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Stability of generalized P-harmonic maps

AHMED MOHAMMED CHERIF!

ABSTRACT. In this paper, we prove that any stable P(z)-harmonic map ¢ from S? to N is a holomorphic or
anti-holomorphic map, where N is a Kihlerian manifold with non-positive holomorphic bisectional curvature
and P(z) > 2 is a smooth function on the sphere S? satisfying some condition. We study the existence of stable
P(z)-harmonic map ¢ from sphere S™ (n > 2) to Riemannian manifold N, and the stability of P(z)-harmonic
identity. We also study the case of a product S™1 X ... x S™k.

1. INTRODUCTION

Letvy : (M, g) — (N, h) be a smooth map between two Riemannian manifolds, 7(¢) the
tension field of v (see [1, 6]), and let P : M — [2,00),  — P(x) be a smooth function.
The P(x)-tension field of ¢ is defined by

(D Tha) () = A1) 727() + dip(grad |dp| P 2),

where |dy)| is the Hilbert-Schmidt norm of the differential dv, and grad denotes the gra-
dient operator with respect to g. The map ¢ is called P(z)-harmonic if the P(z)-tension
field vanishes, that is 7p(;) () = 0. It is the Euler-Lagrange equation of the P(x)-energy
functional (see [10])

P(z)
(1.2) Ep(¥; D) = /D %dm.

P(z)-harmonic maps is a natural generalization of harmonic map (see [1, 6]) and p-harmonic
map (see [2, 3, 7]).
We define the index form for P(x)-harmonic maps by (see [10])

(1.3) I(v,w) = /M (T B (0), w)d,

for all v,w € T'(xy"*T'N) where Jg @) is the generalized Jacobi operator of ¢ defined by
Thw (W) = —|dp["® 2 trace, R (v, dip)dy — trace, V¥ |dy|” ") Vo

(1.4) — trace, V(P(z) — 2)|dy|P@ =4V, dip)dy,

where (, ) denote the inner product on 7*M ® ¢ ~!TN, and RY is the curvature tensor of
(N, h) defined by

(1.5) RN (U V)W = VyVEW — VEVEW — Vi W,
forall U,V,W € T'(T'N), V¥ is the Levi-Civita connection of (N, k), V¥ denote the pull-

back connection on 1~ 'T'N, and dz is the volume form of (M, g) (see [1]). Let 1) be a P(x)-
harmonic map such that for any vector field v along ¢ the index form satisfies I(v,v) > 0,
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thus ¢ is called a stable P(z)-harmonic map. Note that, if P(z) > 2, then every P(x)-
harmonic map from a compact Riemannian manifold (1, g) without boundary to a Rie-
mannian manifold (N, k) has Sect™ < 0 is stable (see [10]).

Let M be a differentiable manifold. An almost Hermitian structure on M is by definition
a pair (J, g) of an almost complex structure J and a Riemannian metric g satisfying

(1.6) J’X =-X, g(JX,JY)=g(X,Y)

forall X,Y € I'(TM). A manifold with such a structure (J, g) is called an almost Her-
mitian manifold. An almost Hermitian manifold (M, J, g) is Kédhlerian if and only if its
almost complex structure J is parallel with respect to the Levi-Civita connection (see [17]),
that is

1.7) VxJY =JVxY, XY eT(TM).

Let X,Y be two unit vectors at a point in M. The holomorphic bisectional curvature is
defined by

(1.8) BHR(X,Y) = g(RM (X, JX)Y, JY).

Let« : (M, J,g) — (N, J', h) be a smooth map between two almost Hermitian manifolds.
The map ¢ is called +holomorphic (holomorphic or anti-holomorphic) if dypoJ = £J'ody
(see [17]).

The paper extends the results from stable harmonic map to stable P(x)-harmonic map. It
gives some properties of stable P(x)-harmonic map from S” into a Riemannian manifold.
The stability of the P(z)-harmonic identity map of a compact Riemannian manifold with-
out boundary, and of P(x)-harmonic maps from a compact Riemannian manifold without
boundary into S™ x ... x S is studied. The paper extends some results proved by Y. T.
Siuand S. T. Yau in [15], and by L. E. Cheung, P. F. Leung in [4]. The search results provide
additional information on harmonic maps, and the stability of Riemannian manifolds (see

[9D).

2. MAIN RESULTS

2.1. Holomorphicity of P(z)-harmonic maps. In the theorem below, we examine the
conditions that determine whether a P(x)-harmonic map from the standard sphere S?
into a special Kéhler manifold is a holomorphic or anti-holomorphic map (see [11, 15]).

Theorem 2.1. Let (N, J’, h) be a Kihler manifold with non-positive holomorphic bisectional cur-
vature, and let P(x) > 2 be a smooth function on the sphere S*. Then, any stable P(x)-harmonic
map 1 : S* — N satisfying the inequality

1
(2.9) 3 /S dy| PO Aldy P + 2 /S (P(2) = 2)[dy| " 72| Vdy *dz < 0,

is a holomorphic or anti-holomorphic map. Moreover, v is harmonic map and grad |dy|”(®) =2 ¢
ker dy.

Proof. Note that, the unit sphere S? admits a complex structure, and every Riemannian
metric on an oriented 2-dimensional manifold is a K&hler metric with respect to the natu-
rally induced complex structure.

Take f(z) = |dy|”(® =2 for all z € S2. Choose a normal orthonormal frame {e;} at point
T in S?. Let v € I'(T'S?). We compute

2
(2.10) S OVEVET dp(v) = TV di(v) + fZJ’vw VY dy(v).

=1
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By using the property Vﬁ dyp(Y) = ngidw(X ) + dy([X,Y]) and the definition of the cur-
vature tensor, the equation (2.10) becomes

2
S OVLIVET dp(v) = J'Vdy(grad f) + J'dy([grad f,v])

i=1

+22: [fTE NV dues) + [T dv(les,0])]
= J’zvz‘idw(grad F) + T d(Vgraa o) — J'dip(V, grad f)
+Z 1T BN (dues), dib(o)di(e:) + £.1'VEVE di(e:)
(2.11) +2fJ’Vv8ivd¢(ei) + fJ'dp([ei, [es, v]]) |-

By the antisymmetry of the curvature tensor and the definition of tension field of ¥, we
obtain the following

2
YOVEIVET ) = J'VYdi(grad f) + J'd(Vraa jv) — J'di(V, grad f)
2
=Y LI RN (dp(v), dip(eq))dip(e:) + fTVET ()
=1

2
30 [fIVEAG(V ) + FIVE, dv(e)
=1

+f T dp(Ve,Ve,v) — fT di(Ve,Ves)
= J'VVdi(grad f) + J' dip(Vgeaa sv) — J'dip(V, grad f)

2
=Y LT RN (dp(v), dip(eq))dip(e;) + TV fr (1)

=1
2
W)+ [fJ'cw (VoVe,e) + [I'V%_ die;)
=1
(212) T (Ve Ve 0) = FTd(V., Voey)|.

By using the P(x)-harmonicity of ¢ and the definition of the Ricci tensor Ricciv = 2?21 R(v,e;)ei,
we have from equation (2.12) the following

2
Z VEVETdp(v) = J'dp(Vgrad pv) — J'dip(V, grad f)

i=1

=Y LT RN (dp(v), dip(e:))di(es) — v(f)T'T(1)

i=1

(2.13) +fJ dip(Ricciv) + fJ' di(trace V2v).
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From equation (2.13), we conclude that

—h(trace VY fVY I d(v), J'dp(v)) = —h(d(Vgrad 5v), dib(v))
Fh(dy(Vy grad f), di(v))

+th (RN (dyp(v), dip(e;))di(es), dip(v))

+o(f )h( (¥), d(v))
—fh(dy(Ricciv), dp(v))
(2.14) — fh(dy(trace VZv), dip(v)).

By the definition of generalized Jacobi operator (1.4) and equation (2.14), we have the
following

2

WIBT (), J'dp(v)) = =37 FA(RN (' dy (o), dien)di(es), J'dup(v)

—h(dw(vgrad fv)v dq,b(v))
+h(dip(V, grad f), di(v))

2

+ ) FR(BYN (d(v), dip(eq))di e;), dip(v))

Fo(F)R(r (), dib(v)) — Fh(di(Ricciv), dp(w))
— fh(dy(trace V?v), dib(v)) — div 6
(2.15) +(P(x) — 2)|dep| PO HVY T dyp(v), dy)?,

where 0(X) = (P(x) — 2)|dy| "W =4V I dip(v), d) h(dip(X), J'dip(v)).

Let A(z) = (o, z) for all z € S? where a € R?, and let v = grad \. It is easy to show that
v = Z?ﬂ(a, eivei, Vxv = —AX forall X € I'(T'S?), and trace V?v = —uv (see [17]).

From equation (2.15) with Ricciv = v, we have at point z

W (T d(v)), J'dp(v)) = h(dy(V, grad f), dy(v))
FAR(d(grad f), dip(v))

+Zfh(RN(dw(w,dw<ei>>dw<ei),dww))

=Y FR(RN (T dip(v), dip(eq))dip(es), ' dip(v))
=1

Fo(F)h(r(9), dib(v)) — div
(2.16) +(P(x) — 2)|dp| "V T dip (v), dep)?.
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Let e; = e and ey = Je. From the P(z)-harmonicity of ¢ and equation (2.16), we obtain

trace, h(Jh(J'dip(v)), J'dip(v)) = trace, h(di(V, grad f), di(v))
+fR(RY (dp(Je), di(e))dip(e), dip(Je)

( )
+fh(RY (dip(e), dp(Je))dip(Je), di(e))
—fR(RN (J'dip(e), dip(e))dip(e), J'dip(e))
—FR(RN(J'dip(Je), dip(e))dip(e), J'di(Je))
—fR(RN (J'dip(e), dyp(Je))dyp(Je), J'di(e))
—fR(RN (J'dip(Je), dy(Je))dy(Je), J'dy(Je))
—fh(r (), 7(¢h)) — trace, divé

+(P(z) — 2)|dy| @~ trace, (VY I dip (v), dip)?.

We set K(U,V) = h(RN(U,V)U,V) for U,V € T(TN). The last equation is equivalent to
the following
trace,, h(J}ﬁ(J’dw(v)), J'dp(v)) = trace, h(dy(V, grad f), di(v))

—2fK(di(e), dip(Je)) + 2f K (diy(e), J'dip(Je))
+fK(d(e), J'dy(e)) + fK(de(Te), J'di(Te))
—fh(7(¥), 7(¢)) — trace, div

(2.17) +(P(z) — 2)|dy|" @4 trace, (VYT dip(v), dip)?.

Take w = dyy(Je) — J'dip(e) and n = dip(Je) + J'dip(e). We have

h(RN (w, J'w)n, J'n) —2K (dip(e),dp(Je)) + 2K (dip(e), J' dip(Je))
(2.18) +K (d(e), J'dip(e)) + K(dy(Je), J' dy(Je)).
Substituting the formula (2.18) in (2.17), we get

trace,, h(Jg(J’dz/)(v)), J'dip(v)) = tracey h(d(V, grad f), dip(v)) — trace, div 0
+ (RN (w, J'w)n, J'n) = fR(T(4), 7(1))
(2.19) +(P(z) — 2)|dy|P @4 trace, (VY T dip(v), dip)?.

The first term of (2.19) is given by (see [5, 14])

2

traceq h(di(V, grad f), dip(v)) = Zh(dlﬂ(vei grad ), dip(e;))

2

- Z h(VE dip(grad f), di(e;))

- 2
Z Heildp]?)

Let a(X) = h(dy(grad f),dy(X)) and B(X) = fX(|dy|?). From equation (2.20) and the
P(z)-harmonicity condition, we obtain

traceq h(di(Vy grad f),dip(v)) = diva+ fh(r(4), 7(¢))
(2.21) —%div5+ %fA|d1/)|2.

l\J\»—A

(2.20)
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By using the definition of Vdi and the property Vxv = —AX, we find that

(2.22) (VOT'dp(v),dp) = =D h(Vd) (v, e:), T dip(e;)).

According to Cauchy-Schwarz inequality and equation (2.22) we get

2
traceq (V/J'dp(v),dy)® < 23 h((Vde)(ej,e:), T di(e;))?

i,7=1

2
< 23 [(Vd)(ej, e)Pldi(en)

i,7=1

IN

2y Y (Vi) (e )

i,j=1
(2.23) 2|dy|? | Vdy|*.

From (2.19), (2.21), (2.23), the stability condition of ¢, the Green Theorem, and the as-
sumption (2.9), we conclude that

FR(RN (w, J'w)n, J'n)dx > trace, I[(J'di(v), J'd(v))
52

.- / F Al 2de
2 Jo

(2.24) —2/ (P(x) — 2)f|Vdip|*dx > 0.
S2
But by the condition of non-positive holomorphic bisectional curvature

FR(RN (w, J'w)n, J'n)dz < 0.
SQ

Therefore, w = 0 or = 0. So that the map 1 is holomorphic. Consequently
is harmonic (see [17]). From the P(z)-harmonicity condition of i), we obtain grad f €
Ker di. O

If the function P(x) = 2 on M, we deduce the following Corollary.

Corollary 2.1. [17] Let N be a Kihler manifold with non-positive holomorphic bisectional curva-
ture. Then any stable harmonic map v : S*> — N is a holomorphic or anti-holomorphic map.

2.2. Stable P(z)-harmonic maps from S™. Y. L. Xin proved in [16] that any stable har-
monic map from S™ (n > 2) into any Riemannian manifold must be a constant map. This
result is a specific case of a more general Theorem.

Theorem 2.2. Any stable P(x)-harmonic map + from sphere S™ (n > 2) to Riemannian manifold
(N, h) is constant, where 2 < P(x) < n is a smooth function on S™ satisfying

(grad |dy[*, grad P) = 0,
on S™.
Proof. Let {e;} be a normal orthonormal frame at z¢ in S”, A(z) =< a,z >gn+: for all
x € S"” where o € R"*!, and let v = grad \. Note that

n
vzz <a,e; >e, Vxv=-XX,

i=1
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forall X € I'(TS™), and trace V2v = —v, where V is the Levi-Civita connection on S" with
respect to the standard metric of the sphere. Take f = |dy)|"~2. We compute

(2.25) va FVEAp(v) = Vi g pdib(v) + > FVEVE dy(v).

i=1 i=1

By using the properties of V¥, the first term of (2.25) is given by

Vi pdb(v) = Vidy(grad f) + di([grad f,v])
(2.26) —  VYdy(grad f) — Adi(grad f) — dip(V,, grad f),

and the second term of (2.25) is given by

n

S FVEVLAY@) = 3 [FVEVLAp(e) + FILdu((ei,v))]
=1 =1

= 2 [FRN (@d(er), dv(w)di(e) + FIEVE du(e,)

1=1

+210, gdules) + fip(les ei, v]))|

= - Z FRN (dip(v), dip(e;))dip(e;) + FVET() — 2Afr (1))

i=1

+ 3 [FVEAU(T i) + FA(T, Vev) = FAU(T., V)

i=1

= =Y RN (dy(v), dip(en))di(es) + VY fT(¥) — v()T()

i=1

—MfT(0) + Y [FAU(TVeres) + Fdb(Ve, Vo)

=1

(227) — (Ve Voer)|.

Substituting the equations (2.26) and (2.27) in (2.25), with the P(z)-harmonicity of ¢, we
have the following

S VY FVEdp(v) = —Adg(grad f) — dip(V, grad f)
=1

— Y RN (d(v), dip(e))dipes) — v(f)T (1)

i=1

—OAfr(t +§n:[fdwv Ve.e)

i=1

(2.28) +fdp(Ve,Ve,v) — fdp(Ve, Vye;)|.
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From equations (1.4) and (2.28), we have
Tp(d(v)) = Adi(grad f) + dy(V, grad f) + v(f)7 () + 207 ()
=3 [Fd(T Vi) + FdA(Te, Vo) = fd(Ve, V)
i=1

(2.29) +VE (P(@) = 2)ldp| POV d (v), d)di(es)]
it is equivalent to the following equation

Jh(dy(v)) = Md(grad f) + d(V, grad f) + v(f)T(¥) + 2 f7(2)
- fdw(Ricci v) — fdy(trace Vo)

(2:30) - Z VE (P(x) = 2)[dy| POV dip(v), dip)dip(e).
A direct calculation shows that
1
(2.31) (V¥dyp(v),dg) = S (ldul*) = Aldyl*
Since Ricciv = (n — 1)v and trace V2v = —v, from (2.30) we conclude that

W(JTp(dy(v),d(v) = Ma(dy(grad f), dip(v)) + h(dp(V, grad f), di(v))
+o(F)A(T(®), dip(v)) + 2N fh(T (1), dib(v))
—(n = 2) fh(dp(v), dip(v)) — div 6
(2.32) +(P(z) = 2)|d| "=V dip (v), dop)?,

where 0(X) = (P(x) — 2)|dy|F@~4VYdy(v), dp)h(dp(X),dip(v)). By using the P(z)-
harmonicity of ¢ and equations (2.31), (2.32), we find that

traceq h( S, (dib(v), dip(v)) = (dy(V grad f), dy))
—flr(W)|? = (n — 2)|dy|P® — trace, div @

P(z) -2
4

- |dep| 7@ =4 grad |do|?|?

(2.33) +(P(z) — 2)|dy|"™).
By using the following formula (see [5 14])
(VPdy(grad f), dy) = (grad F)(1dl?) + (dp(V grad f), dv),

the P(x)-harmonicity of 1, and the assumption (grad |dy|?, grad P) = 0 we obtain
[ (Ve p).avyis = [ gl

239 ~1 L (P@) = 2] grad v .

From the stable P(xz)-harmonic condition, the Green Theorem, and equations (2.33), (2.34),
we get the following inequality

(2.35) / (P(x) — n)|dy|P @ dz > 0.

Consequently ) is constant because 2 < P(x) < n for all z € S". O
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Corollary 2.2. [17] Any stable harmonic map v from sphere S™ (n > 2) to Riemannian manifold
(N, h) is constant.

B. Merdji and A. Mohammed Cherif proved the following result in [10] for the case
where the codomain of the stable P(x)-harmonic map is the standard sphere S™.

Theorem 2.3. Let (M, g) be a compact Riemannian manifold without boundary. When n > 2,
any stable P(x)-harmonic map ¢ : (M,g) — S™ must be constant, where P(x) is a smooth
function on M such that 2 < P(z) < n.

2.3. Stability of P(x)-harmonic identity map. For the identity map of a compact Rie-
mannian manifold without boundary, we have the following Theorem.

Theorem 2.4. Let (M, g) be a compact Riemannian manifold without boundary of dimension n.
If one of the following conditions holds

(1) n=1and P(xz) > 2forallx € M.
(2) n=2and P(x) = C* >2forallxz € M.

Then, the identity map Id : (M, g) — (M, g) is stable P(x)-harmonic.

Proof. Let {e;} be an orthonormal frame on (17, g) such that V. e; = 0 at o € M for all
1,7 =1,.n. Letv € T'(T M), we have at xg

n

(']P(w)( ) U) = Z [_ nP(g)izg(R(’wei)eivU) - g(vewnp(x) 2V€zv U)
i=1
(2.36) —g(Ve,(P(z) — 2)n"2— (divo)es, v)|.
Let 1,m2 € T'(T* M) defined by
m(X) = n=T (VXU v),
)_
(X)) = (P(z)—2)n (divv)g(X,v).
So that, the equation (2.36) becomes
g(Jlffgz) (v),v) = T Ric(v,v) —divy +n g Vol
(2.37) —div + (P(z) — 2)n 2 (divv)>.

As the manifold M is compact without boundary, by the Green Theorem we get the fol-
lowing inequality

I(v,v) = / [—np(g)_;z Ric(v,v)dw+np(x2)_2|Vv|2
M
+(P(x) —2)n (7(d1V’U) ]dm
(2.38) > / n"5 [\Vv|2 Ric(v,v)}daz.
M

According to the following Yano’s formula (see [18])

/M [[Vv]* = Ric(v,v)] dz = /M [%|ng|2 _ (divv)ﬂ dz,
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where L,g is the Lie derivative of the metric g, with the following inequality

ILogl® = Z':[(Lug)(euej)]2

g

[g(vfiiv7 6]) + g(vejv7 61)] ’

|
:M3

-

<
Il
—

g(veivv ei)z

IV
~. "‘;
i)

4 2

> — . .

= n[l_lg(veﬂ]vez)}

4

> Z(divv)?

> n( ivv)?,
we conclude that

9 _
(2.39) / [[Vv]* = Ric(v,v)] dz > n/ (divv)?dz.
M n M

If n = 1, from equations (2.38) and (2.39), we find that

9 _
n/ (divw)?dz.
n M

Thus, Id is stable P(x)-harmonic map. If n = 2, and the function P(z) is constant on MM,
we have I(v,v) > 0. Hence Id is also stable P(x)-harmonic map. O

(2.40) I(v,v) >

Corollary 2.3. For any smooth function P(z) > 2 on S!, the identity map of S' is stable P(x)-
harmonic.

2.4. Stability of P(z)-harmonic maps into S™ X ... x S™. Let (N, h) be a complete n-
dimensional submanifold in the Euclidean space R"*". Define the function & by

h(z) = max{|B(u,u)|2 ,u € TN, |u|l = 1},

for all z € N where B denote the second fundamental form of (N, h) in R"*". We define
also the function ¢ by

$(u) =D |B(u,va)[?, Vu € T,N,
a=1

where {v,} is an orthonormal frame on (N, k). Note that, ¢ is independent of the choice
of this orthonormal frame (see [8, 4]). Under the above notation, we obtain the following
results.

Theorem 2.5. We assume that for any unit vector u € T,, N, we have
(2.41) (P(z) — 2)h(x) + ¢(u) — Ric™ (u,u) < 0.

Then, any stable P(x)-harmonic map v from a compact Riemannian manifold (M, g) without
boundary to (N, h) is constant where P(x) > 2 is a smooth function on M.
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Proof. Consider a parallel vector field v in R"*”. We assume that ¢ is not a constant map.
From (1.3) and (1.4) the second variation corresponding to v is given by

Iw'v') = — /N ) |dap| P#) =2 fjh(RN(vT,dw(emdw(ei),f)dx
=1

+/ |dgp| P2 " R(VELT, Ve da
M i=1 ' '
m

(2.42) 4 /A (P(@) = 2)/as " [ 3 hldw(ed). V20T) 4.

i=1
Leti = 1,...,m. We compute the following term

T N T
VErT = Vi

n+4r
= (V]}}w(ei)vT)T

nfr
= _(v]}iﬁ(ei)vL)T

Now, we consider the quadratic form @ on R"*" defined by

m

Qw) = - /M AP Y RN 0T d(en))dute), o)

P(z)-2 3 e L e;)))dx
+ /M 01773 A (@) Avs ()

m

2.44) + [ (PG =200l [ Y (Bl (e, dvte). )] de.

=1

We choose an orthonormal frame {v,, v}, a = 1,...,n, b = n+1,...,n + r, such that the v,
are tangent to (IV, k) and the v;, are normal to (N, h). The trace of @ is given by

traceQ = —/ |dz/;|P(”3)’2iih(RN(va,dw(ei))dw(ei),va)dx
M i=1 a=1
[ 1O S0 S Bl (en), v P
(2.45) + [ (Pla) = DIavl" | Y- Bl (e, dven)|
M i=1
By using the Schwarz inequality, we have
m 2 m
> Blavten, dvle))| = Y (Blav(en). di(en), Bldule;), die;)))zns-
i=1 i,j=1
< Y IB(dv(er), dib(en))|| B(d(es), dib(ey))]
1,7=1
(2.46) < h(x) Y [du(es)Pldi(e;).

i,7=1



310 Ahmed Mohammed Cherif
We put dip(e;) = |di(e;)|u; for dip(e;) # 0 at x. From equation (2.45) and inequality (2.46),

we find that
traceQ < = [ vl S (e Ric (s, ui)da
M i=1

m

P(x)—2 N2 .
+ / 7S e ol

(2.47) + /M<P<x> — )y |2 h(2) S [d(en) Pda
=1

By the assumption (2.41) and (2.47), we conclude that trace @ < 0. Hence 1 is not stable.
O

Corollary 2.4. Let S™* X ... x S™ be a product of k unit spheres. We assume that 2 < P(x) <
min{ns, ..., ng } for all x in a compact Riemannian manifold (M, g) without boundary. Then, any
stable P(x)-harmonic map ¢ : (M, g) — S™ X ... x S™ is constant.

Proof. Note that N = S™ x ... x §™ C R™ T FmFF Gince the second fundamental form
of S" in R™*! (i = 1,..., k) is given by

Bz(Xa Y) = _<X7 Y>]R”'i+1§i7

where ¢&; is the position vector field of R7i+1 The function h is given by

h(x)

2
max{‘Bi(uz,uz) , U € TLSnl, |’u,2| = 1}

2
(2.48) = max{‘<ui,ui>]1{”i+1£i yui € Ty, 8™, ui| = 1}~

As |§| =1onS™ foralli = 1,..., k, from (2.48) we get h(z) = 1 for all z € N. Using
the same method, we find that ¢(u) = 1 for any unit vector u € T,N. Since the Ricci
curvature of S™ satisfies Ric®"* (u;, u;) = n; — 1 for any unit vector u; € T,,S™, we obtain
for all ¢ = 1, ..., k the inequality

Ric™ (u,u) > min{ni,...,ny} — 1.

The Corollary 2.4 follows from Theorem 2.5. O
Example 2.1. Let M = T? C R3 the torus of revolution equipped with the Riemannian metric
g = a?dz? + (b+ acosx)?dy?, for b > a > 0. A straightforward calculation shows that for

all « € S3, the map ¢ from (M,g) to S* x S! defined by ¥ (z,y) = (a,z) is non-constant
P(z,y)-harmonic, where

In ((b+acosz)(1+2%)) +c
In (4(1+ x2)) ’

for some ¢ € R. Here, ny = 3 and ny = 1, thus it is impossible to make 2 < P(x) < min{ny, na}.

P(z,y) = V(z,y) € T?,
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