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On the error estimates for the sequence of successive
approximations for cyclic ϕ–contractions in metric spaces

AKRAM SAFARI-HAFSHEJANI

ABSTRACT. In this paper, in the setting of metric spaces, we introduce the notion of strongly cyclic Seh-
gal type ϕ-contraction of type one as generalization of the notions of cyclic ϕ-contraction map in the sense of
Păcurar-Rus and cyclic contraction map in the sense of Suzuki-Kikawa-Vetro. Then we study the existence and
uniqueness of the best proximity points for such mappings by using the WUC property. In the following, while
presenting an algorithm to determine the best proximity points, we also find a priori and a posteriori error esti-
mates of the best proximity point for this algorithm associated with a strongly cyclic Sehgal type ϕ-contraction
of type one, which is defined on a uniformly convex Banach space with a modulus of convexity of power type.
Also, we give a positive answer to Zlatanov’s question [‘Error estimates for approximating best proximity points
for cyclic contractive maps’, Carpathian J. Math. 32(2) (2016), 265-270] on error estimates for the sequence of suc-
cessive approximations for cyclic ϕ-contraction maps in the sense of Păcurar-Rus. As an important result, we
obtain a generalization of Ćirić’s Theorem, which itself is a generalization of the Banach contraction principle in
a particular case.

1. INTRODUCTION

Fixed point theory is an important tool to solve equation Tx = x for mappings T de-
fined on subsets of metric or normed spaces. The possibility of estimating the error of
successive approximations and its convergence rate is one of the strengths of the fixed
point theory. There are equations Tx = x for which it is not easy or even impossible to
find the exact solution. The error estimate is very useful in these cases. An extensive study
about approximations of fixed points for self maps can be found in [2,3]. In 2010, Păcurar
and Rus [11], in their main result, in the case that ϕ ∶ R+ → R+ is a (c)-comparison func-
tion [2], proved the existence and uniqueness of the fixed point and found a priori and a
posteriori error estimates of the fixed point of a cyclic ϕ-contraction [11].

In [6], the concept of a fixed point was extended to the best proximity point for cyclic
maps. The problem of the existence of a best proximity point of cyclic mappings, have
been extensively studied by many authors; see for instance [7, 12, 14, 16–20] and refer-
ences therein. Therefore, it is important and necessary to estimate the error of successive
approximations and the rate of convergence.

In 2016, Zlatanov [19] found a priori and a posteriori error estimates for approxima-
tion best proximity point associated to a cyclic contraction map, which is defined on a
uniformly convex Banach space with modulus of convexity of power type. He posed a
question on the possibility of calculating the error estimates for the sequence of succes-
sive approximations for for cyclic ϕ-contractions [11], in the case that ϕ ∶ R+ → R+ is
only a comparison function [13] (i.e., ϕ is increasing function and the sequence {ϕn(t)}
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converges to 0 as n → ∞, for all t ∈ R+). Note that if ϕ ∶ R+ → R+ is a (c)-comparison
function, then ϕ is a comparison function, but the converse is not necessarily true [11].

In this work, we generalized the notion of cyclic ϕ-contraction maps in the sense of
Păcurar-Rus to strongly cyclic Sehgal type ϕ-contraction on distinct subsets of a metric
space (X, d), where the distance between them is not necessarily equal to zero. Therefore,
we have the more general concept best proximity points for these mappings, so we study
the existence and uniqueness of best proximity points for such mappings in the metric
spaces. We also find a priori and a posteriori error estimates of the best proximity point
for our proposed algorithm associated with a strongly cyclic Sehgal type ϕ-contraction of
type one, which is defined on two distinct subsets of a uniformly convex Banach space
with a modulus of convexity of power type. As consequence of our main results, we give
a positive answer to Zlatanov’s question [19] in the metric spaces and a generalization of
Ćirić’s Theorem [4].

2. PRELIMINARIES

Let (X, d) be a metric space. Define a distance between two subset A,B ⊆ X by
d(A,B) = inf{d(a, b) ∶ a ∈ A, b ∈ B}. A self mapping T ∶ A ∪ B → A ∪ B is said
to be cyclic provided that T (A) ⊆ B and T (B) ⊆ A. A point x∗ ∈ A ∪ B is called a best
proximity point for X if d(x∗, Tx∗) = d(A,B). If d(A,B) = 0, the above problems are
equivalent to find a fixed point of X .

Definition 2.1. [7,16] LetA andB be nonempty subsets of the metric space (X, d). Then (A,B)
is said to satisfies

(i) the property UC, if it can be concluded from relation

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn) = d(A,B),

for sequences {xn} and {x′n} in A and {yn} in B, that limn→∞ d(xn, x′n) = 0.
(ii) the property WUC, if for any {xn} ⊆ A such that for every ε > 0 there exists y ∈ B

satisfying that d(xn, y) ≤ d(A,B) + ε for n ≥ n0, then it can be conclude that {xn} is
Cauchy.

If A and B be nonempty subsets of a metric space (X, d) such that d(A,B) = 0, then
(A,B) satisfies the property UC [16]. In 2011, Espı́nola and Fernández-León [7], proved
that if A and B are nonempty subsets of the metric space (X, d) such that A is complete
and the pair (A,B) has the property UC, then (A,B) has the property WUC.

Definition 2.2. [11] Let A1, A2,⋯, Ak be nonempty subsets of the metric space (X, d) and let
T be a cyclic mapping on ⋃k

i=1Ai, that is

T (A1) ⊆ A2, T (A2) ⊆ A3,⋯, T (Ak) ⊆ A1.

If there exists a comparison function ϕ ∶ R+ → R+ such that

d(Tu, Tv) ≤ ϕ(d(u, v)),
for all u ∈ Ai and v ∈ Ai+1, where 1 ≤ i ≤ k and Ak+1 ∶= A1, then T is a cyclic ϕ-contraction
on ⋃k

i=1Ai.

Definition 2.3. [9] The modulus of convexity of a Banach space X is the function δX ∶ [0, 2] →
[0, 1] defined by

δX(ε) = inf {1 − ∥u + v
2

∥ ∶ ∥u∥ ≤ 1, ∥v∥ ≤ 1, ∥u − v∥ ≥ ε}.
The norm is called uniformly convex if δX(ε) > 0 for all ε > 0. The space (X,∥.∥) is called
uniformly convex Banach space.
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Suzuki et al. [16] proved that if A and B are nonempty subsets of a uniformly convex
Banach space X such that A is convex, then (A,B) has the property UC.

Remark 2.1. [9] Let (X,∥.∥) be a uniformly convex Banach space. Then for all u, v, p ∈ X ,
R > 0 and r ∈ [0, 2R] satisfying that ∥u− p∥ ≤ R, ∥v− p∥ ≤ R and ∥u− v∥ ≥ r; the following
implication holds:

∥u + v
2

− p∥ ≤ (1 − δX( r
R
))R.(2.1)

If (X,∥.∥) is a uniformly convex Banach space, then δX(ε) is strictly increasing func-
tion, so there exists the inverse function δ−1X of the modulus of convexity. If the inequality
δX(ε) ≥ Cεq holds for some C > 0 and q > 0 and every ε ∈ (0, 2], we say that the modulus
of convexity is of power type p. For example, in [10] the authors proved that if p ≥ 2
the modulus of convexity with respect to the canonical norm ∥.∥p in lp or Lp, is of power
type p and if p ∈ (1, 2) is of power type 2. For more details about the geometry of Banach
spaces, see references [1, 5, 8].

3. STRONGLY CYCLIC SEHGAL TYPE ϕ-CONTRACTIONS ON A ∪B OF TYPE ONE

We start this section with the following lemma.

Lemma 3.1. Let I be an identity function defined on R+ and ϕ ∶ R+ → R+ be a comparison
function, then we have

(i) ϕ(s) < s, for all s > 0;
(ii) ϕ(0) = 0;

in addition, if I − ϕ is a strictly increasing function, then we have
(iii) ϕ is continuous.

Proof. (i) If s > 0 and ϕ(s) ≥ s then ϕ
n(s) ≥ ϕ

n−1(s) ≥ ⋯ ≥ ϕ
2(s) ≥ ϕ(s) ≥ s > 0, for

every n ∈ N. So {ϕn(s)} ↛ 0 that is a contradiction. (ii) If ϕ(0) = s > 0 then 0 < s =
ϕ(0) ≤ ϕ( s

2
) < s

2
which is impossible. To prove (iii), let 0 ≤ s1 < s2. Since I − ϕ is strictly

increasing, we get s1 − ϕ(s1) < s2 − ϕ(s2) and so ϕ(s2) − ϕ(s1) < s2 − s1. Hence ϕ is
continuous. �

There are several conditions for the comparison functionϕ that have been considered in
the studied articles; see for instance [3,11] and references therein. In order to obtain some
information about the convergence of the Picard iteration {xn} in this paper, according to
the previous lemma, we only mention the condition I −ϕ is a strictly increasing function.

Definition 3.4. A function ϕ ∶ R+ → R+ is said to be a conditional comparison function if it is a
comparison function and I − ϕ is a strictly increasing function.

Given nonempty subsets A and B of a metric space (X, d), we set d∗(u, v) ∶= d(u, v) −
d(A,B) for every u, v ∈ X . It is immediately that

d
∗(u, v) ≤ d(u, z) + d∗(z, v)

and
d
∗(u, v) − d(A,B) ≤ d∗(u, z) + d∗(z, v),

for all u, v, z ∈ X . Now, to establish the main results of this section, adapted from the con-
tractions introduced by Sehgal [15], we introduce the following class of cyclic contraction
type mappings.
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Definition 3.5. Let A and B be nonempty subsets of the metric space (X, d) and let T be a cyclic
mapping on A ∪B. If there exists a conditional comparison function ϕ ∶ R+ → R+ such that

d
∗(Tu, Tv) ≤ ϕ (max {d∗(u, v), d∗(u, Tu), d∗(v, Tv)}) ,(3.2)

for all u ∈ A and v ∈ B, then T is said to be a strongly cyclic Sehgal type ϕ-contraction on A∪B
of type one.

Remark 3.2. If conditional comparison function ϕ is subadditive and

d(Tu, Tv) ≤ ϕ (max {d(u, v), d(u, Tu), d(v, Tv)}) + (I − ϕ)(d(A,B)),(3.3)

for all u ∈ A and v ∈ B, then T is a strongly cyclic Sehgal type ϕ-contraction on A ∪ B of type
one.
Note that for every a ∈ A and b ∈ B we have

ϕ(d(a, b)) = ϕ(d∗(a, b) + d(A,B)) ≤ ϕ(d∗(a, b)) + ϕ(d(A,B)),
so

ϕ(d(a, b)) − ϕ(d(A,B)) ≤ ϕ(d∗(a, b)) ∀ a ∈ A, b ∈ B.(3.4)

Hence from (3.3) and (3.4), we have

d
∗(Tu, Tv) ≤ ϕ (max {d(u, v), d(u, Tu), d(v, Tv)}) − ϕ(d(A,B))

= max {ϕ(d(u, v)), ϕ(d(u, Tu)), ϕ(d(v, Tv))} − ϕ(d(A,B))
= max {ϕ(d(u, v)) − ϕ(d(A,B)), ϕ(d(u, Tu))

− ϕ(d(A,B)), ϕ(d(v, Tv)) − ϕ(d(A,B))}
≤ max {ϕ(d∗(u, v)), ϕ(d∗(u, Tu)), ϕ(d∗(v, Tv))}
= ϕ (max {d∗(u, v), d∗(u, Tu), d∗(v, Tv)}) .

Example 3.1. Let a cyclic ϕ-contraction map on A ∪ B, it is easy to get d(A,B) = 0. If I − ϕ
is a strictly increasing function, we have a strongly cyclic Sehgal type ϕ-contraction on A ∪ B of
type one.

Example 3.2. A cyclic contraction map onA∪B in the sense of Suzuki et al. in [16], is a strongly
cyclic Sehgal type ϕ-contraction on A ∪B of type one with ϕ(t) = λt for t ≥ 0, that λ ∈ [0, 1).

We begin with the following lemma which will be used later.

Lemma 3.2. Let A and B be nonempty subsets of the metric space (X, d) with d(A,B) > 0 and
let T be a strongly cyclic Sehgal type ϕ-contraction onA∪B of type one. For given x0 ∈ A, define
Picard iteration {xn} by xn+1 ∶= Txn for each n ≥ 0. Then

(i) for every m,n ∈ N with n ≥ m ≥ 0, we have

0 ≤ d
∗(x2n, x2m+1) ≤ ϕ2m (Mx0

) ,
where

Mx0
= (I − ϕ)−1(d(x0, T 2

x0));
(ii) ∀ ε > 0, ∃m ∈ N ∶ d(x2n, x2m+1) ≤ d(A,B) + ε, for n ≥ m.

Proof. For every x ∈ A ∪B and each n ∈ N, let OT (x, n) ∶= {x, Tx,⋯, T
n
x} and

δ
∗[OT (x, n)] ∶= max{d∗(T ix, T jx) ∶ 0 ≤ i ≤ n is even and 0 ≤ j ≤ n is odd}.

First, we show that for each n ∈ N and x0 ∈ A, we have

δ
∗[OT (x0, n)] = d∗(x0, T jx0), for some odd j that 1 ≤ j ≤ n.(3.5)
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We may assume that δ∗[OT (x0, n)] = d∗(T ix0, T jx0), where 1 ≤ i ≤ n is even and 1 ≤ j ≤
n is odd. Since T is a strongly cyclic Sehgal type ϕ-contraction of type one then from (3.2),
we have

d
∗(T ix0, T jx0) =d∗(TT i−1x0, TT j−1x0)

≤ϕ(max {d∗(T i−1x0, T j−1x0), d∗(T i−1x0, T ix0), d∗(T j−1x0, T jx0)})
≤ϕ (δ∗[OT (x0, n)]) .(3.6)

Thus, we get (I − ϕ)(δ∗[OT (x0, n)]) ≤ 0, which, along with Lemma 3.1(i), requires that
δ
∗[OT (x0, n)] = 0. So δ∗[OT (x0, n)] = d∗(x0, Tx0), and hence (3.5), holds.

Now we show that for each n ∈ N,

δ
∗[OT (x0, n)] ≤Mx0

.(3.7)

To prove the claim note that from (3.5) we have, δ∗[OT (x0, n)] = d
∗(x0, T jx0), where

1 ≤ j ≤ n and j is odd. On the other hand, note that if d∗(x0, Tx0) < d∗(Tx0, T 2
x0) then

from Lemma 3.1(i) and (3.2), we have

0 < d
∗(T 2

x0, Tx0) ≤ ϕ (max {d∗(x0, Tx0), d∗(Tx0, T 2
x0)})

= ϕ (d∗(Tx0, T 2
x0))

< d
∗(Tx0, T 2

x0),
a contradiction. So

d
∗(Tx0, T 2

x0) ≤ d∗(x0, Tx0).
Hence from (3.2)

d
∗(Tx0, T 2

x0) ≤ ϕ(d∗(x0, Tx0)).(3.8)

If j = 1 (so n ≥ 1), applying the triangle inequality and (3.8), we get

δ
∗[OT (x0, n)] = d∗(x0, Tx0)

≤ d(x0, T 2
x0) + d∗(T 2

x0, Tx0)
≤ d(x0, T 2

x0) + ϕ(d∗(x0, Tx0))
≤ d(x0, T 2

x0) + ϕ(δ∗[OT (x0, n)]).
If j > 1 (so n ≥ 3), applying the triangle inequality, (3.2) and (3.6), we obtain

δ
∗[OT (x0, n)] = d∗(x0, T jx0)

≤ d(x0, T 2
x0) + d∗(T 2

x0, T
j
x0)

≤ d(x0, T 2
x0) + ϕ(δ∗[OT (x0, n)]).

So we have in both cases

(I − ϕ)(δ∗[OT (x0, n)]) ≤ d(x0, T 2
x0).

On the other hand, from the strictly increasing I − ϕ there exists its inverse function (I −
ϕ)−1, which is strictly increasing too, so

δ
∗[OT (x0, n)] ≤ (I − ϕ)−1 (d(x0, T 2

x0)) =Mx0
.

From relation (3.2), it can be easily concluded that

δ
∗[OT (xn0

, n)] ≤ ϕ(δ∗[OT (xn0−1, n + 1)]),(3.9)



198 Akram Safari-Hafshejani

for n0 ≥ 1.
(i) Since T is a strongly cyclic Sehgal type ϕ-contraction of type one, for every n ≥ m ≥

0, from (3.9), we have

d
∗(x2m+1, x2n) ≤δ∗[OT (x2m, 2n + 1 − 2m)]

≤ϕ (δ∗[OT (x2m−1, 2n + 2 − 2m)])
≤ϕ

2 (δ∗[OT (x2m−2, 2n + 3 − 2m)]) .
By continuing this process and using (3.7), for every n ≥ m ≥ 0, we obtain

0 ≤ d
∗(x2m+1, x2n)

≤ ϕ
2m (δ∗[OT (x0, 2n + 1)])

≤ ϕ
2m (Mx0

) .(3.10)

Therefore (i) holds.
(ii) ϕ is comparison function, so {ϕk (Mx0

)} is converges to 0. From (3.10), we get

∀ ε > 0, ∃m ∈ N ∶ d
∗(x2n, x2m+1) ≤ ε, for n ≥ m,

and hence (ii). �

Lemma 3.3. Let A and B be nonempty subsets of the metric space (X, d) with d(A,B) = 0 and
let T be a strongly cyclic Sehgal type ϕ-contraction onA∪B of type one. For given x0 ∈ A, define
Picard iteration {xn} by xn+1 ∶= Txn for each n ≥ 0. Then

(i) for every m,n ∈ N with n ≥ m that n −m is odd, we have

0 ≤ d(xn, xm) ≤ ϕm (Mx0
) ,

where

Mx0
= (I − ϕ)−1(d(x0, T 2

x0));
(ii) ∀ ε > 0, ∃m ∈ N ∶ d(xn, xm) ≤ ε, for n ≥ m.

Proof. For every x ∈ A ∪B and each n ∈ N, let

δ[OT (x, n)] ∶= max{d(T ix, T jx) ∶ 0 ≤ i ≤ n is even and 0 ≤ j ≤ n is odd}.
(i) Similar to proof Lemma 3.2(i), for every n ≥ m that n −m is odd, it can be proved

d(xm, xn) ≤δ[OT (xm, n −m)]
≤ϕ (δ[OT (xm−1, n −m + 1)])
≤ϕ

2 (δ[OT (xm−2, n −m + 2)]) .
By continuing this process and using (3.7), for every n ≥ m that n −m is odd, we obtain

0 ≤ d(xm, xn)
≤ ϕ

m (δ[OT (x0, n)])
≤ ϕ

m (Mx0
) .(3.11)

(ii) ϕ is comparison function, so {ϕk (Mx0
)} is converges to 0. Hence, from (3.11), we get

∀ ε > 0, ∃m ∈ N ∶ d(xn, xm) ≤ ε, for n ≥ m with n −m is odd,

so, it can be easily concluded that

∀ ε > 0, ∃m ∈ N ∶ d(xn, xm) ≤ ε, for n ≥ m.

�
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Lemma 3.4. LetA andB be nonempty subsets of the metric space (X, d) such that the pair (A,B)
(resp. (B,A)) has the property WUC. Let T be a strongly cyclic Sehgal type ϕ-contraction on
A∪B of type one. For x0 ∈ A, define Picard iteration {xn} by xn+1 ∶= Txn for each n ≥ 0. Then
{x2n} (resp. {x2n+1}) is a Cauchy sequence.

Proof. By using Lemma 3.2(ii), since the pair (A,B) (resp. (B,A)) has the propertyWUC,
we get {x2n} (resp. {x2n+1}) is a Cauchy sequence. �

Theorem 3.1. LetA andB be nonempty subsets of the metric space (X, d) such thatA is complete
and (A,B) has the property WUC. Assume that T is a strongly cyclic Sehgal type ϕ-contraction
on A ∪ B of type one. For x0 ∈ A, define Picard iteration {xn} by xn+1 ∶= Txn for each n ≥ 0.
Then the following statements hold

(i) T has a unique best proximity point x∗ in A;
(ii) x∗ is a unique fixed point of T 2 in A;

(iii) {T 2n
x} converges to x∗ for every x ∈ A;

(iv) Tx∗ is a best proximity point of T inB that if (B,A) has theWUC property, it is unique.
(v) If (B,A) has the WUC property, then {T 2n

y} converges to Tx∗ for every y ∈ B.

Proof. (i) Let x0 ∈ A. By Lemma 3.4, {x2n} is a Cauchy sequence inA. SinceA is complete,
{x2n} is converges to some x∗ ∈ A and we have

d
∗(x2n, Tx∗) ≤ϕ (max {d∗(x2n−1, x∗), d∗(x2n−1, x2n), d∗(x∗, Tx∗)}) .

Hence

d
∗(x∗, Tx∗) =limn→∞d

∗(x2n, Tx∗)
≤ϕ (d∗(x∗, Tx∗)) ,

so from Lemma 3.1(i), we obtain d(x∗, Tx∗) = d(A,B). Also

d
∗(Tx∗, T 2

x
∗) ≤ ϕ (max {d∗(x∗, Tx∗), d∗(Tx∗, T 2

x
∗)})

= ϕ(d∗(Tx∗, T 2
x
∗)),

hence from Lemma 3.1(i), we obtain d(Tx∗, T 2
x
∗) = d(A,B). Since (A,B) has the WUC

property, then T
2
x
∗
= x

∗. Suppose that z∗ is other best proximity point of T in A, then
z
∗ is a fixed point of T 2, too. Without loss of generality suppose that d∗(x∗, T z∗) ≤

d
∗(z∗, Tx∗) then we have

d
∗(z∗, Tx∗) = d∗(T 2

z
∗
, Tx

∗) ≤ϕ (max {d∗(Tz∗, x∗), d∗(Tz∗, T 2
z
∗), d∗(x∗, Tx∗)})

=ϕ (d∗(Tz∗, x∗))
≤d

∗(Tz∗, x∗)
=d

∗(Tz∗, T 2
x
∗)

≤ϕ (max {d∗(z∗, Tx∗), d∗(z∗, T z∗), d∗(Tx∗, T 2
x
∗)})

=ϕ (d∗(z∗, Tx∗)) .
So

d
∗(z∗, Tx∗) ≤ ϕ (d∗(z∗, Tx∗)) ,

and hence from Lemma 3.1(i), we get d(z∗, Tx∗) = d(A,B). Since d(x∗, Tx∗) = d(A,B)
and (A,B) has the property WUC, we get z∗ = x∗.
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(ii) Suppose that u∗ is other fixed point of T 2 in A, then

d
∗(u∗, Tu∗) = d∗(T 2

u
∗
, Tu

∗)
≤ ϕ (max {d∗(u∗, Tu∗), d∗(Tu∗, T 2

u
∗)})

= ϕ(d∗(u∗, Tu∗)),
hence from Lemma 3.1(i), we obtain d(u∗, Tu∗) = d(A,B) that is u∗ is a best proximity
point of T , so from (i), we get u∗ = x∗.

(iii) is naturally obtained from the proof of (i) and (ii).
(iv) From (i) and (ii), Tx∗ is a best proximity point of T in B. To prove uniqueness,

suppose that v∗ is an another best proximity point of T in B, so it can be proved as before
d(Tv∗, T 2

v
∗) = d(A,B), from (i) Tv∗ = x∗. Because (B,A) has theWUC property, T 2

v
∗
=

v
∗. So Tx∗ = T 2

v
∗
= v

∗.
(v) Since limn→∞ d(x∗, T 2n

y) = limn→∞ d(T 2n−1
y, T

2n
y) = d(A,B) = d(x∗, Tx∗) and

(B,A) has the WUC property, then

lim
n→∞

d(Tx∗, T 2n
y) = 0.

�

4. PRIORI AND POSTERIORI ERROR ESTIMATES

Now, according to the results of the previous section, we have the next approximation
theorem that is a direct consequence of Lemma 3.3 and Theorem 3.1.

Theorem 4.2. Let ϕ ∶ R+ → R+ be a conditional comparison function and A and B be nonempty
subsets of the metric space (X, d) such that A is complete. Assume that T is a strongly cyclic
Sehgal type ϕ-contraction on A ∪B of type two, that is

d(Tu, Tv) ≤ ϕ (max {d(u, v), d(u, Tu), d(v, Tv)}) ,
for all u ∈ A and v ∈ B. Then T has a unique fixed point x∗ ∈ X such that {Tnx0} converges to
x
∗ for every starting point x0 ∈ A. Also, the following estimates

d(Tmx0, x∗) ≤ ϕm ((I − ϕ)−1(d(x0, T 2
x0))

and

d(Tmx0, x∗) ≤ ϕ2 ((I − ϕ)−1(d(Tm−2x0, Tmx0))
≤ ϕ ((I − ϕ)−1(d(Tm−2x0, Tmx0))) ,

hold, for all x0 ∈ A.

Corollary 4.1. Especially in the previous theorem in the case that ϕ(t) = λt for t ≥ 0, that
λ ∈ [0, 1) is a constant, T has a unique fixed point x∗ ∈ X such that {Tnx0} converges to x∗ for
every starting point x0 ∈ X . Also, the following estimates

d(Tmx0, x∗) ≤
λ
m

1 − λ
d(x0, T 2

x0)
and

d(Tmx0, x∗) ≤
λ

1 − λ
d(Tm−2x0, Tmx0),

hold, for all x0 ∈ X .

The next theorem is proved exactly like Lemma 3.3 and Theorem 3.1, which we omit
from bringing it. This is our answer to Zlatanov’s question.
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Theorem 4.3. Let ϕ ∶ R+ → R+ be a conditional comparison function and A1, A2,⋯, Ak be
nonempty closed subsets of the metric space (X, d). Assume that T is a cyclic ϕ-contraction
on ⋃k

i=1Ai such that I − ϕ be a strictly increasing function. Then T has a unique fixed point
x
∗
∈ ⋂k

i=1Ai such that {Tnx0} converges to x∗ for every starting point x0 ∈ ⋃k
i=1Ai. Also, the

following estimates
d(Tmx0, x∗) ≤ ϕm ((I − ϕ)−1(d(x0, T kx0))

and

d(Tmx0, x∗) ≤ ϕk ((I − ϕ)−1(d(Tm−kx0, Tmx0)) ,
hold, for all x0 ∈ A.

It is important that even if we have a self-mapping on a complete metric space (X, d),
we can obtain the following important theorem with the same methods of proving the
results in the previous section. This theorem is also a generalization of Theorem 1 of [4],
which adds to its importance.

Theorem 4.4. Let ϕ ∶ R+ → R+ be a conditional comparison function. Assume that self map T
is a strongly Ćirić type ϕ-contraction on a complete metric space (X, d), that is

d(Tu, Tv) ≤ ϕ (max {d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)}) ,(4.12)

for all u, v ∈ X . Then T has a unique fixed point x∗ ∈ X such that {Tnx0} converges to x∗ for
every starting point x0 ∈ X . Also, the following estimates

d(Tmx0, x∗) ≤ ϕm ((I − ϕ)−1(d(x0, Tx0))
and

d(Tmx0, x∗) ≤ ϕ ((I − ϕ)−1(d(Tm−1x0, Tmx0)) ,
hold, for all x0 ∈ X .

Let ϕ′ ∶ R5
+ → R+ be a 5-dimensional comparison [3, Definition 2.4] function and

ψ ∶ R+ → R+, ψ(t) = ϕ(t, t, t, t, t), t ∈ R+.

It is not difficult to see that a generalized ϕ
′-contraction map [3, Definition 2.5], satisfies

in (4.12) with ϕ(t) ∶= ϕ
′(t, t, t, t, t) for t ≥ 0. Therefore, Theorem 4.4 is another version of

Theorem 2.10 [3].

Corollary 4.2. [4, Theorem 1] Especially in the previous theorem, in the case that ϕ(t) = λt

for t ≥ 0, that λ ∈ [0, 1) is a constant, T has a unique fixed point x∗ ∈ X such that {Tnx0}
converges to x∗ for every starting point x0 ∈ X . Also, the following estimates

d(Tmx0, x∗) ≤
λ
m

1 − λ
d(x0, Tx0)

and

d(Tmx0, x∗) ≤
λ

1 − λ
d(Tm−1x0, Tmx0),

hold, for all x0 ∈ X .

In the next result, we find a priori and a posteriori error estimates of the best proximity
point for the Picard iteration associated to a strongly cyclic Sehgal type ϕ-contraction of
type one, which is defined on a uniformly convex Banach space with modulus of convex-
ity of power type.
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Theorem 4.5. Let (X,∥.∥) be a uniformly convex Banach space such that δX(ε) ≥ Cεq for some
C > 0, q ≥ 2 and every ε ∈ (0, 2]. Suppose that A and B be nonempty, closed and convex subsets
ofX with d ∶= d(A,B) > 0. Let T ∶ A∪B → A∪B be strongly cyclic Sehgal type ϕ-contraction
on A ∪B of type one, then

(i) there exists a unique best proximity point x∗ of T in A such that Tx∗ is a unique best
proximity point of T in B and T 2

x
∗
= x

∗;
(ii) for every x0 ∈ A, the sequence {T 2n

x0} converges to x∗ and {T 2n+1
x0} converges to

Tx
∗;

(iii) a priori error estimate holds in the following implication:

∥x∗ − T 2m
x0∥ ≤ (ϕ2m (Mx0

) + d)
p

√
ϕ2m (Mx0

)
Cd

;

(iv) a posteriori error estimate holds in the following implication:

∥T 2m
x0 − x

∗∥ ≤ (Mx2m
+ d) p

√
Mx2m

Cd
;

where

Mx0
= (I − ϕ)−1(d(x0, T 2

x0)) and Mx2m
= (I − ϕ)−1(d(x2m, T 2

x2m)).

Proof. The proof of (i) and (ii) follows directly from Theorem 3.1.
(iii) For every n ∈ N let xn = T

n
x0. From Lemma 3.2(i), for n ≥ m ≥ 0 we have the

inequalities

∥x2n − x2m+1∥ ≤ ϕ2m (Mx0
) + d,

∥x2m − x2m+1∥ ≤ ϕ2m (Mx0
) + d

and

∥x2n − x2m∥ ≤ 2 (ϕ2m (Mx0
) + d) .

Now from (2.1), with u = x2n, v = x2m, p = x2m+1, r = ∥x2n − x2m∥, R = ϕ
2m (Mx0

) + d
and using the convexity of the set A, we get

d ≤ ∥x2n + x2m
2

− x2m+1∥

≤ (1 − δ( ∥x2n − x2m∥
ϕ2m (Mx0

) + d
)) (ϕ2m (Mx0

) + d) ,

so, we obtain the inequality

δ( ∥x2n − x2m∥
ϕ2m (Mx0

) + d
) ≤

ϕ
2m (Mx0

)
ϕ2m (Mx0

) + d
.(4.13)

From the uniform convexity of X it follows that δX is strictly increasing and therefore
there exists its inverse function δ−1X , which is strictly increasing. From (4.13), we get

∥x2n − x2m∥ ≤ (ϕ2m (Mx0
) + d) δ−1X (

ϕ
2m (Mx0

)
ϕ2m (Mx0

) + d
) .(4.14)
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It follows from the inequality δX(t) ≥ Ctq that δ−1X (t) ≤ ( t
C
)

1
q . Using (4.14), we obtain

∥x2n − x2m∥ ≤ (ϕ2m (Mx0
) + d) q

√
√√√√√⎷

ϕ2m (Mx0
)

C (ϕ2m (Mx0
) + d)

≤ (ϕ2m (Mx0
) + d)

q

√
ϕ2m (Mx0

)
Cd

.(4.15)

So, from (4.15), for n ≥ m ≥ 0 we obtain

∥x2n − x2m∥ ≤ (ϕ2m (Mx0
) + d)

q

√
ϕ2m (Mx0

)
Cd

.(4.16)

Letting n→∞ in (4.16), we obtain

∥x∗ − T 2m
x0∥ ≤ (ϕ2m (Mx0

) + d)
q

√
ϕ2m (Mx0

)
Cd

.

(iv) If we use relation (4.16) to get a posteriori error estimate, we have

∥x2m+2i − x2m∥ ≤ (ϕ0 (Mx2m
) + d)

q

√
ϕ0 (Mx2m

)
Cd

.(4.17)

After letting i→∞ in (4.17), we obtain the inequality

∥T 2m
x0 − x

∗∥ ≤ (Mx2m
+ d) q

√
Mx2m

Cd
.(4.18)

�

If T is a weak cyclic Kannan contraction map [12] or a cyclic contraction map in the
sense of Suzuki et al. in [16], we have the following corollary.

Corollary 4.3. In the previous theorem, in the special case, if ϕ(t) = λt for every t ≥ 0 and some
λ ∈ [0, 1), then we have

(i) a priori error estimate holds

∥x∗ − T 2m
x0∥ ≤ (∥x0 − T

2
x0∥

1 − λ
+ d) q

√
∥x0 − T 2x0∥
Cd(1 − λ) ( q

√
λ)2m;

(ii) a posteriori error estimate holds

∥T 2m
x0 − x

∗∥ ≤ (∥T
2m−2

x0 − T
2m
x0∥

(1 − λ) + d) q

√
∥T 2m−2x0 − T

2mx0∥
Cd(1 − λ) ( q

√
λ)2.

Proof. (i) First note that, since ϕ(t) = λt, then Mx0
= (I − ϕ)−1(∥x0 − T 2

x0∥) = 1
1−λ

∥x0 −
T

2
x0∥, so from Theorem 4.5(iii), we have

∥x∗ − T 2m
x0∥ ≤ ( λ

2m

1 − λ
∥x0 − T 2

x0∥ + d)
q

√
λ2m

1−λ
∥x0 − T 2x0∥
Cd

≤ (∥x0 − T
2
x0∥

1 − λ
+ d) q

√
∥x0 − T 2x0∥
Cd(1 − λ) ( q

√
λ)2m.
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(ii) Since Mx2m−2
=

1
1−λ

∥x2m−2 − T 2
x2m−2∥, so similar to (4.17), we obtain the inequality

∥T 2m
x0 − x

∗∥ ≤ (ϕ2 (Mx2m−2
) + d)

q

√
ϕ2 (Mx2m−2

)
Cd

= (λ
2∥T 2m−2

x0 − T
2m
x0∥

(1 − λ) + d) q

√
∥T 2m−2x0 − T

2mx0∥
Cd(1 − λ)

q
√
λ2

≤ (∥T
2m−2

x0 − T
2m
x0∥

(1 − λ) + d) q

√
∥T 2m−2x0 − T

2mx0∥
Cd(1 − λ) ( q

√
λ)2.

�
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[11] Păcurar, M.; Rus, I. A. Fixed point theory for cyclic ϕ–contractions, Nonlinear Anal. 72 (2010), 1181-1187.
[12] Petric, M. Best proximity point theorems for weak cyclic Kannan contractions. Filomat 25 (2011), no. 2,

145-154.
[13] Rus, I.A. Generalized contractions and applications. Cluj University Press, Cluj-Napoca, 2001.
[14] Safari-Hafshejani, A. The existence of best proximity points for generalized cyclic quasi-contractions in

metric spaces with the UC and ultrametric properties. Fixed Point Theory 23 (2022), no. 2, 507-518.
[15] Sehgal, V. M. On fixed and periodic points for a class of mappings. J. London Math. Soc. 5 (1972), no. 2,

571-576.
[16] Suzuki, T.; Kikawa, M.; Vetro, C. The existence of best proximity points in metric spaces with the property

UC. Nonlinear Anal. 71 (2009), 2918-2926.
[17] Zhelinski, V. Contraction map sets with an external factor and weakly fixed points. arXiv:2309.13062. (2023).
[18] Zhelinski, V.; Zlatanov, B. On the UC and UC

∗ properties and the existence of best proximity points in
metric spaces. God. Sofiı̆. Univ. ”Sv. Kliment Okhridski.” Fac. Mat. Inform. 109 (2022), 121-146.

[19] Zlatanov, B. Error estimates for approximating best proximity points for cyclic contractive maps. Carpathian
J. Math. 32 (2016), no. 2, 265-270.

[20] Zlatanov, B. On a Generalization of Tripled Fixed or Best Proximity Points for a Class of Cyclic Contractive
Maps. Filomat 35 (2021), no. 9, 3015-3031.

DEPARTMENT OF PURE MATHEMATICS, PAYAME NOOR UNIVERSITY (PNU), P. O. BOX: 19395-3697, TEHRAN,
IRAN

Email address: asafari@pnu.ac.ir


	1. Introduction
	2. Preliminaries
	3. strongly cyclic Sehgal type -contractions on AB of type one
	4. Priori and posteriori error estimates
	Acknowledgments
	References

