Let D = {(xd, qd) : xd ∈
Rn, qd ∈ Rm, d = 1, 2, ..., N} represent a training set comprisingN distinct samples, where
xd is an input data and qd is a target. A standard Single Hidden Layer Feedforward Neural
Networks (SLFN) with M hidden nodes and activation function ϕ(x) is given by:

M∑
j=1

ξjϕ(〈pj , xd〉+ cj) = od, d = 1, ..., N,

where ξj denotes the weight vector connecting the j-th hidden node to the output node,
pj represents the weight vector connecting the j-th hidden node to the input node, and
cj is the bias term. The objective of SLFNs is to predict the N outputs in a manner that
minimizes the error, expressed as

∑N
d=1 |od − qd| = 0. That is,

M∑
j=1

ξjϕ(〈pj , xd〉+ cj) = qd, d = 1, ..., N.(4.39)

We can rewrite above system of linear equation by the following matrix equation:

Rξ = Q,(4.40)
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where

R =

ϕ(〈p1, x1〉+ c1) · · · ϕ(〈pM , x1〉+ cM )
...

. . .
...

ϕ(〈p1, xN 〉+ c1) · · · ϕ(〈pM , xN 〉+ cM )


N×M

ξ = [ξT1 , ..., ξ
T
M ]Tm×M , Q = [qT1 , ..., q

T
N ]Tm×N .

The objective of a SLFNs is estimating ξj , pj and cj for solving (4.39) while ELM aims to
find only ξj with randomly pj and cj .

The Problem (4.40) can be considered as the following convex minimization problem:

min
ξ
‖Rξ −Q‖22 + λ ‖ξ‖1 ,

where λ > 0 is called regularization parameter. In Algorithm 7, we set h1(ξ) = ‖Rξ −Q‖22
and h2(ξ) = λ ‖ξ‖1. We employ Algorithm 7 to solve a convex bi-level optimization Prob-
lem (1.1) and (1.2) while the outer level function is give by g(ξ) = 1

2‖ξ‖
2
2.

We implement our proposed Algorithm 7 for data classification and conduct a per-
formance comparison with other methods. Our experimental setup incorporates five
datasets obtained from “https://archive.ics.uci.edu/, accessed on 7 January 2023”
and “https://www.kaggle.com/, accessed on 7 January 2023” as follows:

Breast Cancer dataset [22]: This dataset consists of 11 attributes, and its classification
involves distinguishing data into 2 distinct classes.

Heart Disease UCI dataset [23]: With 14 attributes, this dataset also focuses on classi-
fying data into 2 distinct classes.

Diabetes dataset [24]: Comprising 9 attributes, this dataset involves the classification
of data into two distinct classes.

Parkinsons dataset [25]: With 23 attributes, this dataset involves categorizing informa-
tion into two distinct classes.

We set all control conditions for each algorithms as in Table 1.

TABLE 1. Algorithms and their setting control conditions.

Methods Setting
Algorithm 7 s = 0.01, σ = 2, δ = 0.1, θ = 0.1, η = 0.99, t1 = 0, γk = 1

60k , τk = 1060

k2

BiG-SAM α = 3, s = 0.01, ck = 1
Lh1

, αk = 2(0.1)

1−
2+ckLh1

4

, γk = αk

n0.01

iBiG-SAM α = 3, s = 0.01, ck = 1
Lh1

, αk = 2(0.1)

1−
2+ckLh1

4

, γk = αk

n0.01

aiBiG-SAM α = 3, s = 0.01, ck = 1
Lh1

, αk = 1
k+2 , γk = αk

n0.01

Algorithm 4 σ = 2, δ = 0.1, θ = 0.9
Algorithm 5 σ = 2, δ = 0.1, θ = 0.9

In Table 2, we give the details of attributes for each dataset and the corresponding data
distribution into training and testing sets. The training set encompasses approximately
70% of the data, while the remaining 30% is designated for the testing set.

We have done our experiments by using the set of control parameters as detailed in
Table 1, the number of hidden nodes M = 100 and a sigmoid function as an activation
function. For every dataset listed in Table 2, we conduct training on the respective training

https://archive.ics.uci.edu/
https://www.kaggle.com/
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TABLE 2. Training and Testing sets of dataset.

Dataset Attributes Sample Train Sample Test
Breast Cancer 11 488 211
Heart Disease 14 213 90

Diabetes 9 538 230
Parkinson 23 135 60

set. The accuracy, precision, recall, and F1-score of the output data were computed using
the following formulas, respectively.

Accuracy(Acc) =
TP+TN

TP+TN+FP+FN
× 100,

Precision(Pre) =
TP

TP+FP
,

Recall(Rec) =
TP

TP+FP
,

F1-score(F1) =
TP

TP+1/2(FP+FN)
,

where TP is the number of samples correctly predicted as positive, TN denotes the number
of samples correctly predicted as negative, FN represents the number of samples wrongly
predicted as negative. and FP means number of samples wrongly predicted as positive.

In Table 3 and Table 4, we provide a comparative analysis showcasing the training
accuracy, testing accuracy, training precision, testing precision, training recall, testing re-
call, training F1-score, testing F1-score and iteration number of Algorithm 7 with other
algorithms for each dataset.
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TABLE 3. The iteration number of each algorithm with the best accuracy
on each dataset.

Dataset Algorithm Iteration no. Accuracy train Accuracy test
Algorithm 7 986 96.55 99.50

Breast BIG-SAM 1700 96.55 98.49
Cancer iBIG-SAM 1700 96.55 98.49

aiBIG-SAM 1700 96.55 98.49
Algorithm 4 100 96.55 98.99
Algorithm 5 52 96.55 98.99
Algorithm 7 98 86.67 83.87

Heart BIG-SAM 1800 86.19 82.80
Disease iBIG-SAM 1756 86.19 82.80

aiBIG-SAM 2501 86.67 82.80
Algorithm 4 630 86.19 82.80
Algorithm 5 567 86.19 83.87
Algorithm 7 96 77.11 81.98

Diabetes BIG-SAM 700 76.01 81.08
iBIG-SAM 696 74.54 81.08

aiBIG-SAM 1300 76.92 80.18
Algorithm 4 898 74.36 80.18
Algorithm 5 582 75.46 81.98
Algorithm 7 454 94.16 81.03

Parkinson BIG-SAM 659 86.13 77.59
iBIG-SAM 660 86.13 77.59

aiBIG-SAM 2240 87.59 77.59
Algorithm 4 540 87.59 77.59
Algorithm 5 391 88.32 77.59
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TABLE 4. The precision, recall, and F1-score of each algorithm with the
best accuracy on each dataset.

Dataset Algorithm Pre Pre Rec Rec F1 F1 Acc
train test train test train test test

Algorithm 7 0.9810 0.9928 0.9688 1 0.9748 0.9964 99.50
Breast BIG-SAM 0.9810 0.9787 0.9688 1 0.9748 0.9892 98.49
Cancer iBIG-SAM 0.9810 0.9787 0.9688 1 0.9748 0.9892 98.49

aiBIG-SAM 0.9810 0.9787 0.9688 1 0.9748 0.9892 98.49
Algorithm 18 0.9810 0.9857 0.9688 1 0.9748 0.9928 98.99
Algorithm 19 0.9810 0.9857 0.9688 1 0.9748 0.9928 98.99
Algorithm 7 0.8425 0.7966 0.9304 0.9400 0.8843 0.8624 83.87

Heart BIG-SAM 0.8413 0.7833 0.9217 0.9400 0.8797 0.8545 82.80
Disease iBIG-SAM 0.8413 0.7833 0.9217 0.9400 0.8797 0.8545 82.80

aiBIG-SAM 0.8425 0.7833 0.9304 0.9400 0.8843 0.8545 82.80
Algorithm 18 0.8468 0.7931 0.9130 0.9200 0.8787 0.8519 82.80
Algorithm 19 0.8413 0.7966 0.9217 0.9400 0.8797 0.8624 83.87
Algorithm 7 0.6767 0.7500 0.5641 0.6667 0.6128 0.7059 81.98

Diabetes BIG-SAM 0.7305 0.7586 0.5282 0.6111 0.6131 0.6769 81.08
iBIG-SAM 0.7324 0.5333 0.7586 0.6111 0.6172 0.6769 81.08

aiBIG-SAM 0.7447 0.5385 0.7500 0.5833 0.6250 0.6562 80.18
Algorithm 18 0.7037 0.7500 0.4872 0.5833 0.5758 0.6562 80.18
Algorithm 19 0.7259 0.5026 0.7857 0.6111 0.5939 0.6875 81.98
Algorithm 7 0.9439 0.9783 0.9806 0.8182 0.9619 0.8911 81.03

Parkinson BIG-SAM 0.8684 0.9612 0.9375 0.8182 0.9124 0.8738 77.59
iBIG-SAM 0.8684 0.9612 0.9375 0.8182 0.9124 0.8738 77.59

aiBIG-SAM 0.8839 0.9612 0.9375 0.8182 0.9209 0.8738 77.59
Algorithm 18 0.8839 0.9612 0.9375 0.8182 0.9217 0.8738 77.59
Algorithm 19 0.8850 0.9709 0.9375 0.8182 0.9259 0.8738 77.59

From the observations in Table 3 and Table 4, it is evident that Algorithm 7 exhibits But
Table 3 shows that Algorithm 7 needs way more number of iterations than Algorithm 5
for Breast Cancer. across all conducted experiments. Furthermore, Algorithm 7 requires
the lowest number of iterations to the highest comparable accuracy compared to the other
studied algorithms.

5. CONCLUSIONS

In this work, we study and discuss the convex bi-level optimization problem. The
challenge of removing the Lipschitz continuity assumption on the gradient of the objective
function attracts us to study the concept of the linesearch method. We use linesearch from
[15] and introduce an accelerated forward-backward algorithm with an inertial technique
whose stepsize does not depend on any Lipschitz constant for solving the considered
problem without any Lipschitz continuity condition on the gradient. We prove that the
sequence generated by our proposed method converges strongly to an optimal solution
of the convex bi-level optimization problems under some mild control conditions. As
applications, we apply our method to solving data classification of non-communicable
diseases. The comparative experiments show that our algorithm has a higher efficiency
than the others.
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