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Existence and uniqueness of solution of a tripled
system of fractional Langevin differential
equations with cyclic boundary conditions

HAMID BAGHANI', JEHAD ALZABUT?3, JUAN J. NIETO*, ABDELKRIM
SALIM®:6

ABSTRACT. The present work examines the solvability of a tripled system of fractional
Langevin differential equations with cyclic antiperiodic boundary conditions. The Krasnosel-
skii fixed point theorem, the Banach contraction mapping theorem, and specific properties of
the Mittag-Leffler functions are employed to establish sufficient conditions for the existence
and uniqueness of solutions. The feasibility of the primary findings is illustrated through the
discussion of several numerical examples.

1. INTRODUCTION

The subject of fractional differential equations (FDEs) has become highly
popular and is regarded as a major area of research mostly because of
its demonstrated progress in both theoretical and practical aspects in re-
cent decades. FDEs are highly valuable in many domains such as fluid
flow, physics, dynamical processes in self-similar and porous structures,
blood flow phenomena, electrodynamics of complex media, capacitor the-
ory, electrical circuits, biology, control theory of dynamical systems, and
fitting of experimental data. For more details, we refer the reader to the
monographs [3, 13, 16, 18, 20, 21, 22] and the papers [4, 6,7, 8, 17].

The examination of fractional differential equation systems is deemed
to be of great importance and practicality due to their prevalence in a di-
verse array of problems. The results indicate that fractional differential
systems are more appropriate for describing physical phenomena that ex-
hibit genetic characteristics and memory. In particular, the existence and
uniqueness of systems that are supplemented with boundary conditions
have become one of the primary areas of interest in mathematical analy-
sis; see [1, 2,19, 23, 24, 25].
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In an effort to heighten awareness of this matter, we shall examine sev-
eral pertinent findings. Recently in [14], the authors considered the exis-
tence and uniqueness of solutions for the following boundary value prob-
lem of Langevin differential equation with two different fractional orders
(1.1 DD +w)Q(t) = h(, 1), 0<t<1, 0<v<1, 1<(<2,

' Q(0) + Q(1) = 0,97Q(0) +DYQ(1) = 0, D?¥Q(0) + D?¥Q(1) = 0,

where D7 is a fractional derivative in Caputo sense of order o € {v,(},
h : [0,1] x R — R is a given continuous function, w is a real number
and D™ (m = 1,2) denotes the sequential fractional derivatives with the
features D7Q = 97Q and DF°Q = D°DE-DoQ k=23, ....

In light of the findings of [14], the authors in [9] studied a coupled sys-

tem of Langevin differential equations of fractional order and associated
to antiperiodic boundary conditions of the form

(1.2)
D(DVL + w)Q(t) = U1(t,Q1(t),2(t), 0<t<1l, 0<11 <1, 1< <2,
D2 (DV2 4 wo)a(t) = Ua(t, Q1(1),Q0(t), 0<t<l, 0<e<1, 1< (<2,
01(0) + 21 (1) = 0,D*1Q1(0) + D1 Q1 (1) = 0, D>1Q;(0) + D124 (1) = 0,
Q2(0) + Q2(1) = 0,D"2Q2(0) + D*2Q5(1) = 0, D?*2Q5(0) + D?2Q2(1) = 0,

where © is a fractional derivative in Caputo sense of order v € {v1, (1, 19,(2},
D™ (m, i = 1,2) are the sequential fractional derivatives, Uy, ¥ : [0, 1] x
R x R — R are given continuous functions and wy,ws € R.

Very recently in [26], Zhang and Ni introduced the tripled systems of
fractional differential equations with cyclic conditions in the following
form:

DDV + W) (t) = P1(t, Q1 (t), Q2(t), 23(1), 0<t <1,

(DY + w)a(t) = Wa(t, 2 (1), Qa(t), V(1)) 0<t<1,
13) DE(DY + w)Qa(t) = W3(t, Qi (t), Qa(t), 3(1), 0<t <1,

01(0) + Q2(1) = 0, D1 (0) + D¥Q2(1) = 0,

Q2(0) 4+ Q3(1) = 0,D*Q3(0) + D¥Q3(1) =0,

Q3(0) + Q1(1) = 0,D"Q3(0) + D* Q4 (1) = 0,

where ¥, : [0, 1] xRxRxR — R, i = 1, 2, 3 are given continuous functions,
weR,0<y¢<land 1l < v+ ¢ < 2. By means of fixed point
theorems and some analytical skills, sufficient conditions for the existence,
uniqueness and stability of the proposed problem are obtained.
Motivated by the above mentioned work, the objective of this paper
is to study a tripled system of Langevin differential equations of frac-
tional order and associated to cyclic antiperiodic boundary conditions of
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the form

DD +w)Q1(t) = U1 (t, Q1(t), (1), (L), 0<t <1,

D(DY + w)Qa(t) = Wa(t, Q1(t), Q2(t), (1), 0<t <1,

4 DC(DY + w)Q3(t) = T3(t, Q1(t), Q2(t), Q(t), 0<t <1,
Q1(0) + Q2(1) = 0,D¥Q1(0) + D¥Qa(1) = 0, D?¥Q1(0) + D2¥Qa(1) = 0,
Q2(0) + Q3(1) = 0, D¥Q2(0) + DVQ3(1) = 0, D3¥Q2(0) + D?¥Q3(1) = 0,
(

Q3(0) + Q1(1) = 0,D*Q3(0) + D¥Q1(1) = 0, D?*Q3(0) + D Q1 (1) = 0,

where ¥, : [0, 1] xRxRxR — R, i = 1, 2, 3 are given continuous functions,
w E R+, 0 <v<land1 < ¢ < 2. We prove the existence and uniqueness
of solutions for system (1.4) via the Krasnoselskii fixed point theorem and
the Banach contraction mapping theorem. In view of the results of [26], it
is observed that the results are closely related to the friction coefficient w.
Nevertheless, these theorems are not valid for large values.

The key novelties that are presented in this study are as follows:

e The existence and uniqueness of solutions for equation (1.4) is
established independently of the friction coefficient w, hence
highlighting the principal contribution of the paper.

e The primary findings hold true for high friction coefficient
values of w, as evidenced by alternative methods of demon-
stration.

e System (1.4) incorporates Langevin differential equations of
fractional orders 0 < ¥ < 1 and 1 < ¢ < 2, which are higher
compared to those addressed in system (1.3). This necessitates
more complex integral interpretations, broader use of gener-
alized operators, and the inclusion of additional boundary
conditions, leading to several challenging steps in the proof.
Consequently, our study represents a significant generaliza-
tion and a natural progression in the development of this the-
ory.

The paper is outlined as follows: Section 2 will serve as prerequisites
prior to the main results. We assemble some preparations of fractional
calculus and state some essential theorems which are important to the ex-
istence of solution of the considered problem. The main theorems are re-
ported in Section 3. In the section, by using linear algebra and inverse
matrix tools, we first introduce the general solution of the system (1.4),
then we conclude fixed points of the operator, which is acting as a solu-
tion of the system (1.4). In Section 4, the validity of the main results are
illustrated by two particular examples.
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2. ESSENTIAL PRELIMINARIES

We begin by revisiting the fundamental definitions and lemmas that
will be required in the following sections. For more detailed informa-
tion on the properties of fractional calculus, readers can consult the mono-
graphs [18, 22].

Definition 2.1. The Riemann-Liouville integral of order v > 0 for a function
O : [0, 00) — Ris defined as

Y o(u— )0t

2.5 J°0(u) = —_—
@5) W= [
where T' is the Gamma function, provided the right side integral exists and is
finite.

Definition 2.2. The Riemann-Liouville fractional derivative of order v for © :
[0,00) — R can be written as

(2.6)
d* 1 dk
Reyv _ ~k—v _
©a®(u) - a ®(u) F(k . I/) duk

oWdl, 0<u<l,

du®
Definition 2.3. The Caputo fractional derivative of order v for © : [0,00) — R
can be written as

(2.7)
_ _ )2
0:0(u) = " [6(w)-6(a)-0'(@) " -6 ()
wheren — 1 < v < n, n € N, provided the right-hand-side integral exists and is
finite.
For the relationship between (2.6) and (2.7) and for further properties of
these concepts, we refer the reader to [18, 22].

Lemma 2.4 ([18]). The general solution to 'O = 0, where k € N*, k — 1 <
v < k, is given by

O(u) =lo+ hu+ lou? + -+ [_quf 1,
where [,,(n =0,1,...,k — 1) are real numbers.

Definition 2.5 ([22]). The Laplace transform of the Caputo fractional derivative
of order v € (¢ — 1,q], ¢ € N, is given by

/ (u—r)*"=VO(k)dk, k—1 < v < k.

(u—a)k=?

—.. ._@(k—l)(a)w} )

LDYO)(s) =s"U(s) — Z sU 71y (0),
i=0

where U (s) represents the Laplace transform of the function ©.

Definition 2.6 ([22]). Let v and w be positive real numbers, and let r be a real
number. The generalized Mittag-Leffler function is given by

o0

. F r—f—m xm
(2.8) @w@*:z:mm&mnﬂw'mr

m=0
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Remark 2.7. In relation (2.8):
o Ifr =w =1, we obtain

o0

Bhale) = Bule) = X i

= mv + 1)

m

and is referred to as Mittag-Leffler function of order v.
o Ifr =1, we have

oo

Ezl),w(w) = Ev,w(‘r) = Z F(

)
m=0 mu + ’U))

xm

and is referred to as the two-parameter Mittag-Leffler function with pa-
rameters v and w.

o It is important to note that E, ,,(—x) is completely monotonic function
when 0 < v < 1and w > v. This means that E,, .,(—x) has derivatives
A (Byw(—2)) forallm =0,1,2,...and (-1)"L(E, ,(—z)) > 0
for all x > 0. This property is particularly useful in proving the subse-
quent lemmas.

We now present several key lemmas that are central to our discussion.

Lemma 2.8 ([5]). Fora > 8 >0, A € R, [ € {0,1,2,---} and R(s) > 0
where R(s) represents the real part of the complex number s, the Laplace inverse
transform of the mapping F(s) = W is the following

CHE()HE) =t B L (7).

Lemma 2.9 ([10]). For every 0 < v < 1and 6 > 0, it holds that
|1 — E,(—0) | 1
0 “Tw+1)

Lemma 2.10. For any 0 < v < 1and 6 > 0, the following inequality holds:
1-E, 2(=6)
| LB ¢

Proof. Let v € (0,1] and # > 0 be fixed real numbers, and define f(t) =
E, 2(—t) on the interval [0, 8]. It is clear that the function f is both continu-
ous and differentiable. By the Lagrange mean value theorem, there exists
a point ¢g € (0, 0) such that

1—E,2(—0

A
Given that (—1)" dc;’; (Ev72(—£f)) > 0 for eachn = 0,1,2,---,and z > 0,
it follows that f'(t) = Ej 5(— t) is an increasing function on (0, 6). This

implies — f'(cp) < —f(0) = F(v+2 Addltlonally, since0 < 1—-FE,2(—0) <

1-E,2(=9)
2 | < F(v+2) = F(v+1) 0

Lemma 2.11 ([12]). Let v € (0,1) and 0 be a positive real number. Then, for
every t € [0, 1], the following relations hold:

1, we have |
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L: t"T B, o (—0tY) = % b2 (—0tY)).

(1-
IL: tYE, o1 (—07) = %

Proof. As we know, for each v, w > 0, the Mittag-Leffler function E, ,,(z)
is given by the second item in Remark 2.7. Then,

I: Foreveryt e [0,1],v € (0 1) and 6 > 0, we have

ntnv
tv+1EU v _ 'u+1
w2l Z I'(nv + v+2)
> nent(nJrl)v —t o mamtmv

tnz% (n+1 w+2) 7; ['(mov +2)

memtm'v
-1 - —0t")).
0 ( = T(mv+2) mv+2 ) )
IL.: Also, for every ¢ € [0,1], v € (0,1) and § > 0, we have

v v & 1)ngn ¢
£ By o1 (—08°) =t Zp()i

3
Il
<}

_ i (—prenintr i 1)mgmyme
- F((n+Lv+1) 0 F(mv—l—l

m=1

= (=1)memem 1— E,(—6t%)
(1_2 T(mo + 1) ) 0

m=0

The proof is completed. O
Lemma 2.12 ([11]). For v € (0,1], 6 > 0, and t1,t2 € [0,1] with t; < to, the
following inequality holds:
< 0ty —ty)

T Tle+1)
Lemma 2.13. Forv € (0,1],0 > 0,and t1,t5 € [0, 1] witht, < tg, the following
inequality holds:

|E, (—0t3) — E,(—0t7)

|t2EU72( 9t2) -t FE, 2( 0t”)| < (tg — tl)
Proof. Let h(t) = tE, 2(—6t") be defined on [0, 1]. It is clear that the func-
tion h is continuous, and its derivative is given by »'(¢t) = E,(—6t"). By
the Lagrange mean value theorem, there exists ¢y € (1, ¢2) such that
2PuaC00) 0B COR) _ 102 M0 _ ) — ().
2=l 2=l

Hence,
[taEy o(—0t5) — t1E

w2901 - Cgeny <1,
lta — t1]

Therefore,
[taEyo(—0ty) — t1E, 2(—0t7)| < (t2 — t1).
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Lemma 2.14 ([11]). Let v € (0,1), w € (1, 2], and w be positive real numbers.
Define the function z(t) = t*T= E, , 1, (—wt) on the interval [0, 1]. Then, =
is an increasing function.

Theorem 2.15 (The Krasnoselskii fixed point theorem [15]). Let D be a
closed, convex, bounded and nonempty subset of a Banach space X. Let A and B
be two operators such that

(D). Az +By € D forall z,y € D;
(IT). A is a completely continuous operator;
(III). B is a contraction mapping.

Then there exists z € D such that z = Az + Bz.

3. MAIN RESULTS

In the following lemma, which is the most important in our paper, we
obtain the general solution of the problem (1.4).

Lemma 3.1. Let $; € C([0,1],R);3 = 1,2,3. Then, the general solution Q2 =
(Q1,Q0,83) on the interval [0, 1] of the tripled system of fractional Langevin
equations

(3.9)
DYDY +w)N(t) =H:(t), 0<t<1,0<v<1,1<(<2,i=1,2,3,

with the cyclic boundary conditions

(3.10)
01(0) + Q2(1) = 0,079 (0) + DQ(1) = 0, D*Q;(0) + D Qy(1)

Q2(0) + Q3(1) = 0,D9"Q2(0) + D"Q3(1) = 0,D*Q(0) + D> Q3(1)
Q3(0) + Q1 (1) = 0,D7Q3(0) + DYQ (1) = 0, D*Q3(0) + D Q4 (1)

0
0,
0

)
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is given by

(3.11)
D () = " Evpr (-wt”) (;F(éi”;) /0 (1 =0 " (H1(0) +$H2(0) — $H3(0))dl+

L ! _ ¢—1 _ B
‘ZF(O/O(1 6> (9s(0) = 92(0) fJ1(f))d€)

— "V By e (—wt”) (Egz — Z; /01(1 — Z)C‘”‘lm(é)dz)

* /t(t — )T B,y (—w(t = 0)") M (0)de

Y -1 T@2-v) [! w1
+ B (~wt )(2(c3+1)r(<—u)/0 (1-0)°

X ((a02 —2bc% —ac— a)H1(0) + (ac® 4 ac + a — 2b)H2(¢) — (ac® + ac — 2bc — a)H3 (6))d€)

v 1 ! —1
+ By (—wt )(W/O (1-0)°
x (a(c2 = 1)91(0) +a( + e+ 1)H2(0) —a(® + e — 1)53(5))&)

4 Bu(ct’) (g [ 0= 07T B = ) (=6*91(0) = $2(6) + 9 (4))de).

(3.12)

0u(t) = 1 Busn () (g [ (1= 077 (92(0) +-55(6) = 51 (0Dt

T RPN _ _
370 [, (1= 07 010 = 5a(0) — $s(6)a)

B, (—wt”) (?g = Z; /01(1 0 (0

* /t(t — OB e (—w(t = 0)")H2(0)de
0

Y -1 Tr@2-v) [ .
+ By (-wt )(2(03 TOTC—v) /0 (1-o°

X ( — (ac® + ac — 2bc — a)H1(€) + (ac® — 2bc% — ac — a)$H2(€) + (ac® + ac + a — 2b)3§3(€)>d€)

v 1 ! —1
B (—wt )(72“0(03 +1)/0 (1—0)°
x ( —a(@ 4 e— 1510 +a(@ —c— 1)H2(0) + a( + ¢+ 1).63(6))d£)

4 Bucot) (G [ 0= 077 B (1 = ) e91(0) = 9:(0) = $5(6)ar).



Existence and uniqueness of solution of a tripled system of sequential fractional Langevin... ~ 281

(3.13)

0u(t) = 1B (~t”) (e [0 057 5u(0) 4 5000) — 920t

M) Jy
L
2F(C)/o(1 0> ($92(0) = Hs(0) fh(ﬁ))de)

T By a(—wt”) (?E? - Z; /01(1 0 (0

* /t(t — )T B (—w(t = 0)")$s(0)de

Y -1 T2-v) [! o1
+ By (—wt )(2(c3+1)r(<—u)/0 (1—0)°

X ((a02 +ac+a—20)H1(0) — (ac® + ac — 2bc — a)H2(£) + (ac® — 2bc® — ac — a)H3 (Z))d()

v 1 ! —1
+ By (—wt )(W/o (1-0)°

x ( —a(@ 4 e—1)9200) +a( —c— 1)H3(0) + a( + ¢+ 1)551(6))d£)

TL/O (1—é)“”*lEu,uH(—w(l—é)”)(—m(é)ﬂm(e)—c%g(z))dz)

where a := E, ,11(—w), b:= B, ,1o(—w) and ¢ := E,(—w).

+ Eu(—wt”)(

Proof. LetQ = (Q4, 2, Q3) be a solution. The relationship between the Ca-
puto derivative and the Riemann-Liouville operator allows us to conclude
that

DDV 4+ w)Qi(t) — I°H:(t)] = 0,i = 1,2,3.
Now by applying Lemma 2.4, we deduce
(3.14) (DY +w)Q(t) — 3H;(t) = b +cit,i =1,2,3.

Applying the Laplace transform to both sides of (3.14) for the Caputo de-
rivative yields:

(3.15) sYU;(s) — sV 71Q;(0) + wU;(s) = ; + — +

where U;(s) and H;(s) denote the Laplace transforms of the functions £,
and $;,7=1,2,3.
We can then express the above formula in the following explicit form:

ek Hi(s)  Qi(0) .

(316) (SV =+ UJ)UZ(S) = ? =+ 82 SC 51_’/ , 0= 1,2,3.
We now solve (3.16) for U(s),
(3.17)
Ui(s) = =0 a H:(s) 20O a3

Tl s s t2 4 ws?2 sV wsC s+ wslY
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Taking the inverse Laplace transform of (3.17) and applying Lemma 2.8,
we obtain an explicit representation of the solution to (3.9):

Qz(t) = CgtVEU7V+1(—th) + Clity+1Ey’V+2(—th) + Qi(O)EV(—wt”)

3.18 ¢
( ) + / (t - E)V-"_C_lEV’VJrC(_w(t — f)v)f’_’)l(f)d&’t = 1, 2, 3.
0

Hence, by using the boundary conditions (3.10), we have
1
0By 1(~w) + 1 By py2(—w) + 21(0) By (~w) + Q23(0) = */0 (1= 0O By e (—w(1 = 0¥)H1 (0)de,
1
G Evp41(—w) + By pi2(—w) + Q2(0) By (—w) + Q1(0) = —/0 (L= 0" T,y (—w(1 — 0)Y)$H2(0)de,
1
3 Byu1(=w) + ¢} By yia(~w) + Q3(0) By (—w) + 22(0) = —/ (1= By e (—w(l = 0)¥)9s (),
0
p+ g+ = =T (t) =1,
g+ b+ = =393t =1,
g+ o +ef = =91 (t))=1,

& =-T(2—-v)I"H,(t)}=1,p = 1,2,3.

The matrix representation of the above linear equations is as follows
and to obtain the values ¢, ¢}, Q;(0), i = 1,2, 3, we must solve the system

(3.19) AX = B,
where
a 0 0O b 0 0 ¢ 0 1
0O a 0 0 b 0 1 ¢ O
0 0 a 0O O b 0 1 ¢
1 1.0 0O 1 O O 0 O
A=1]l0 1 1 0 0 1 0 0 O],
1 0 1.1 0 O O 0 O
O 0 0 1 0 0 O o0 o
O 0 0 O 1 0 O 0 o
0O 0 0 0O 0O 1 0 0 o
b o (U= 0O"+1E, Ly (—w(1 = )91 (£)de
c — Jo (L= OB, e (—w(1 = 0)¥)$2(£)de
cf — fo (L= 07T B,y (—w(1 — 0))Hs ()
o —392(t) =1
X = c? B = 7jgﬁg(t)|t:1
a =391 (8) 11
21(0) ~T(2 — )3 H1 (1) 4=
Q2(0) —T(2 = )37V H2(t) jp=1
3(0) “T(2 — )3 H3 (1) 4=
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It is not difficult to verify that A is an invertible matrix. So, the system of
(3.19) has the unique solution

re-v)
2T (¢ —v)

1
cészo (1= 051 (93(0) — H1(0) — H2(£))de +

L - re-v) [ o
g 2F(C)/o (1= 1<ﬁl(€)—m<ﬂ)—mw))dz+QF(C_V)/O (1= 051 (592(0) + 55(0) —
_ 1 ! _ F(Q—l/) 1 Y
= (0 /0 (1 =01 (H2(6) — H3(L) — H1(6))de + AT ) A (1-20)¢ L($53(6) + H1(6) —

cIf = —F(Q — l/)jgiy-?)p(t)hs:lvp =1,2,3,

2 1
0(0) =~ [ 1= 07 B - 00
0
1 ! v v
T ) 0T B (1= )90t
1
b [ =0 B (1 )00

+ M /1(1 7@)(*152(6)(16
0

_al@te=1) [T e al—c=1) [ e
2(c /0(1 f) ﬁs(é)de(CgH)F(O/OM 0 H1(0)de

_ ac? —2bc? —ac—a . T(2—v) [! S

( 2(c3 + 1) )p(g ) /s 1-0 H1()de
. ac® +ac+a—2b re-v) [* <u1

( 2(c + 1) (C— )/O (1- Ha2(0)dl

ac® —2bc+ac—a . I'(2—v) [* .
*( 2(c2+1) )F(C ) /O (1-20) $H3(L)de,

c

©(0) = 557 [ =07 Eupelult = 07)5: (00

c2

- [0 Bl - ) a0
& 1+ 1 /0 (L= O By pe(—w(l = 0)")H3(0)de
: / -0

a(c* —c—1
23+ 1I(¢C
"1 et _a(@de—1) [ e
/0(1 0 55(0)de (3+1)F(<)/0(1 015, (0)de

a(® +c+1
_ _ _ 1
+(ac 2bc + ac — a F(Z 1/)/ (1- 4 v-lg $1(0)de
0

~—

+

—_

+

~

2(03 +1I(¢
2(c2+1) I‘( —v)

_ ac® — 2bc? —ac—a)F(Q v) [*
( 2(c3+1) ri¢—-v)J,

ac? +ac+a—2b re-v) (vt
~ 2(c3+1) ¢ — /0< -0 $Hs(0)de,

(1—0) "t ny(0)de

/01(1 — 0T TN 1) + H2(0) —

$3(£))de,

H1(0))de,

H2(0))de,
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0u0) = oy [0 0 Bt - 0 0
+ /01(1 OB, (—w(l — 0))92(0)dl
- [0 B - 090
- g e [ o o
" m [0 @i SEEED [ g oa
(ac +(i§i T)i 2b)F(C Z; /0 (1= 05\, (¢)de
e e N R A
_ e ErEan 20 ?8 - Z; 01(1 — 0 (0 de.

Substituting the values of ¢}, ¢i,Q;(0), i = 1,2,3, in (3.18), we obtain the
desired solution (3.11-3.13). Conversely, it is not difficult to verify that
(Q41,Q9,Q3) given by (3.11-3.13) satisfies the system (3.9) and the boundary
conditions (3.10). The proof is finished. a

Here, we define the operator ¢ : C[0,1] x C[0,1] x C[0,1] — C[0,1] x
C[0,1] x C[0,1] as

P(Q1,Q2,Q3) = (V1(Q1, Q2, Q3), P2(21, D2, Q3), ¥3(21, Q2,Q3)),

where 91, ¥, 93 : C[0,1] x C[0,1] x C[0,1] — C[0, 1] define
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7/)1 (Qlf QQ: 93)(t)

=" By (—wt?) zrr(éi”y)) / (1= 0 (Fra(0) + F20(0) — fa0(0))dl+

0

1 E .
T(C)/o (1-0° (fs,n(é)—fz,g(Z)—fl,Q(g))dg)

—t"+1EV,V+2(—wt”)(£E§:Z§/O (-0 a(0)de)

* /t(t — )T B (—w(t = O )ha(0)de

Y -1 T2-v) [! 1
b By (—wt )(2(c3+1)r(<—u)/0 (1—0)¢

X ((a02 —2bc® — ac — a)f1,0(f) + (ac® + ac + a — 2b)f2.0(€) — (ac® + ac — 2bc — a)fz,0 (6))d€>

v 1 ! —1
+ B, (~wt )(72”0(63“)/0 (1-0)°

x (a(62 e~ Do) +a(@ + e+ Dfza(l) — a( + ¢ — 1)f3,g(e))d4)

+Bucwt’) (g [ =07 T Bussc(—ut1 = )

x (=fa(h) — f2a(0) + caa(0)dl) t € [0, 1],

P2(Q1, Q2,03)(1)

=t Buvr(cot) (g [ 1= 0 a0 + o) ~ a0}t

1 1 .,
T(g)/o (1= 05 (f1.0(0) ~ f2.0(0) ~ fsa(6))de)

_t”“EV,VH(—wt”)(?EZ:Z;/O (1—€)C’”’1f2,g(£)d5)

+ [ =0 B e(alt - 0)an (Dt
0

5 -1 TE2-v) ! a1
+ B, (—wt )<2(63+1)FEC_V;/(; (1—-20)°

X ( — (ac® + ac — 2bc — a)f1.a(€) + (ac® — 2b¢® — ac — a)f2.0(f) + (ac® + ac+ a — 2b)fs .0 (E))df)

v 1 ! —1
+ By (—wt )(QP(C)(C3 ) /0 -o°
x ( —a( e —Dfral®) +a( —c— Dfsa@) +a(c+c+ 1)f3,9(4))dz)

+Ey(—wt”)(03:_1/0 (1= OB, (—w(1 — 0)Y)

X (ch.a(0) = aalt) —fan(0)dl) t € [0,1],
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P3(Q1, Q2, Q3) ()

= t"Ey,u-H(—wtu)(% /0 (1= 05" (fs0(0) + Fra(l) — faa(0)dir
1 1 et - B
2I°(¢) /0 (1 =0 (F2.2(6) — fs,a(f) fl,Q(@))dﬂ)

B, a(—wt”) (Egz - Z; /01(1 — 0O (b))

+ / (t— 0", e (—w(t — )" )50 (0)dl

Y -1 TE2-v) [ 1
+ By (-wt )(2(c3+1) r(g—y)/o -0

X ((a02 +ac+a— 2b)f1.0(0) — (ac® + ac — 2bc — a)fa.0(f) + (ac® — 2bc* — ac — a)fs.q (Z))dé)

v 1 ! -1
+ By (—wt )(W/O (1 0)°
x ( —a(@+e— Dfzal®) +a(@ — ¢ — Disalf) +a(c+c+ 1)f1,9(e))dz)

+ EU(—wt”)(

1
s [0 B - 07)
0

X (~ha(0) + cha.a(l) - Cha(0)de), ¢ € 0,1,

where fiyg(s) = \I/Z(S, Ql(s), QQ(S), Qg(s)), and 2 = (Ql, 927 Qg), 1= ]., 2, 3.
Now, in view of Lemma 3.1, it important to say that the function Q =
(©41,9,3) is a solution of the problem (1.4), if and only if © is a fixed
point of operator .
Now, we introduce the following constant:

6 170(2 — v) 4
CF DM+ T )T v+ D)  TCHv+1)

In the following result, we prove the uniqueness of solution to the prob-
lem (1.4) by using Banach’s contraction mapping theorem.

(320) &:=g

Theorem 3.2. Let ¥y, ¥y, U3 € C([0,1] x R®,R) and p;,i = 1,2, 3, be non-
negative constants such that

(3.21)

| W, (t, 21, 22, 23) — U, (t, W1, We, W)

< m(|21 — |+ |22 — o] + |23 —w3|), Y te[0,1], ¥ 21, 5, 25, 01, 1, 3 € R.

Then ) is a contraction mapping in C[0,1] x C[0,1] x C[0, 1] with Lipschitz
constant {(p1 + po + p13). Moreover, if

(3.22) E(p + po +pu3) <1,
then the problem (1.4) has a unique solution in C[0,1] x C[0,1] x C[0, 1].
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Proof. Let X := C[0,1] x C[0,1] x C[0,1]. Then, (X, ||.|¢cs[0,1)) is @ Banach
space with norm

12,0, 0)llespo,) = |2 lloe + @ lo0 + [|9]co,

where [|Q|| o = max;c(o,1) [€2(t)| for each Q € C[O 1].

NOW, for each 2 = (Ql,QQ, Qg) Q (Ql7 927 Q3) cXandt e [0, 1], we
have

[1(Q1,Q2,Q3)(8) — ¥1(Q1, 02, Q3)(8)] <

2—v 1
) (e [ 1= 05 (.00 iy 401 + 2® - (0

+ Ifs,0(0) = f3 5 (O de+
1
20(¢)

+ "B, o (—wt?) (

tVEV,V+1(

1
/0 (1= 05 (f1,0(0) ~ 1, 5O + 2.0 (0) = 1, 50)] + lis0(0) — i 5 (0))de)

re-v)
r¢—v)

t
+/0 (t = O By e (—w(t = 0")|fra0) — 1, 5(0)lde

r2-v)
v C v—1
+ By (~wt )(2(63 5 /(1—2

x ((ac? + 2bc? +a6+a)lf1,n(f) —f, 501+ (ac® + ac+a+20)[f2,0(0) — T, 5(0)]

1
[ a=0 a0 - i, (o))
0

+ (ac? + ac + 2be + a)lfs.0(0) — 1 5(0)]) de)

3 1 ! .
+ By (—wt )(W/O (1*@)C 1((1(62+C+1)|f179(f)7f1’ﬁ(£)|

+a(e + e+ Dliz.a) ~ T, 50 +a(e + e+ Dliz.a(®) — 1, 5(0)])de)

1
+ By (o) ( / (1= OB,y (~w(1 = D) Alf1La() — f, 5 (O] + iz () — 5 50)]

+ leB Q( f3 Q (@\)dﬁ)

3 +1

Here, by (3.21), Lemma 2.9, Lemma 2.10, Lemma 2.11 and from the fact
that (—1)”L%(Ev,w(—w)) > 0forallz > 0and for all m = 0,1,2,...,
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when 0 < v < 1and w > v, we can derive that

|91(Q1, Q2, Q23)(t) — 11 (R, Do, Q3) (1) <

<2,u1 +opo+ps o 2(pn + po+ps) T2 —v)(Tpa + 5pe + 5N3)> 19 —
o0

I(C+v+1) TE+DI(C+1) 2 —v+ I +1)

L 201 + po +ps | 2(pa A po 4 p3) T(2 —v)(Tuy + 5p0 4 5pus) 1922 — O
TC+v+1) TE+DI(C+1) 20 —v+D)T(v+1) 2l

2p +p2+ps | 2+ pe 4 ps) T(2—v)(Tpn + 5ps + 5ps) 193 — Qs
I(C+v+1) TE+DI(C+1) 2 —v+ )T(r+1) oo

Similarity, we can show that

|92(Q1, D2, Q3) (1) — ¥a(Q1, 22, ) (2)] <

pa+ 2 + s 2(ps 4 po 4 pg) T(2 —v)(5pa + Tpg + 5p) 19, — |
TC+v+1) TE+DI(C+1) 20 —v+D)T(r+1) P lee

L[t 2+ g 2(p1 + p2 + p3) T(2 — v)(5pa + Tz + Sps) 1925 — ||
I'(¢C+v+1) TE+DI(C+1) 2C—v+DI(v+1) s

pa+2p2 +ps o 2(pa + pe 4 ps) T2 — v)(5pn + Tpo + 5pus) 195 — O]
TC+v+1) T+DI(C+1) 20 —v+1I(v+1) ool

and

|3 (1, Q2, Q3) (t) — ¥3(Q1, o, 3) (1))

- u1+u2+2,u3 2(p1 + po + p3) T(2 —v)(5puy + 5uz + Tus) 12 — ||
S\ vy "I ) 2 vk i) )T

p1tpe + 203 20+ p2 4 pg) T2 —v)(5p1 + Spe + Tus) 10 — |
T(C+v+1) Tw+1DI(C+1) 2T((—v+1)I(r+1) o

(
+
( (
Ml +p2 +2p3  2(p1 + p2+pz) T(2 —v)(5uy + Sug + Tus) 3
+ ( 1923 — Q300

r¢+v+1) TE+1I'EC+1) 2I(C—v+1DI'(r+1)
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From the above inequalities, we obtain
[[46(Q1, a2, Q23)(£) — (R, 2, Q3)lesjo.1)
= [|91 (21, 2, Q) — 1 (21, D2, D) oo + [[02(R1, D2, 3) — 2 (1, 02, 03) [
+ |3 (21, Q2, Q3) — ¥3(2, Q2. 03

< E(pn + piz + p3)|[(Q, Q2, Q3) — (1, D2, D3) 20,11

In view of the condition (3.22), we deduce that ¢ is a contraction. Then
we conclude by the Banach fixed point theory that the operator ¢ has a
unique fixed point €2, which is the unique solution of problem (1.4). The
theorem is proved. O

In the following, by applying Krasnoselskii’s fixed point theorem, we
present the existence result for the BVP (1.4).

Theorem 3.3. Assume that
Hy. U;:[0,1] x R* - R, i = 1,2, 3, are continuous.
Hy. There exist nonnegative functions p;, q;, i, k; € C[0, 1], such that, for all
(t,u,v,w) € [0,1] x R?, (i=1,2,3),
(Wit u, v, w)| < Ki(t) + pit)|ul + qi(8)|v] + ri(t)|w],
hold. Then the system (1.4) has at least one solution on [0, 1], provided that

6 172 —v) 4 - .
(F(V+1)F(C+1) * AA'C—v+1I'(v+1) + F(C—i—v—!—l));ll <L
where

pi = max lpi(t)], ¢i = e lqgi(t)], i = e |7 (t)],

ki = In[a}l(]‘k ( )|7lz:pz+(b+r“z:17273

Proof. Let

6 170(2—) 3
. (r(y+1)r(g+1) t e T r(g+y+1)) Dzt ki

1— (F(u+1)61“(<+1) + 2F(Cl75-£21);()v+1) F(C+V+1)) Zf:l li
be a positive number and consider the closed ball
Be = {Q=(,Q,Q3) € X : ||Q cso,) < €},
where X = C[0,1] x C[0, 1] x C[0, 1] equipped ||.||¢s[o,1] is a Banach space
with norm
1(2, @, 9)llcajo,1) = [1Zlloc + @l + [[9]loo;

where ||z]|oc = maxeo,1) |2(t)] for each z € C[0,1].

Next, let us define the operators I/, V on B, as follows:

Z/{Q(t) - (ul(Qh QQ7 Q3)au2(Ql7 QQ? Q3)au3(le Q2a 93))(t)7
VQ(t) = (Vi(Q1,Q22,Q3), Va(Q1, Q2,Q3), V3 (21, Q2, Q3)) (1),
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where

U (21,99, 03)(t) = Uz (1, 2, Q3)(t) = Us (21, Q2,23)(t) =0,t € [0,1],

V1(21,Q2,Q3)(¢) =

F B et (;F((Zc_—yu)) /0 (1= 0 (fr0(0) + 20(0) — faa(0)de+
1t B
T(g)/o (1= 0 (fa.0(0) ~ fa.0(6) ~ hra@)de)

_t”“EV,M(—wt")(EEz:g/O (1—@)“”*1&,9(@&)

* /t(t — )T E (et = O (0)de

y -1 TE2-v) ! 1
+ By (-wt )(2(c3+1) rgg—y;/() (1-0°

X ((a02 —2bc® — ac — a)f1,0(f) + (ac® + ac + a — 2b)f2.0(€) — (ac® + ac — 2bc — a)f3,g(£)>dﬁ)
v 1 ! —1
+ By (—wt )(W/o (1—0)¢
x (a(02 e~ Dfra®) +a(@ + e+ Diaa(t) — a(c +c— 1)f3,9(4))dz)

/0 (1= OB, (~w(l — 0)7)

1
% (=) — f2a() + dfsa(@)de) t € [0, 1],

+ By (-wt”) <03 +
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VQ(Q1, Qa, Q3)(t) =

t"Ey i1 (—wt”) (QII“((ZC:VV)) /0 (1- Z)C—u—l(fg,n(é) +f3.0() — fr.o(0))dé+
1 1 et B B
2I°(¢) /0 (L =0 (fLa(l) = f2,0(f) fs,n(f))dé)

- t"+1Eu,u+2(—wt“)(£E§ — Z; /01(1 - z)C—”—lfz,Q(e)de)

+ [ =0 Bl = 0 )
5 -1 TE2-v) [! 1
+ By (-wt )<2(c3 )T =) /0 -0
X ( — (ac® + ac — 2bc — a)f1.0(f) + (ac® — 2bc* — ac — a)f2.0(f) + (ac® 4+ ac + a — 2b)fs.0 (Z))dé)

v 1 ! -1
+ By (—wt )(W/O (1 - 0)F
x ( —a(@+e—Dira®) +a(@ — ¢ — Dfaa(f) +a(c +c+ 1)f3,g(4))dz)

+Bul-t) (g [ =09 Bussc(—w(1 - )

x(ch.a(0) = Clalh) — fa(0)de), t € 0,1,

V3 (Q1,Q2,Q5)(t)

= tvEy,uﬂ(—wt”)(zl;((Zg__”V)) /O (1- Z)C—ufl(fg,g(é) +f1.0(0) — f2.0(0))dl+
1 1 .

T(g)/o (1= 0" (fo,0(6) — fa,0(6) — fm(é))dé)

re-v * vt
F(C*V)/o (1= 0 Haa(t)de)

+ [ =0 Bt = 0 a0t
y -1 r2-v [! c—w_1
+Bu(-wt )(2(03 F)T(C—v) /0 -9
X ((ac2 + ac+ a — 2b)f1.0(f) — (ac® + ac — 2bc — a)fa,0(£) + (ac® — 2bc* — ac — a)hg(f))d()

v 1 ! —1
B (~wt )(7%(4)@3 ey /0 (1-0)°
x ( —a(@ 4 e—Dzal®) +a(@ — ¢ — Disa(f) +a(® +c + 1)f1,9(@)de)

- t”HEV,I,H(—wt”)(

1 ! . y
a1 [ =0T T (1= 1)

X(=Fa(0) + efa.a(l) - fa.a(0)de), ¢ € 0,1].

n El,(fwt”)<

Here, we divide the proof into three steps.
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(I). We prove that V2, +UQ, € B,, for each Q; = (Q1,0Q%F,0Q3), Qs =
(Q3,93,93) € Be. For any Q1,9 € B, we have |[Q]|csjo1] < €
and ||QQ||C3[071] < e. Now

V1 (¢)] <
oy (L2 =v)
B (o) (5re)

1 1 _
T(C)/o (1-0°¢ 1(Ifs,nl(f)l+Ifz,nl(f)lJrlfl,m(f)l)d@)

+t" T B, o (—wt?) (

1
/0 (1= 0510, (O + [F2.00 (O)] + [f3.0, (€))de+

F(Qfl/) ! _ pn¢—v—1
ooy b a0 ey 0lar)

t
=0 By (e - 0 (Ot
0

1 re-v)
22+ 1) T(¢C—v) Jo

x ((ac2 +2bc? + ac + a)lfr.a, (0)] + (ac® + ac + a + 2b)[fa.q, (0)] + (ac® + ac + 2bc + a) |fs 0, (f)\)df)
Y E(— t”)<;/1(1—€)<’1
e O@ 1) Jo

x(ale® + e+ Dlfra; (O] + a(e + e+ Dlfz.0, (0)] + a(e? + e + Dlfs,0, (0)]) de)

1
+E,,(_wt”)( (1—g)s—v-1

1
# Buat) (g [ = 05 B e = )]+ 22y (O] + el o () ).

Then by applying (Hz), Lemma 2.9, Lemma 2.10, Lemma 2.11 and
from the fact that (—1)" -4 (E, ,,(—z)) > 0 for all > 0 and for

dx™

allm=0,1,2,...,when 0 < v <1 and w > v, we obtain

Vi) <
kiUl Qllespoy | TR =)0 ki +lilllleso,y T2 —v)(k + UlQllesgo,)
0(C+ )I(w + 1) 2 —v+ 1)F( 1) TC—v+)I(v+1)
ki 4+ 0191 leso,1) 2I(2 —v)
T(C+v+1) T — u+1)r(u+1) Zk +lillShlieso.n)

3
3 1
+2F(C+1) I'(v+1) Zk 4l 1||CS[01])+F(C+ T (Zk + Ll lesgo,1)-

By similar way, for p = 2, 3, we find

Piki+lillllesp,y  T@—w) S0y ki +LillQllespo,yy | T2 = 1) (ko + bollllespo,1))

e (™ DI(v +1) 2T(¢C— v+ 1)I(v + 1) TC—v+ D+ 1)
kp +lpH91||c3[0,1] 2I'(2 —v) 3
fero+1) TG vt Drw D &t e
3 3 1 3
+W ;k + 1)1l espo, 1])+F(<+7+1 Zk + Ll lleso,), t € [0,1].

On the other hand, for all ¢ € [0, 1], we obtain the following in-
equality:
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%9 +u92”63[071] = V11 + U1 Q2]|oo + [|[V2 1 + U2Q2]| 00 + || V32 + UsQ2]| oo

6 170(2 — ) 4
—(r(y+1)r(g+1) AC— v+ )LD | (C+u+1))z(k teli) <e

Thus, VQ; +UQs € B, foreach Q; = (Q},03,03), Qs = (01,03,03) €
B..
(II). By the definition of U/, it is clear that ¢/ is a contraction mapping on
B..
(III). It is easy to see that V is continuous. Now we only prove that V' is
a completely continuous operator on X'.
Firstly, for any Q2 = (Q1, Q% Q3) € B,,t € [0,1], by using (H,),
we obtain V is uniformly bounded on B.. Secondly, for Q = (2!,0Q2,Q3) €
B, and t1,t2 € [0,1] with 0 < t; < t3 < 1, we obtain

V1Q(t2) = Vid(t1)| <

(2 — 1
[t5 By pt1(—wts) — tZE,,,u+1(fth)|(2F((< _VV)) /0 1 =07 Hf1,a@)] + [f2.00)] + [f3.00)])dé+

1 1 _
5@, (0= 0 (O] + O] + I a(0)at)

T _ 1
I Bra(—ot) = 0 BacotDl (Fo =g [ =0 i a(6lar)
t1
1 [ = 0 Bc(calta = 0ot — [ = 075 Byl — )0l

+ 1By (—t) = Bt (5555 =g /( pi-v-

x ((a02 +2b2 + ac + a)lf1.0(0)] + (ac? + ac + a + 2b)[f2.0(0)] + (ac® + ac + 2bc + a)\f3,ﬂ(5)\)d5)
+ | By (—wty) — By (—wtf))|

1 ! -
(s J, -0 (e 4 et Dal)] + (e + o+ Dlfaal®)] + o + e+ Dlfsa(0)])a2)
+ 1B (—wtf) = By (—t})|

(q [ 0= 0 B (-1~ 0°) (.00 + 200 + s e)ae)
S+ /o v (—w i f2,0 clfs,o :

Here, by appling by applying (H>), Lemma 2.11, Lemma 2.12,
Lemma 2.13, Lemma 2.14, and from the fact that (—1)" £ (B, ,,(-)) >

Oforallz > Oand forallm =0,1,2,...,when0 <v < landw > v,
we conclude
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re-v) 1 3
(¢ —v+1) 2F((+1)> Zk + Ll e3p0,17)
I'2—v) 1
(Cfu+1)+2r(<+1))

(/‘ot1 ((t2 - Z)U+C—1EV7V+C(_W(152 —0") = (t1 — Z)U+C_1EV,V+C(_w(t1 - Z)U)>d6

V182(t2) ~ ViQU(e)] < —B(—tf) — Bt

1
+ —(lt2Ey2(-wty) = t1 By (~wty)] + [tz — tll)(2r (k1 + 1119l es0,1))

ta
+/t (t2 — OV T E, Lye(—w(ta — E)V)dz) (k1 + 1119l es(o,1))
1

3

1
Zk + Ll es0,17)

+ By (—wt3) — Eu(—wﬁﬂ(m

+IEu(—wté)—Eu(—wt’f)l(m)(zk 112l s p0,)

5I(2 —v)

1B (t) = B ()l G m T Zk + alR0les o)

. D2-v) 1

= F(2V+i) <2F(C—I/+1) + 2F(C+l) ) Zk *Lill€llespo.)
re-v) 1

M —v+1)  2I(C+1)

2
+ = (t2 1) )) (k1 + 1l lespo)
ty
+( /0 ((t2 = O By yc(—w(ts = %) = (1 = O By yc(—w(ts — ) de
to
+ / (t2 = DT By e (—wlts — 0)%)de) (k1 + L [12lcsfo, )
1

1 3 50(2 — v)

o (e R T e e u+1)(zk+l”g”c3[0”)

On the other hand, we have

(/ " (62— D By (ot — ) — (5 — D5 By (s — 0)))ae
to tC+V tC+u
+ /t1 (t2 = O By pc(—w(ty — £)" )df) = m
Since V¢, t” and t are uniformly continuous on [0, 1], we conclude
ViQ(t2) = ViQ(t1)| — 0, as to — t1 independent of Q).

In a similar manner, for each t1,t2 € [0,1] with 0 < ¢; <ty <1
we have we conclude

[Vi€Q(t2) — ViQd(t1)| — 0, as to — t1 independent of Q0,7 = 2, 3.

Hence, the operator V is equicontinuous on B, and so, by using
the Arzela-Ascoli theorem, we conclude that V is a compact oper-

ator, which implies that V is a completely continuous operator on
X.
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Therefore, all the assumptions of Theorem 2.15 are satisfied, and
then by Theorem 2.15 we deduce that there exists a fixed point of
operator V + U, which is a solution of the boundary value problem
(1.4) on [0,1].

O
4. EXAMPLES
To illustrate our results, let us consider the following simple examples.
Example 4.1. Consider the system

D18 (D99 +30) Q1(t) = V1 (£, Q1(t), Q2(t), Q3(t)), 0<t<1
D18 (909 4 30) Q2(t) = Ta(t, Q1(8), Q2(8), Q3(t)), 0<t <1,
D18 (D99 +30) Q3(t) = U3(t, Q1(t), Q2(t),Q3(t), 0<t<1
Q1(0) + Q2(1) = 0, D°°Q; (0) + D°2Q,(1) = 0, D20, (0) + D2 Qy(1) = 0,

Q2(0) + Q3(1) = 0, D°2Q,(0) + D°2Q3(1) = 0, D2, (0) + D2 Q3(1) = 0,
Q3(0) + Q1 (1) = 0, D*2Q3(0) + D° Q4 (1) = 0, D> D Q3(0) + D0V (1) = 0,

where

Uy (¢, Q1(t), Qa(t), Q3(8))

_ Q1 (t)] 1
= Tor(+ T ior )+

Vo (t, Q1(1), Qa2(t), (1))

_ arctan(|$ (1)]) 1Q22()] 2[Q23(2)|
80 80(1+ [Q2(1)])  5(2+1)>(1+[Q)])
W3 (t, Q1 (), (), Q3(t))

_arctan(|Qq(t)]) | (t+1)Qa(2) n Qs(t)
3042 15(2 +t)2 30

For every 21, 22, 23, W1, e, W3 € R, it is clear that

1+t Q3(t)
(20m + 12) 1+ |Q3(¢)|’

1 1
Uy (¢, 51, 22, 53) Wy (t, 1, o, 3)| < —— |21 — 1|+ —— | Sp—
|W1(t, 21, 22, 23) = W1 (¢, W1, W2, W3)| < 107T|21 w1|+10ﬂ\22 2| +——|23—ws],

107

A A 1 1 1
|Wo(t, 21, 22, 23) — Wal(t, wl,wg,wg)\<—|zl—w1|+ |Z2 w2|—|— |23 w3,

and
A A 1 1
|W3(t, 21, 22, 23) — W3(t, W1, We, W3)| < |21*wl|Jr |22*w2|+*|23 w3
We take
_ 1 _ 1 _ 1
H1 = 10#’”2 = 807/% =30
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By simple computation on the given data, we find that

3
€Y pi = 04766490186 < 1,
i=1
where & is defined in (3.20). Hence, Theorem 3.2 implies that the problem has a
unique solution defined in [0, 1].

Example 4.2. Consider the system

D19 (D%? +60) Q1(t) = U1 (¢, Q1(t), Q2(t),Qs(t)), 0<t <1,
D19 (D%? +60) Qa(t) = Ua(t, Q1(t), Q2(t), Qs(t)), 0<t <1,
D12 (99 4 60) Q3(t) = T3(t, Q1 (t), Q2(8),Q3(t)), 0<t <1,
Q1(0) + Q2(1) = 0, D%2Q; (0) + D2, (1) = 0, D20, (0) + DOy (1) =0,
Q2(0) 4+ Q3(1) = 0, D205 (0) + D°2Q3(1) = 0, DD, (0) + D2V Q5(1) = 0,
Q3(0) + Q1 (1) = 0, D°°Q3(0) + D°°Q; (1) = 0, D20 Q4(0) + D2, (1) = 0,

where
Wy (t, (L), Q0(t),Qs(t))
et | (t)] N 1 sin((9a(0)]) + 1+t Q3(0)

W2+ 25m2(1 + Qi (1))  5(m + met) 2m + 12 1+ |Qs(t)]’

\Ifg(t, Ql(t)> Q2(t)7 QB(t))
2arctan(|Q(t)]) 1Q0(1)] N 2|Q3(¢)|
dry/Bet £20  30(1+[Q(t)])  57(2+1)2(1 + |Q3(2)])’

W3 (t, Q1 (t), Qa(t), Q3(t))

arctan (| (¢)]) Oy (t) Q3(t)
— 3In(2+¢ : .
B2+ e 10m(1+ )3 ' e + 62
If
ki(t) = e " ka(t) = 1,k3(t) = 3In(2 + t),
(t)—; (t)—# (t)—¥
P = e P T b 120 Y T 10m + 427
()= p(t) = =, gst) = ———
M = 5+ mety Y T 300 BY T 051 + )3
1+t P 1
D= — )= — " pa(t) = ———
"= s W= 50 = are
then we conclude that
1 1
1= 107T7p2 - 107_(_7]73 - 107_(_7
11
Q1—107T7C]2—307Q3—107T7
1 1 1
= —— Ty = ——  T'q = —
T T 00 T 62

l; =0.02833, 13 = 0.0533, 13 = 0.0358.
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Hence, we obtain
3
€Y 1; = 06655239192 < 1,
i=1
where ¢ is defined in (3.20). Therefore, by Theorem 3.3, we conclude that the BVP
has at least one solution on [0,1].

5. CONCLUSION

The current study introduces a new tripled system of fractional Langevin
differential equations that incorporate cyclic antiperiodic boundary condi-
tions and Mittag-Leffler functions. In order to guarantee the existence and
uniqueness of solutions, the Krasnoselskii fixed point theorem, the Banach
contraction mapping theorem, and specific properties of the Mittag-Leffler
functions are implemented.

The primary problem differs from previous research in the literature in
that it entails distinct boundary conditions, which facilitates the applica-
tion of generalizations to the problem. Additionally, the main findings are
established without the need for of the friction coefficient w, which necessi-
tates an alternative methodology. This has been proven by generating two
examples with large values of w, indicating that the primary conclusions
of this work are distinct.
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