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Fixed point theorems for basic θ-contraction and
applications

MARIJA CVETKOVIĆ1 , ERDAL KARAPINAR2,3, AND ADRIAN PETRUŞEL4,5

ABSTRACT. The main aim of this paper is omitting some superfluous assumptions in the definition of the
class of functions Θ, by means of which were defined and studied various classes of θ-contractions, and still
obtaining the uniqueness of the fixed point for this new type of contractive mappings. Several generalizations
of continuous θ-contractions are presented along with their applications to the study of integral equations.

1. INTRODUCTION

M. Jleli and B. Samet in [14] presented a new generalization of Banach contractive con-
dition. They through defining a new class of contractions known as θ-contractions in the
setting of the generalized metric space in the sense of Branciari [7]. The concept of Bran-
ciari’s generalized metric space is based on the modification of the triangle inequality
with d(x, y) ≤ d(x, z) + d(z, w) + d(w, y) for any pairwise distinct points which is known
as rectangular or quadrilateral inequality. It was shown in [14] that a θ-contraction has a
unique fixed point on a complete generalized metric space in the sense of Branciari. M.
Jleli, E. Karapınar and B. Samet [13] proved several θ-contraction type results assuming
that θ-function is continuous. Additionally, more general contractive condition was con-
sidered. Afterwards, several different generalizations of the θ-contraction were presented
and existence and uniqueness of a fixed point of these classes of contractive mappings
was proved in several settings (Branciari’s metric space, metric space, b-metric space, par-
tial metric space, cone metric space, etc.). It is important to mention that the focus of many
papers was on the applications in the area od image processing, differential and integral
equations, fractional calculus, etc. (see e.g. [1, 4, 5, 12], [15]-[18]). For related notions and
results see [6] and [9].

Several questions regarding the definition of θ-functions have arisen. First of them was
the question of necessity for θ to fulfill such a strict condition as (θ3). Moreover, do we
and in which occasions, need to add a continuity assumption? Can the properties of θ
be redefined in order to obtain larger class of mappings? Are some of these conclusions
different depending on the setting-Branciari’s metric space, metric space or some other?
Some of these questions have already been partially answered, as in [13, 16], and some of
them will be the main point of interest of this article. It is our intention to present some
applications and also some possible research problems demanding a different approach
like in [17].
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2. PRELIMINARIES

As previously stated, M. Jleli and B. Samet defined a new class of functions denoted
with Θ and related contractive condition.

Definition 2.1. Let Θ be a set of functions θ : (0,∞) 7→ (1,∞) such that
(θ1) θ is nondecreasing, i.e., x ≤ y =⇒ θ(x) ≤ θ(y);
(θ2) for each sequence (xn) ⊆ (0,∞)

lim
n→∞

θ(xn) = 1 ⇔ lim
n→∞

xn = 0;

(θ3) there exist 0 < k < 1 and l ∈ (0,∞] such that

lim
x→0

θ(x)− 1

xk
= l.

Question of the existence of a fixed point for the class of θ-contractions, along with
the uniqueness, was discussed in a setting of a generalized metric space in the sense of
Branciari. (see [7])

Definition 2.2. Let X be a non-empty set and d : X × X 7→ [0,∞) a mapping such that (d1)
and (d2) hold for all x, y ∈ X and the inequality

(d∗3)d(x, y) ≤ d(x, z) + d(z, w) + d(w, y)

holds for all pairwise distinct points x, y, z, w ∈ X .

Remark 2.1. Note that every metric space is a generalized metric space. The inequality (d∗3) is
known as rectangular or quadrilateral inequality. There are several examples of mappings satisfy-
ing (d1), (d2) and the rectangular inequality, but not the triangle inequality.

Definition 2.3. Let (X, d) be a generalized metric space in the sense of Branciari. A mapping
T : X 7→ X is a θ-contraction if there exists a function θ ∈ Θ and k ∈ (0, 1) such that for all
x, y ∈ X

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k.(2.1)

The θ-contraction can be also found in the literature as a φ-contraction. In [14] the authors
have shown that a θ-contraction on a complete generalized metric space in the sense of
Branciari and, as a consequence on a complete metric space, has a unique fixed point.

Theorem 2.1. [14] Let (X, d) be a complete generalized metric space in a sense of Branciari and
T : X 7→ X a θ-contraction. A mapping T has a unique fixed point on X .

As a modification of the previous result, in [13] was presented a new definition of a
class Θ, which will be denoted with Θ′ in the sequence.

Definition 2.4. Let Θ′ be a set of functions θ : (0,∞) 7→ (1,∞) such that
(θ1) θ is nondecreasing, i.e., x ≤ y =⇒ θ(x) ≤ θ(y);
(θ2) for each sequence (xn) ⊆ (0,∞)

lim
n→∞

θ(xn) = 1 ⇔ lim
n→∞

xn = 0;

(θ3) there exist 0 < k < 1 and l ∈ (0,∞] such that

lim
x→0

θ(x)− 1

xk
= l;

(θ4) θ is continuous.

In a same manner, they have defined a new type of θ-contraction depending on a more
general contractive condition than (2.1).
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Theorem 2.2. [13] Let (X, d) be a complete generalized metric space in a sense of Branciari and
T : X 7→ X a mapping. If there exist a function θ ∈ Θ′ and k ∈ (0, 1) such that for all x, y ∈ X

θ(d(Tx, Ty)) ≤ [θ(M(x, y))]k,

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, then T has a unique fixed point.

As a corollary, we obtain that each mapping on a complete (generalized) metric space
for which there exists some θ ∈ Θ′ and k ∈ (0, 1) such that (2.1) holds for any x, y ∈ X has
a unique fixed point with the additional continuity assumption.
With the appropriate definition of distance d and mappings T and θ, we can discuss also
on some examples fulfilling the assumptions of Theorem 2.2, but not the contractive con-
dition (2.1). Observe also that the techniques in the proofs of Theorem 2.1 and Theorem
2.2 differ due to the part of the proof concerning the Cauchy property of the sequence
of successive approximations for arbitrary starting point x0 ∈ X . Evidently, Θ′ ⊂ Θ. J.
Ahmad et al. [4] omitted (θ3) in the definition of class Θ′ and gave the proof of existence
and uniqueness of a fixed point for a modified θ-contraction on a complete metric space
where observed class of θ-type functions gathers (θ1), (θ2) and (θ4). We will denote that
class with Θ∗. It is notable that the classes Θ and Θ∗ do not coincide since (θ3) and (θ4) do
not generate same classes of functions as confirmed in the following example.

Example 2.1. The conditions (θ3) and (θ4) are independent. If θ(x) = ee
x−1, for x ∈ (0,∞),

then lim
x→0+

θ(x)−1
xk

= 0 for any k ∈ (0, 1), but it is a continuous function. On the other hand,

θ(x) = 1 +
√
x(1 + [x]), for any x > 0 ,is not continuous, but (θ4) holds for any k ∈ [ 12 , 1). Also

note that (θ1) and (θ2) do hold in both cases. Nevertheless, a set Θ∗ ∩ Θ is non-empty since we
have, par example, θ(x) = e

√
x, x > 0.

To make a difference, we will name the new type of contraction, in accordance with the
class of functions Θ∗, a θ∗-contraction.

Definition 2.5. Let (X, d) be a generalized metric space in the sense of Branciari. A mapping
T : X 7→ X is a θ∗-contraction if there exists a function θ ∈ Θ∗ and k ∈ (0, 1) such that (2.1)
holds for any x, y ∈ X .

The main result of [4] is the following

Theorem 2.3. [4] If (X, d) is a complete metric space and T : X 7→ X a θ∗-contraction for some
θ ∈ Θ∗ and k ∈ (0, 1), then T has a unique fixed point in X .

Further results on this topic do mainly focus on the definition of θ-contraction includ-
ing (θ4) rather than (θ3). Contractive conditions and types of settings vary (Kannan con-
traction, Hardy-Rogers contraction, ϕ-contraction, Meir-Keeler contraction,etc; b-metric
space, cone metric space, generalized metric space in the sense of Branciari etc.
Liu et al, [16] presented a different approach to the class of θ functions by introducing an
equivalent to (θ2):

(θ∗2) inf
x>0

θ(x) = 1.

They proved existence and uniqueness of a fixed point for a Suzuki θ-contraction and, as
a direct corollary, for a class of modified θ∗-contractions where θ functions satisfies (θ1),
(θ∗2) and (θ4). Than class will be denoted with Θ̃ as in [16].
In [11], the authors added one more condition to (θ1)-(θ3):

(θ5) θ(x+ y) ≤ θ(x)θ(y).

Denote with Θ+ family of all functions θ : (0,∞) → (1,∞) fulfilling (θ1) − (θ3) and (θ5).
In [10] it was shown that the θ+-contraction is a Banach contraction on a equivalent metric
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space, hence this type of θ-contraction will not be analyzed in the sequel.
The main idea of this article is removing unnecessary assumptions in the definition of
the class of function Θ, but retaining the existence and uniqueness of the fixed point of
θ-contraction. In this way, we intend to unify the results of [4, 11, 14, 13] and many others
in the setting of a complete metric space.

3. MAIN RESULTS

We start this section by introducing the refined class of functions denoted with Θ and
a contractive condition including this type of functions.
Let Θb be a set of functions θ : (0,∞) 7→ (1,∞) such that θ is nondecreasing. Thus, the
class of Θb is subset of all previous classes, e.g. Θ, Θ+, Θ∗, Θ′ and so on. Note that for
none of the mentioned types of θ-functions is defined at zero. This can be easily repaired
by adding θ(0) = 1. In that way we will not influence the contractive condition and, if
needed, respect (θ1)− (θ4).

Example 3.2. Define a mapping θ1 : (0,∞) 7→ (1,∞) by

θ1(x) =

{
ee

− 1
x , x ∈ (0, 1)

ee
− 1

2x , x ∈ [1,∞)
.

Evidently, the function θ is non-decreasing, so θ1 ∈ Θb. The function is not continuous, so
θ1 /∈ Θ′ ∪Θ∗. Moreover,

lim
x→0+

θ1(x)− 1

xk
= 0,

for arbitrary k ∈ (0, 1). Consequently, θ1 /∈ Θ. It is notable that θ1 is not subadditive on (0, 1).

Example 3.3. Define a mapping θ2 : (0,∞) 7→ (1,∞) by

θ2(x) =

{
ee

−3+x

, x ∈ (0, 1)

ee
− 1
x , x ∈ [1,∞)

.

In addition to the remarks made in previous example, θ2 /∈ Θ ∪ Θ′ ∪ Θ∗, here we have that (θ2)
((θ∗2)) do not hold on (0,∞). Hence, θ2 fulfills only (θ1) and θ2 ∈ Θb.

Definition 3.6. Let (X, d) be a metric space. A mapping T : X 7→ X is a basic-θ-contraction if
there exists a function θ ∈ Θb and k ∈ (0, 1) such that for any x, y ∈ X the following implication
holds

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k.(3.2)

Theorem 3.4. Let (X, d) be a complete metric space and T : X 7→ X be a basic-θ-contraction.
Then T has a unique fixed point inX and the sequence (Tnx0) converges to the fixed point for any
x0 ∈ X , i.e., T is a Picard operator (see [19]).

Proof. Assume that (X, d) is a complete metric space and T : X 7→ X a mapping such that
there exists a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that (3.2)
holds. Let x0 ∈ X be an arbitrary point and define the sequence of successive approxima-
tions (xn) ⊆ X such that xn = Txn−1, n ∈ N. If xn = xn−1 for some n ∈ N, then xn−1 is a
fixed point of T . Otherwise, we will assume that xn 6= xn−1 for all n ∈ N.
Then, for any n ∈ N, by the principle of mathematical induction, we may easily obtain

θ(d(xn, xn+1)) ≤ θ (d(xn−1, xn))
k

...

≤ θ (d(x0, x1))
kn
.(3.3)
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As n→∞, kn → 0 implies that

1 ≤ lim
n→∞

θ(d(xn, xn+1)) ≤ θ (d(x0, x1))
kn

= 1.

Since θ is nondecreasing function, we can not claim directly that lim
n→∞

d(xn, xn+1) exists
and is equal to 0. In order to achieve that, observe

θ(d(xn, xn+1)) ≤ θ(d(xn−1, xn))k

< θ(d(xn−1, xn)),

implying d(xn, xn+1) < d(xn−1, xn), for any n ∈ N. Consequently, the sequence (d(xn−1, xn))
is a monotone decreasing sequence, so its limit when n → ∞ exists and it is equal to the
infimum of the sequence (xn). If

a = inf
n∈N

d(xn−1, xn) = lim
n→∞

d(xn−1, xn),

then a ∈ (0, 1) leads to

θ(a) ≤ θ(d(xn, xn+1))

≤ θ (d(xn−1, xn))
k

...

≤ θ (d(x0, x1))
kn
.

Letting n → ∞, we get θ(a) = 1 which is impossible due to the codomain of θ, so a must
be equal to zero. Thus, lim

n→∞
d(xn, xn+1) = 0.

Assume contrary of what we intend to prove, that (xn) is not a Cauchy sequence meaning
that there exists ε > 0 and strictly increasing sequences (ni), (mi) ⊆ N such that ni < mi

for any i ∈ N and
d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε,

where ni is minimal such that those subsequences exist, meaning

ni = min{j ≥ i | d(xj , xm) ≥ ε ∧ m > j},

and
mi = min{j > ni | d(xni , xj) ≥ ε}.

Having in mind the definition of Cauchy sequence and the fact that monotone function
has at most countable many discontinuities, ε may be chosen such that θ is continuous at
ε. Further,

ε ≤ d(xni , xmi)

≤ d(xni , xni−1) + d(xni−1, xmi−1) + d(xmi−1, xmi),

leads to limi→∞ d(xni , xmi) = ε. Moreover,

d(xni−1, xmi−1) ≥ d(xni , xmi)− d(xni−1, xni)− d(xmi , xmi−1)

d(xni−1, xmi−1) ≤ d(xni−1, xni) + d(xni , xmi) + d(xmi , xmi−1),

implies limi→∞ d(xni−1, xmi−1) = ε.
Therefore,

θ(ε) ≤ θ (d(xni , xmi))

≤ (θ (d(xni−1, xmi−1)))
k
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as i→∞, we get the impossible inequality θ(ε) ≤ (θ(ε))
k
. Consequently, our assumption

is false, so (xn) is a Cauchy sequence, thus convergent with the limit x∗ ∈ X . Since
Tx∗ 6= xn starting from some n1, then

(3.4) θ(d(Tx∗, Txn)) ≤ (θ(d(x∗, xn)))
k
.

However, (d(x∗, xn)) is a zero sequence and lim
n→∞

θ(d(x∗, xn)) = inft>0 θ(t) which was

proven to be 1 by estimating lim
n→∞

θ(d(xn, xn+1)). As a result, we get lim
n→∞

θ(d(Tx∗, Txn)) =

1, suggesting lim
n→∞

Txn = Tx∗, i.e., Tx∗ = x∗. Uniqueness easily follows, since if Ty = y

and y 6= x∗, then

θ(d(x∗, y)) = θ(d(Tx∗, Ty)

≤ (θ(d(x∗, y)))
k
,

leads to the contradiction, so x∗ is a unique fixed point of the mapping T .
If y0 ∈ X is arbitrary and yn = Tny0 for any n ∈ N, then we prove in a same manner
that (yn) is a Cauchy sequence, thus convergent and that its limit is a fixed point. Since
fixed point of a mapping T is a unique, we conclude that any sequence of successive
approximations converges to the fixed point.

�

This elements of this class of contractive mapping will be named basic θ-contractions.
Since the class of nondecreasing functions θ : (0,∞) 7→ (1,∞) is a strict superset of the
classes Θ, Θ′ and Θ∗, as a corollary of Theorem 3.4, we get Corollary 2.1 of [14].

Corollary 3.1. Let (X, d) be a complete metric space and T : X 7→ X be a given mapping. If
there exist θ ∈ Θ′ and k ∈ (0, 1) such that

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))
k
.

for all x, y ∈ X , then T has a unique fixed point.

The following corollary is exactly the main result of [4].

Corollary 3.2. Let (X, d) be a complete metric space and T : X 7→ X be a given mapping. If
there exist θ ∈ Θ∗ and k ∈ (0, 1) such that

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))
k
,

for all x, y ∈ X , then T has a unique fixed point in X .

In order to obtain the results of [13] in the setting of a complete metric space, we will
analyze the generalization of the condition (3.2).

Theorem 3.5. If (X, d) is a complete metric space and T : X 7→ X a mapping such that exists
a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for any x, y ∈ X the
following implication holds

(3.5) Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ (θ(M(x, y)))
k
,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

and jumps on the left at each discontinuity x of the function θ are less than θ(x)− (θ(x))
k, i.e.,

θ(x)− lim
y→x−

θ(y) > (θ(x))
k
,

then T has a unique fixed point in X .
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Proof. If x0 ∈ X is arbitrary, define the sequence (xn) ⊆ X such that xn = Txn−1, n ∈ N.
If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T . Otherwise, assume that
xn 6= xn−1 for all n ∈ N, so we will estimate the Cauchy property of the sequence (xn) by
using (3.5). Obviously, M(xn−1, xn) ∈ {d(xn−1, xn), d(xn, xn+1)} for any n ∈ N. The case
M(xn−1, xn) = d(xn, xn+1) for some n ∈ N leads to the contradiction, since (3.5) implies

θ(d(xn, xn+1)) ≤ (θ(d(xn, xn+1)))
k
,

meaning that M(xn−1, xn) = d(xn−1, xn) for each n ∈ N and more the inequality

θ(d(xn, xn+1)) ≤ (θ (d(x0, x1)))
kn
,

holds for any n, which is easily obtainable by the principle of mathematical induction.
Letting n→∞, we get

1 ≤ lim
n→∞

θ(d(xn, xn+1)) ≤ lim
n→∞

(θ (d(x0, x1)))
kn

= 1.

Moreover,

θ(d(xn, xn+1)) ≤ θ(d(xn−1, xn))k

< θ(d(xn−1, xn)),

implies d(xn, xn+1) < d(xn−1, xn) for any n ∈ N. As the sequence (d(xn−1, xn)) is a mono-
tone decreasing sequence, its limit exists and a = infn∈N d(xn−1, xn) = lim

n→∞
d(xn−1, xn).

Assuming that a > 0, we get

θ(a) ≤ lim
n→∞

θ(d(xn, xn+1)) = 1.

It cannot be the case, meaning that lim
n→∞

d(xn, xn+1) = 0. In order to prove that (xn) is a
Cauchy sequence, we will assume contrary. Recall also that the function θ is monotone, so
its set of discontinuities is countable. Hence, there exist ε > 0 such that is not a disconti-
nuity of θ and strictly increasing sequences (ni), (mi) ⊆ N such that ni < mi for any i ∈ N
and

d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε,

where
ni = min{j ≥ i | d(xj , xm) ≥ ε ∧ m > j},

and
mi = min{j > ni | d(xni , xj) ≥ ε}.

Accordingly,

ε ≤ d(xni , xmi)

≤ d(xni , xni−1) + d(xni−1, xmi−1) + d(xmi−1, xmi),

leads to limi→∞ d(xni , xmi) = ε.
Similarly as in the proof of Theorem 3.4, we get limi→∞ d(xni−1, xmi−1) = ε and

θ(ε) ≤ θ (d(xni , xmi))

≤ (θ (M(xni−1, xmi−1)))
k

for M(xni−1, xmi−1) = max{d(xni−1, xmi−1), d(xni−1, xni), d(xmi−1, xmi)}. By previous
estimations, both limi→∞ θ(d(xmi−1, xmi)) and limi→∞ θ(d(xni−1, xni)) are equal to 1, if
there are infinitely many i ∈ N such thatM(xni−1, xmi−1) ∈ {d(xni−1, xni), d(xmi−1, xmi)},
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it follows that θ(ε) = 1 which is impossible. It remains to assume that M(xni−1, xmi−1) =
d(xni−1, xmi−1) starting from some i0 ∈ N. Hence,

θ(ε) ≤ lim
i→∞

θ (d(xni , xmi))

≤ lim
i→∞

(θ (M(xni−1, xmi−1)))
k

= lim
i→∞

(θ (d(xni−1, xmi−1))))
k

= (θ(ε))
k
,(3.6)

again leading to the contradiction. In consequence, there exists some x∗ ∈ X such that
lim
n→∞

xn = x∗. Then,

d(Tx∗, x∗) ≤ d(Tx∗, xn+1) + d(xn+1, x
∗)

≤M(x∗, xn) + d(xn+1, x
∗).

where
M(x∗, xn) = max{d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1)}.

(i) If M(x∗, xn) = d(x∗, xn) for infinitely many n ∈ N, then

d(Tx∗, x∗) ≤ d(x∗, xn) + d(xn+1, x
∗).

Letting n→∞ leads to the conclusion that x∗ is a fixed point of T .
(ii) In the case that M(x∗, xn) = d(xn, xn+1) for infinitely many n ∈ N, we have

d(Tx∗, x∗) ≤ d(xn, xn+1) + d(xn+1, x
∗),

that implies Tx∗ = x∗.
(iii) Remaining, assume that M(x∗, xn) = d(x∗, Tx∗) starting from some n0 ∈ N. As
lim
n→∞

d(Tx∗, xn) = d(Tx∗, x∗), from the estimation of

θ(d(Tx∗, xn+1)) ≤ (θ(d(x∗, Tx∗)))
k
,(3.7)

we obtain the contradiction since it must be

lim
n→∞

θ(d(Tx∗, xn)) > (θ(d(x∗, Tx∗)))
k
.

From all of the above, x∗ is a fixed point of the mapping T . If Ty = y and y 6= x∗, then

θ(d(x∗, y)) = θ(d(Tx∗, Ty)

≤ (M(x∗, y)))
k
,

where M(x∗, y) = max{d(x∗, y), 0} and x∗ is a unique fixed point of the mapping T . �

Remark 3.2. Notice that the cases (i) and (ii) could be excluded if we have assumed that Tx∗ 6=
x∗ due to the fact that lim

n→∞
d(xn, xn+1) = lim

n→∞
d(xn, x

∗) = 0.

Corollary 3.3. If (X, d) is a complete metric space and T : X 7→ X a mapping such that exists
a nondecreasing continuous on the left function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for
any x, y ∈ X the condition (3.5) holds, then T has a unique fixed point in X .

The following corollary is still a generalization of Corollary 3.6 of [13] since (θ3) is not
requested by any means.

Corollary 3.4. If (X, d) is a complete metric space and T : X 7→ X a mapping such that exists a
nondecreasing continuous function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1) such that for any x, y ∈ X
the condition (3.5) holds, then T has a unique fixed point in X .
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We will present an example of a complete metric space and a basic θ-contraction which
is not a Banach contraction as in [14].

Example 3.4. Let X = {xn = n(n+1)
2 | n ∈ N} be a set equipped with a metric d(x, y) = |x− y|

for x, y ∈ X . Then (X, d) is a complete metric space. We will define a mapping T : X 7→ X such
that:

Txn =

{
x1, if n = 1

xn−1, otherwise
.

Then a mapping T is a basic θ-contraction on (X, d) for θ(t) = e
√
tet for t > 0 and k = e−1.

The concept of F -contraction was broadly investigated in the last decade. It originated
in the paper of Wardowski [23].

Definition 3.7. [23] Let F : (0,∞)→ R be a function fulfilling the following conditions:

(F1) F is increasing, meaning 0 < x < y =⇒ F (x) < F (y);
(F2) For any sequence (xn) ⊆ (0,∞),

lim
n→∞

xn = 0 ⇔ lim
n→∞

F (xn) = −∞;

(F3) There exists k ∈ (0, 1), such that lim
x→0+

xkF (x) = 0.

Let F be the set of all functions F : (0,∞)→ R satisfying (F1)− (F3). F -contraction is
defined in a following way:

Definition 3.8. Let (X, d) be a metric space and T : X → X a mapping. If there exist F ∈ F
and τ > 0 such that, for all x, y ∈ X ,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

then a mapping T is called an F -contraction.

In [23] was proven that an F -contraction on a complete metric space has a unique fixed
point and that the sequence (Tnx0) converges to the fixed point of a mapping T for any
initial point x0 ∈ X.
It is quite evident that any F -contraction is a θ-contraction for a mapping θ defined by
θ(t) = ee

F (t)

, t > 0. Thus, we may formulate more general result than in the case of [23]
where all assumptions (F1) − (F3) are replaced with a monotone increasing property of
F .

Corollary 3.5. Let (X, d) be a complete metric space and T : X 7→ X a mapping such that the
following implication holds:

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

for some τ > 0 and F : (0,∞) 7→ R nondecreasing function. Then a mapping T has a unique
fixed point x∗ ∈ X and the iterative sequence (Tnx0) converges to the fixed point x∗ for any initial
point x0 ∈ X.

Proof. Define a function θ : (0,∞) 7→ (1,+∞) such that θ(t) = ee
F (t)

for any t > 0. It
is a well-defined function since F (t) ∈ R =⇒ eF (t) > 0 =⇒ ee

F (t)

> 1. Also, if F is
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nondecreasing, θ is nondecreasing and if Tx 6= Ty:

θ(d(Tx, Ty)) = ee
F (d(Tx,Ty))

≤ ee
F (d(x,y))−τ

≤ ee
F (d(x,y))e−τ

=
(
ee
F (d(x,y))

)e−τ
= (θ(d(x, y)))

e−τ
.

Hence, T is a basic θ-contraction for k = e−τ and the conclusion follows from Theorem
3.4. �

4. RESULTS IN GENERALIZED METRIC SPACES IN A SENSE OF BRANCIARI

As mentioned in the Introduction and Preliminaries, first results on the topic of θ-
contraction and many following results were in the setting of a generalized metric spaces
in a sense of Branciari. The authors’ choice in this article was to present the result in the
setting of a complete metric space, but in order to give a complete picture concerning
basic θ-contraction and that indeed this approach presents an improvement of results in
[4, 14, 13] among others, we will present two main theorems in the setting of generalized
metric space in a sense of Branicari. It is important to mention that the differences in the
proofs are almost not existing with few additional comments.
In order to do so, we recall some basic properties of the generalized metric space in a sense
of Branicari regarding Cauchy and convergent sequence.

Definition 4.9. If (X, d) is a generalized metric space in a sense of Branicari and (xn) ⊆ X a
sequence, then the sequence (xn) is a Cauchy sequence if for any ε > 0 there exists some n0 ∈ N
such that for all n,m ≥ n0 we have d(xn, xm) < ε.

Definition 4.10. If (X, d) is a generalized metric space in a sense of Branicari and (xn) ⊆ X a
sequence, then (xn) is a convergent sequence with a limit x∗ ∈ X if for any ε > 0 there exists
some n0 ∈ N such that for all n ≥ n0 we have d(xn, x

∗) < ε.

Obviously, same as in the case of metric space, we say that the generalized metric space
in a sense of Branciari is complete if any Cauchy sequence is convergent.
We will state the result induced by Theorem 3.4 for the generalized metric space in the
sense of Branciari.

Theorem 4.6. If (X, d) is a complete generalized metric space in a sense of Branciari and T :
X 7→ X a mapping such that exists a nondecreasing function θ : (0,∞) 7→ (1,∞) and k ∈ (0, 1)
such that (3.2) holds for any x, y ∈ X , then T has a unique fixed point in X and the sequence
(Tnx0) converges to the fixed point for any x0 ∈ X .

Proof. Assume that (X, d) is a complete generalized metric space in a sense of Branciari
and T : X 7→ X a mapping fulfilling all assumptions of the theorem. Let x0 ∈ X be
arbitrary and define the sequence of successive approximations (xn) ⊆ X such that xn =
Txn−1, n ∈ N. We may assume that xn 6= xn−1 for all n ∈ N as it has been considered in
the proof of Theorem 3.4.
Analogously, we get (3.3) and, as n→∞,

lim
n→∞

θ(d(xn, xn+1)) = lim
n→∞

θ (d(x0, x1))
kn

= 1.

Following the same estimations as in the proof of Theorem 3.4, we get lim
n→∞

d(xn, xn+1) =

0 and assume that (xn) is not a Cauchy sequence so there exist ε > 0 out of the set of
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discontinuities of function θ and strictly increasing sequences (ni), (mi) ⊆ N such that
ni < mi for any i ∈ N and

d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε,

constructed as already established. Further,

ε ≤ d(xni , xmi)

≤ d(xni , xni−1) + d(xni−1, xmi−1) + d(xmi−1, xmi),

leads to limi→∞ d(xni , xmi) = ε, and similarly, again by applying the quadrilateral in-
equality we get limi→∞ d(xni−1, xmi−1) = ε. Therefore, we have a contradiction as i→∞,
i.e., (xn) is a Cauchy sequence. Let x∗ ∈ X be the limit of the sequence (xn) and n1 ∈ N
such that Tx∗ 6= xn for n ≥ n1, then (3.4) with some analysis that does not involve the ap-
plication of triangle/quadrilateral inequality imply Tx∗ = x∗. Uniqueness easily follows
as in the proof of Theorem 3.4. �

As a corollary we get the Theorem 2.1 of [14] with a remark that the Theorem 4.6
presents an improvement of the main results of [14].

Corollary 4.6. Let (X, d) be a complete generalized metric space in a sense of Branicari and
T : X 7→ X be a given mapping. Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))
k
.

Then T has a unique fixed point.

Corollary 4.7. Let (X, d) be a complete generalized metric space in a sense of Branciari and
T : X 7→ X be a given mapping. Suppose that there exist θ ∈ Θ∗ and k ∈ (0, 1) such that

Tx 6= Ty =⇒ θ(d(Tx, Ty)) ≤ (θ(d(x, y)))
k
.

Then T has a unique fixed point.

Some generalizations of the above contractive condition will be the discussed on a set
equipped with the Branciari metric.

Theorem 4.7. If (X, d) is a complete generalized metric space in a sense of Branciari and T :
X 7→ X a mapping for which there exists a nondecreasing function θ : (0,∞) 7→ (1,∞) and
k ∈ (0, 1) such that for any x, y ∈ X (3.5) holds, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}

and jumps on the left at each discontinuity x of the function θ are less than θ(x)− (θ(x))
k, i.e.,

θ(x)− lim
y→x−

θ(y) > (θ(x))
k
,

then T has a unique fixed point in X .

Proof. If x0 ∈ X is arbitrary, define the sequence (xn) ⊆ X such that xn = Txn−1, n ∈ N.
If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T . Otherwise, assume that xn 6=
xn−1 for all n ∈ N, so we will estimate the Cauchy property of the sequence (xn) by using
(3.5). Obviously, M(xn−1, xn) = d(xn−1, xn) for each n ∈ N due to same considerations
as in the proof of Theorem 3.5. As in the proof of Theorem 3.4 and Theorem 3.5, we
come to the conclusion lim

n→∞
d(xn, xn+1) = 0. Once again we will assume that there exist

ε > 0 such that it is not a discontinuity of θ and previously described strictly increasing
sequences (ni), (mi) ⊆ N such that ni < mi for any i ∈ N and

d(xni , xmi) ≥ ε and d(xni , xmi−1) < ε,
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Instead of applying the triangle inequality two times as in the proof of Theorem 3.5, we
will get the same conclusion limi→∞ d(xni , xmi) = ε through the one quadrilateral in-
equality

ε ≤ d(xni , xmi)

≤ d(xni , xni−1) + d(xni−1, xmi−1) + d(xmi−1, xmi).

Also we have

lim
i→∞

d(xni−1, xmi−1) = lim
i→∞

θ(d(xmi−1, xni)) = lim
i→∞

θ(d(xni−1, xmi)) = ε

and

θ(ε) ≤ θ (d(xni , xmi))

≤ (θ (M(xni−1, xmi−1)))
k

for M(xni−1, xmi−1) = max{d(xni−1, xmi−1), d(xni−1, xni), d(xmi−1, xmi)}. In the case
that there are infinitely many i ∈ N with M(xni−1, xmi−1) being equal to d(xni−1, xni) or
d(xmi−1, xmi), it follows that θ(ε) = 1 which is impossible. If it is d(xni−1, xmi−1) starting
from some i0 ∈ N, then the same inequalities as in (3.6) hold, so the sequence is Cauchy
in a complete generalized metric space in a sense of Branciari and lim

n→∞
xn = x∗ ∈ X .

The main difference between this proof and the proof of Theorem 3.5 lyes in the following
lines

d(Tx∗, x∗) ≤ d(Tx∗, xn+1) + d(xn+1, xn) + d(xn, x
∗)

≤M(x∗, xn) + d(xn+1, xn) + d(xn, x
∗).

where
M(x∗, xn) = max{d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1)}.

(i) If M(x∗, xn) = d(x∗, xn) for infinitely many n ∈ N, then

d(Tx∗, x∗) ≤ d(x∗, xn) + d(xn+1, xn) + d(xn, x
∗).

Letting n→∞ leads to the conclusion that x∗ is a fixed point of T .
(ii) In the case that M(x∗, xn) = d(xn, xn+1) for infinitely many n ∈ N, we have

d(Tx∗, x∗) ≤ d(xn, xn+1) + d(xn+1, xn) + d(xn, x
∗),

that implies Tx∗ = x∗.
(iii) Assume thatM(x∗, xn) = d(x∗, Tx∗) starting from some n0 ∈ N. As lim

n→∞
d(Tx∗, xn) =

d(Tx∗, x∗), (3.7) and the assumption concerning jumps on the left imply the contradiction.
Hence, x∗ is a fixed point of the mapping T and uniqueness of the fixed point is deduced
in a same manner as in the previous proofs. �

Corollary 4.8. If (X, d) is a complete generalized metric space in a sense of Branciari and T :
X 7→ X a mapping such that exists a nondecreasing continuous on the left function θ : (0,∞) 7→
(1,∞) and k ∈ (0, 1) such that for any x, y ∈ X the condition (3.5) holds, then T has a unique
fixed point in X .

The main result of [13] stated in Theorem 2.1 is indeed directly implied by the following

Corollary 4.9. If (X, d) is a complete generalized metric space in a sense of Branciari and T :
X 7→ X a mapping such that exists a nondecreasing continuous function θ : (0,∞) 7→ (1,∞)
and k ∈ (0, 1) such that for any x, y ∈ X the condition (3.5) holds, then T has a unique fixed
point in X .
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5. APPLICATIONS

The modifications and the generalizations of θ-contractions have found numerous ap-
plications as seen in [1, 2, 5, 12, 15, 16] among others. Consider the nonlinear Hammerstein
integral equation

x(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s))ds, t ∈ [0, 1](5.8)

where x : [0, 1] 7→ R is continuous on [0, 1], h : [0, 1] 7→ R, K : [0, 1] × [0, 1] 7→ R and
f : [0, 1]× R 7→ R.
Observe X = C[0, 1] is the set of all continuous real-valued functions with the domain
[0, 1] equipped with the usual metric d(x, y) = max0≤s≤1 |x(s)− y(s)| and the metric

dλ(x, y) = max
0≤s≤1

|x(s)− y(s)|e−λs,(5.9)

for any x, y ∈ X and λ ≥ 1, then (X, d) and (X, dλ) are complete metric spaces for any
λ ≥ 1. Define the mapping T : X 7→ X such that

Tx(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s))ds,(5.10)

for any t ∈ [0, 1] and x ∈ X . Clearly, a fixed point of T is a solution of the integral equation
(5.8) and vice-versa.

Corollary 5.10. Assume that the functions h ∈ X ,K : [0, 1]× [0, 1] 7→ R and f : [0, 1]×R 7→ R
are both integrable and T : X 7→ X is defined by (5.10). If max

0≤s,t≤1
|K(t, s)| = α > 0 and for some

λ ∈ [1,∞)

Tx 6= Ty =⇒ |f(s, x(s))− f(s, y(s))| ≤ 1

α
e−λs|x(s)− y(s)|, s ∈ [0, 1]

holds for any x, y ∈ X , then T has a unique fixed point in X .

Proof. A mapping T is a basic θ-contraction on a complete metric space (X, dλ) for θ(t) =
et and k = 1

λe
−1. �

Corollary 5.11. Assume that the functions h ∈ X ,K : [0, 1]× [0, 1] 7→ R and f : [0, 1]×R 7→ R
are both integrable and T : X 7→ X is defined by (5.10). If max

0≤s,t≤1
|K(t, s)| = α > 0 and for some

λ ∈ [1,∞)

Tx 6= Ty =⇒ |f(s, x(s))− f(s, y(s))| ≤ 1

α
e−λsMx,y(s)

holds for any x, y ∈ X , where

Mx,y(s) = max {|x(s)− y(s)|, |x(s)− Tx(s)|, |y(s)− Ty(s)|} ,

then T has a unique fixed point in X .

In the same metric setting, we will additionally observe the Volterra type integral equa-
tion:

(5.11) Tx(t) =

∫ t

0

K(t, s, h(x(s))) ds + g(t), t ∈ [0, 1],

where x, g : [0, 1] 7→ R, K : [0, 1] × [0, 1] × R 7→ R and h : R 7→ R continuous functions.
Then T is a well defined operator acting on X = C[0, 1] which will be equipped with the
metric dλ defined through (5.9) for any positive λ in a general case. The following result
holds:
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Theorem 5.8. If:
(1) K : [0, 1]× [0, 1]× R 7→ R, h : R 7→ R and g : [0, 1] 7→ R are continuous functions;
(2) there exists α > 0 such that

|K(t, s, h(x(s)))−K(t, s, h(y(s)))|2 ≤ |x(s)− y(s)|,
for all continuous real valued functions x, y ∈ C[0, 1] and all s, t ∈ [0, 1],

then the equation (5.11) has a unique solution in C[0, 1].

Proof. Observe a complete metric space (X, d) for X = C[0, 1] and suppose that T is de-
fined by (5.11) If x, y ∈ X are arbitrarily chosen, then:

(d(Tx, Ty))
2

=

(
max
0≤t≤1

|Tx(t)− Ty(t)|
)2

= max
0≤t≤1

|Tx(t)− Ty(t)|2

= max
0≤t≤1

∣∣∣∣(∫ t

0

K(t, s, h(x(s))) ds + g(t)

)
−
(∫ t

0

K(t, s, h(y(s))) ds + g(t)

)∣∣∣∣2
≤ max

0≤t≤1

∫ t

0

|K(t, s, h(x(s)))−K(t, s, h(y(s)))|2 ds

≤ max
0≤t≤1

∫ t

0

|x(s)− y(s)| ds

≤ td(x, y)

≤ d(x, y).

Taking θ(t) = t2 for t > 0 and k = 1
2 we get that T is a basic θ-contraction and the equation

(5.11) has a unique solution in C[0, 1]. �

Corollary 5.12. If:
(1) K : [0, 1]× [0, 1]× R 7→ R, h : R 7→ R and g : [0, 1] 7→ R are continuous functions;
(2) there exists α > 0 such that

|K(t, s, h(x(s)))−K(t, s, h(y(s)))| ≤ α|x(s)− y(s)|,
for all continuous real valued functions x, y ∈ C[0, 1] and all s, t ∈ [0, 1]

then the equation (5.11) has a unique solution in C[0, 1].

Inspired by [8] we will discuss on another idea for possible applications of basic θ-
contraction. In [8] the new approach to the fixed point theorems in the set of integrable
functions was investigated. Observe that Corollary 5.10 may be applied on solving equa-
tion (3.1) of [8] in the set of continuous functions and requested conditions are less re-
strictive than in Proposition 3.1 of [8]. Additionally, we will discuss on another discussed
problem of fractional equation:

(5.12) u(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s)u(s) ds,

where 0 < α ≤ 1, Γ is a usual Gamma function and in our case f, u ∈ X = C[0, 1]. We
obtain the following result:

Theorem 5.9. If f ∈ X and 0 < α ≤ 1, then the equation (5.12) has a unique solution in X .

Proof. Define T : X 7→ X as

Tu(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s)u(s) ds, t ∈ [0, 1],
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for any u ∈ X . Additionally, we will observe X equipped with d1 metric defined in (5.9)
for λ = 1.
In that case, for u, v ∈ X , we have:

d1(Tu, Tv) = max
0≤t≤1

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s) (u(s)− v(s)) ds
∣∣∣∣ e−t

x= s
t= max

0≤t≤1

∣∣∣∣ 1

Γ(α)

∫ 1

0

(t− xt)α−1f(xt) (u(xt)− v(xt)) tdx
∣∣∣∣ e−t

= max
0≤t≤1

1

Γ(α)

∫ 1

0

(1− x)α−1|f(xt)| |u(xt)− v(xt)| e−txetxtα dx e−t

≤ d1(u, v) max
0≤t≤1

1

Γ(α)

∫ 1

0

(1− x)α−1e−(1−x)|f(xt)|e(1−t)(1−x)tα dx

≤ d1(u, v) max
0≤t≤1

tαe(1−t)fmax
Γ(α)

∫ 1

0

(1− x)α−1e−(1−x) dx

≤ aae(1−a)fmaxd1(u, v),

where fmax is a maximum of a function |f | on [0, 1].
Consequently, if b = aae(1−a)fmax and b < 1 then T is a contraction on (X, d1), but if b ≥ 1,

then ed1(Tu,Tv) ≤
(
ed1(u,v)

)b
, and for θ(t) = et

1
2b , we have that T is a basic θ-contraction.

Hence, T has a unique fixed point in X . �

6. CONCLUSIONS

Obtained results are an improvement of all previously derived results concerning θ-
contractions involving contractive conditions (2.1) and (3.5) on a complete metric space.
As presented, the same proof techniques are applicable in the setting of the complete
generalized metric space in the sense of Branciari and in that way we unify all results of
[4, 13, 14]. It is our belief that the same approach may be applied in many other results
concerning the concept of θ-contraction in the setting of b-metric space, extended b-metric
space, cone metric space, partial metric space, uniform spaces, etc. But, up to know, that
remains an open problem. Applications of presented theoretical results are numerous
and would be of a great importance to make an appropriate comparison of quality of
conclusions obtained in that way.
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33, NIŠ, 18000, SERBIA,
Email address: marija.cvetkovic@pmf.edu.rs

2 DEPARTMENT OF MEDICAL RESEARCH, CHINA MEDICAL UNIVERSITY HOSPITAL, CHINA MEDICAL UNI-
VERSITY, 40402, TAICHUNG, TAIWAN
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