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A Voronovskaya type theorem associated to geometric
series of Bernstein - Durrmeyer operators

S, TEFAN - LUCIAN GAROIU

ABSTRACT. In this paper we give a Voronovskaya type theorem for the operators introduced by U. Abel,
which are defined as the geometric series of Bernstein - Durrmeyer operators.

1. INTRODUCTION

A first study considering the geometric series of some positive and linear operators is
due to Păltănea, see [14]. Namely, he studied the properties of geometric series associated
to Bernstein operators ([5]) Bn : C[0, 1] → C[0, 1], given as follows:

Bn(f)(x) =

n∑
k=0

pn,k (x) f

(
k

n

)
, x ∈ [0, 1] ,

where

pn,k (x) =

(
n

k

)
xk (1− x)

n−k
, x ∈ [0, 1] , k = 0, 1, . . . , n.

In paper [14], Păltănea introduced the operators

(1.1) An =
1

n

∞∑
k=0

(Bn)
k
.

However, there are cases when operators An aren’t well defined, so the domain of defini-
tion cannot be C[0, 1] rather, it is chosen as the space of functions

ψC[0, 1] = {f : C[0, 1] → C[0, 1] : ∃ g ∈ C [0, 1] , f = ψg} ,

which, endowed with the norm ||f ||ψ = sup
x∈(0,1)

|f(x)|
ψ(x) , is a Banach space. Throughout the

paper the function ψ : [0, 1] → R, is given as ψ (x) = x (1− x) .
In [14] it was proved that lim

n→∞
||An(ψf)− 2G(f)||ψ = 0, for any f ∈ C[0, 1], where

G(f)(x) := (1 − x)
x∫
0

tf (t) dt + x
x∫
0

(1− t) f(t)dt, and (G(f)(x))
′′
= −f (x) , x ∈ [0, 1].

Also, a new proof of this result was given in [2].
A generalization of the operators An was introduced by Abel et al. ([3]), namely, in

formula (1.1) operators Bn were replaced by positive linear operators Ln belonging to a
general class of operators. If we denote by GLn

the geometric series attached to these
operators Ln, then the following result was proved: lim

n→∞
||GLn

(f)− 2G(f/ψ)||ψ = 0,

which holds for functions f belonging to the space Cψ [0, 1] = {f : C[0, 1] → C[0, 1] :
∃ g ∈ B[0, 1]∩C (0, 1) , f = ψg} which together with the norm ||·||ψ is a Banach space. The
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operators An were also studied on the space C0[0, 1] = {f ∈ C[0, 1] : f(0) = f(1) = 0}
endowed with the usual sup-norm, in paper [15]. There a Voronovskaya theorem was
obtained.

U. Abel, in paper [1], introduced the geometric series associated to Bernstein-Durrmeyer
operators (which first appeared in paper [8] and independently in [12] and their proper-
ties were later studied in [6], [7], [13] etc.)

Mn(f)(x) = (n+ 1)

n∑
k=0

pn,k (x)

1∫
0

pn,k (t) f (t) dt, f ∈ L∞[0, 1].

Namely, the operators he studied are defined as follows:

Pn =
1

n

∞∑
k=0

(Mn)
k
.

These operators are well defined on the space V, which is

(1.2) V = {f ∈ L∞ ([0, 1]) : ||f ||∗ <∞} ,

where by ∥ · ∥∗ we mean the norm:

||f ||∗ = sup
y∈(0,1)

∣∣∣∣∣∣(ψ (y))−1

y∫
0

f (x) dx

∣∣∣∣∣∣ .
Also, V endowed with the norm ||·||∗ is a Banach space.

For f ∈ V , define the function F on (0, 1) by

F (y) = (ψ (y))−1

y∫
0

f (x) dx, y ∈ (0, 1) .(1.3)

Then, f = (ψF )
′ a. e. on [0, 1] and ||f ||∗ = ||F ||∞ .

Further, the operator P : V → V, was defined as

(1.4) P (f)(x) =

1∫
0

t∫
x

F (u) dudt, x ∈ [0, 1], f ∈ V,

Integrating by parts in (1.4) it can be seen that

(1.5) P (f)(x) = −
x∫

0

tF (t) dt+

1∫
x

(1− t)F (t)dt, x ∈ [0, 1], f ∈ V

and here, if we differentiate, we find

(1.6) P ′(f)(x) = −F (x) .

In his paper, Abel proved that operators Pn satisfy the following convergence result

Theorem 1.1. If f ∈ V , then, in (V, ||·||∗) , the convergence

(1.7) lim
n→∞

||Pn (f)− P (f)||∗ = 0,

holds.

Also, Abel obtained the following two results concerning the norm of operators Mn

and Pn on the space V .
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Proposition 1.1. For each n ∈ N, the operators Mn map V to V, that is, Mn (V ) ⊂ V, and

(1.8) ||Mn||L(V,V ) =
n

n+ 2
.

Proposition 1.2. For each n ∈ N the operators Pn map V to V, that is, Pn (V ) ⊂ V, and

(1.9) ||Pn||L(V,V ) =
1

2
+

1

n
.

More recent results concerning the power series of approximation operators can be
seen in [4], [9], [10], [11] and [16].

The aim of our paper will be to provide an estimation of the convergence of operators
Pn in the form of a Voronovskaya type theorem.

2. A VORONOVSKAYA TYPE RESULT

In this section we will provide our main result, namely we will prove our Voronovskaya

type theorem associated to the operators Pn. First, we will denote by GMn
=

∞∑
k=0

(Mn)
k

the geometric series associated to Bernstein - Durrmeyer operatorsMn,where the conver-
gence holds on V. Next, we will prove that the following identities hold.

Lemma 2.1. Operator GMn ∈ V and it verifies the identities:

(2.10) (I −Mn) ◦GMn = I,

and

(2.11) GMn
◦ (I −Mn) = I,

where I denotes the identity operator.

Proof. Identities (2.10) and (2.11) follow from the general properties of operators algebra
L(V, V ) since from (1.8) we have that ∥Mn∥L(V,V ) < 1. □

In the following we will work on space V1 = V ∩ C[0, 1]. Note that condition f ∈ V1 is
equivalent with conditions f ∈ C[0, 1] and the relation below holds

(2.12)
∫ 1

0

f(t)dt = 0.

On this space, we define the operator U : V1 → C[0, 1] through

U(f) (y) =


(ψ (y))−1

y∫
0

f (x) dx, y ∈ (0, 1)

f(0), y = 0
−f(1), y = 1

f ∈ V1,(2.13)

and norm ∥ · ∥∗ as:

(2.14) ∥f∥∗ = sup
y∈[0,1]

|U(f)(y)|.

Here, we have U(f)(1) = limy→1

∫ y
0
f(t)dt

ψ(y) and U(f)(0) = limy→0

∫ y
0
f(t)dt

ψ(y) , so, since ψ(0) =
ψ(1) = 0 using l’ Hospital’s rule we will have that U(f)(1) = −f(1) and U(f)(0) = f(0).

Next, we will define the operator

(2.15) Θ(h)(x) = −
∫ x

0

th(t)dt+

∫ 1

x

(1− t)h(t)dt,

where h ∈ C[0, 1] and x ∈ [0, 1]. This operator has the following property.
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Proposition 2.3. The operator Θ maps C[0, 1] to V1, i. e.

Θ(C[0, 1]) ⊂ V1.

Proof. We have that:∫ 1

0

Θ(h)(x)dx =

∫ 1

0

[
−
∫ x

0

th(t)dt+

∫ 1

x

(1− t)h(t)dt

]
dx

= −
∫ 1

0

[∫ 1

t

th(t)dx

]
dt+

∫ 1

0

[∫ t

0

(1− t)h(t)dx

]
dt

= −
∫ 1

0

t(1− t)h(t)dt+

∫ 1

0

t(1− t)h(t)dt

= 0.

So, since Θ(h) satisfies condition (2.12) our assertion is true. □

From above and from (2.15), we have that

(2.16) P (f) := Θ(U(f)), f ∈ V1.

Next, on the space V1 the following result concerning the norm ∥ · ∥∗ holds.

Lemma 2.2. For any function f ∈ V1 we have that:

(2.17) ∥f∥∗ ≤ 2∥f∥∞.

Proof. Let U be as in (2.13) and ∥f∥∗ = supy∈[0,1] |U(y)|. There is a sequence (yn)n, yn ∈
[0, 1] such that limn→∞ |U(yn)| = ∥f∥∗. From Bolzano - Weierstrass theorem there ex-
ists a covergent subsequence (ynk

)k of the sequence (yn)n. Let y∗ ∈ [0, 1] be such that
limk→∞ ynk

= y∗. Then we have the following cases:
I. If y∗ = 0 then

∥f∥∗ = lim
k→∞

|U(ynk
)| = lim

y→0
|U(y)| = |f(0)| ≤ ∥f∥∞.

II. If y∗ ∈ (0, 12 ) then

∥f∥∗ = lim
k→∞

|U(ynk
)| = |F (y∗)| =

∣∣∣∣∣ 1

y∗(1− y∗)

∫ y∗

0

f(t)dt

∣∣∣∣∣ ≤ ∥f∥∞
1

1− y∗
≤ 2∥f∥∞.

III. If y∗ ∈ ( 12 , 1) then

∥f∥∗ = lim
k→∞

|U(ynk
)| = |F (y∗)| =

∣∣∣∣− 1

y∗(1− y∗)

∫ 1

y∗
f(t)dt

∣∣∣∣ ≤ ∥f∥∞
1

y∗
≤ 2∥f∥∞.

IV. If y∗ = 1 then

∥f∥∗ = lim
k→∞

|U(ynk
)| = lim

y→1
|U(y)| = |f(1)| ≤ ∥f∥∞.

So, our proof is complete. □

Now, we can prove our main result.

Theorem 2.2. Let f ∈ V1 be a ten times differentiable function on [0, 1] and which satisfies the
following conditions

∫ 1

0
f(y) logψ(y)dy = 0, f(0) + f(1) = 0, f ′(0) − f ′(1) = 0, f ′′(0) +

f ′′(1) = 0 and f ′′′(0)− f ′′′(1) = 0. Then:

(2.18) lim
n→∞

n(Pn (f)− P (f)) = 2P (f)−Θ(T ′ψ′)− 1

2
Θ(T ′′ψ),

with regard to the norm ∥ · ∥∗.
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Proof. Let us fix f ∈ V1 and then for simplicity we denote P (t) = P (f) (t) , t ∈ (0, 1) and
T (t) = U(f)(t).

One can prove that T ∈ C5[0, 1]. Indeed, one can obtain by induction that T ∈ Ck[0, 1],
1 ≤ k ≤ 5 as follows. If we suppose by induction that T ∈ Ck−1[0, 1] and we have that
T admits continuous k-derivative on interval (0, 1) it suffices that T (k) has finite limits at
points 0 and 1. Note that the k-th derivative of T on interval (0, 1) can be expressed, after
simplification, as a fraction having the denominator equal to ψk+1 and the numerator
given in terms of the derivatives of f up to order k − 1. Then, the existence of the finite
limits of T (k) at points 0 and 1 can be obtained by applying l’Hosptial’s rule k + 1 times,
which is possible since f is 2k = k − 1 + k + 1 times differentiable.

Now, to prove our result we will use Taylor’s polynomial with integral remainder, up
to the fifth degree, associated to P, where we will keep in mind that P ′ (t) = −T (t) . Let
s, t ∈ [0, 1], then

P (s) = P (t)− T (t) (s− t)− 1

2
T ′ (t) (s− t)

2 − 1

6
T ′′ (t) (s− t)

3

− 1

24
T ′′′ (t) (s− t)

4 − 1

120
T (4) (t) (s− t)

5 −R5 (t, s) ,

(2.19)

where R5 (t, s) = 1
120

s∫
t

(s− u)
5
T (5)(u)du. Since P (s) ∈ V1 and any polynomial belongs

to V1 also R5 (t, ·) ∈ V1, for each t ∈ [0, 1].
Further, we will need the jth order moments of operators Mn which are denoted by

mj (t) = Mn

(
(e1 − t)

j
)
(t), j = 0, 1, 2, . . . and e1 (t) = t. It is well known that the

following recurrence formula (see [6]) holds

(2.20) (j + n+ 2)mj+1(t) = ψ(t)
[
2jmj−1(t) +m′

j(t)
]
+ (j + 1)ψ′(t)mj(t),

and

m1 (t) =
1

n+ 2
ψ′ (t) ,

m2 (t) =
2n− 6

(n+ 2) (n+ 3)
ψ (t) +

2

(n+ 2) (n+ 3)
,

m3 (t) =
12 (n− 1)

(n+ 2) (n+ 3) (n+ 4)
ψ′ (t)ψ (t) +

6

(n+ 2) (n+ 3) (n+ 4)
ψ′(t),

m4 (t) =
12

(
n2 − 21n+ 10

)
(n+ 2) (n+ 3) (n+ 4) (n+ 5)

ψ2 (t)

+
24 (3n− 5)

(n+ 2) (n+ 3) (n+ 4) (n+ 5)
ψ (t) +

24

(n+ 2) (n+ 3) (n+ 4) (n+ 5)
,

m5 (t) = O

(
1

n3

)
ψ2 (t)ψ′ (t) +O

(
1

n4

)
ψ (t)ψ′ (t) +O

(
1

n5

)
ψ′ (t)

m6 (t) = O

(
1

n3

)
ψ3 (t) +O

(
1

n4

)
ψ2 +O

(
1

n5

)
ψ (t) +O

(
1

n6

)
.

(2.21)

Now, since I −Mn : V1 → V1, from (2.19) we get:

(I −Mn) (P ) (t) = T (t)m1 (t) +
1

2
T ′ (t)m2 (t) +

1

6
T ′′ (t)m3 (t)

+
1

24
T ′′′ (t)m4 (t) +

1

120
T (4) (t)m5 (t) +Mn (R5 (t, ·)) (t).

(2.22)
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In order to obtain our Voronovskaya type result we will need to use Lemma 2.1 and to
relation (2.22) we will apply operator Pn. But, Lemma 2.1 only works for operators from
the space V1 so first we will prove that (I −Mn)(P ) belongs to the space V1. Namely, we
will prove that ∫ 1

0

(I −Mn)(P )(t)dt = 0.

We have that: ∫ 1

0

(I −Mn)(P )(t)dt =

∫ 1

0

P (f)(t)dt−
∫ 1

0

Mn((P )(f))(t)dt.

From Proposition 2.3 and from (2.16) we have that:∫ 1

0

P (f)(t)dt = 0,

so we only have to prove that
∫ 1

0
Mn((P )(f))(t)dt = 0. However,∫ 1

0

Mn((P )(f))(t)dt = (n+ 1)

n∑
k=0

1∫
0

pn,k (t) dt ·
1∫

0

pn,k (x)P (f) (x) dx

=

n∑
k=0

1∫
0

pn,k (x)P (f) (x) dx =

1∫
0

n∑
k=0

pn,k (x)P (f) (x) dx =

1∫
0

P (f) (x) dx = 0.

So, (I −Mn)(P ) belongs to V1.
Also, operators Pn can only be applied to functions belonging to V1 so we will need to

prove that terms from the right hand side of (2.22) belong to V1.
First, we have that∫ 1

0

T (y)ψ′(y)dy =

∫ 1

0

ψ′(y)

ψ(y)

(∫ y

0

f(t)dt

)
dy

=

∫ 1

0

(logψ(y))′
(∫ y

0

f(t)dt

)
dy

= −
∫ 1

0

logψ(y)f(y)dy

= 0.

(2.23)

so we have that Tψ′ ∈ V1 which means that Tm1 ∈ V1. Next, integrating by parts we have
that ∫ 1

0

T ′(y)ψ(y)dy = −
∫ 1

0

T (y)ψ′(y)dy.

Therefore, from (2.23) it follows that
∫ 1

0
T ′(y)ψ(y)dy = 0, so T ′ψ ∈ V1.Now, we will prove

that
∫ 1

0
T ′(y)dy = 0. Here,∫ 1

0

T ′(y)dy = T (1)− T (0) = −(f(1) + f(0)).

Then using the hypothesis it follows that
∫ 1

0
T ′(y)dy = 0 so T ′ ∈ V1 which together with

T ′ψ ∈ V1 imply that T ′m2 ∈ V1. Further, integrating by parts, we have that∫ 1

0

T ′′(y)ψ′(y)dy = T ′(y)ψ′(y)|10 −
∫ 1

0

T ′(y)ψ′′(y)dy

= −T ′(1)− T ′(0) + 2(T (1)− T (0)).

(2.24)
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Since,

T ′(y) =
ψ(y)f(y)− ψ′(y)

∫ y
0
f(t)dt

ψ2(y)
,

using l’Hospital rule for 0
0 we have that T ′(1) = − 1

2f
′(1)+f(1) and T ′(0) = 1

2f
′(0)+f(0).

So, condition (2.24) becomes∫ 1

0

T ′′(y)ψ′(y)dy =
1

2
(f ′(1)− f ′(0))− 3(f(0) + f(1)),

which, as we can see from the hypothesis, means that
∫ 1

0
T ′′(y)ψ′(y)dy = 0 so T ′′ψ′ ∈ V1.

Next, integration by parts yields:∫ 1

0

T ′′(y)ψ(y)ψ′(y)dy = T ′(y)ψ(y)ψ′(y)|10 −
∫ 1

0

T ′(y)[(ψ′(y))2 + ψ(y)ψ′′(y)]dy

= −
∫ 1

0

T ′(y)(1− 6ψ(y))dy = −
∫ 1

0

T ′(y)dy + 6

∫ 1

0

T ′(y)ψ(y)dy = 0,

which implies that T ′′ψψ′ belong to V1. Because T ′′ψ′ ∈ V1 and T ′′ψψ′ ∈ V1 then T ′′m3 ∈
V1. Proceeding in a similar fashion we can prove that∫ 1

0

T ′′′(y)ψ2(y)dy = −2

∫ 1

0

T ′′(y)ψ(y)ψ′(y)dy = 0,

so T ′′′ψ2 is in the space V1. Again, we have that
∫ 1

0
T ′′′(y)ψ(y)dy = −

∫ 1

0
T ′′(y)ψ′(y)dy = 0,

so T ′′′ψ ∈ V1. Now,
∫ 1

0
T ′′′(y)dy = T ′′(1)− T ′′(0). But,

T ′′(y) =
2(1− 3ψ(y))

∫ y
0
f(t)dt− ψ(y)(2ψ′(y)f(y)− ψ(y)f ′(y))

ψ3(y)
,

so after using l’Hospital’s rule for 0
0 and the assumptions made in the statement of our

theorem we get∫ 1

0

T ′′′(y)dy = −1

3
[f ′′(0) + f ′′(1)] + [f ′(1)− f ′(0)]− 2[f(1) + f(0)] = 0,

which means that T ′′′ ∈ V1. Therefore we have that T ′′′m4 ∈ V1.
Next, integrating by parts we obtain that∫ 1

0

T (4)(y)ψ(y)ψ′(y)dy = T ′′′(y)ψ(y)ψ′(y)|10 −
∫ 1

0

T ′′′(y)(1− 6ψ(y))dy

= 6

∫ 1

0

T ′′′(y)ψ(y)dy −
∫ 1

0

T ′′′(y)dy

= 6T ′′(y)ψ(y)|10 − 6

∫ 1

0

T ′′(y)ψ′(y)dy

= 0,

and also,∫ 1

0

T (4)(y)ψ2(y)ψ′(y)dy = T ′′′(y)ψ2(y)ψ′(y)|10 − 2

∫ 1

0

T ′′′(y)ψ(y)dy + 10

∫ 1

0

T ′′′(y)ψ2(y)dy

= 0,
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so it follows that T (4)ψψ′ and T (4)ψ2ψ′ belong to V1. Again, integration by parts yields∫ 1

0

T (4)(y)ψ′(y)dy = T ′′′(y)ψ′(y)|10 + 2

∫ 1

0

T ′′′(y)dy

= −T ′′′(1)− T ′′′(0).

We have that:

T ′′′(y) =
1

ψ4(y)

{
6ψ′(y)(2ψ(y)− 1)

∫ y

0

f(t)dt

+ ψ(y)[6(1− 3ψ(y))f(y)− ψ(y)(3ψ′(y)f ′(y)− ψ(y)f ′′(y))]}.

Using l’Hospital’s rule for 0
0 we get:

T ′′′(1) + T ′′′(0) =
1

4
[f ′′′(0)− f ′′′(1)] + [f ′′(1) + f ′′(0)] + 3[f ′(0)− f ′(1)] + 6[f(1) + f(0)],

so, from the hypothesis, we obtain
∫ 1

0
T (4)(y)ψ′(y) = 0 so T (4)ψ′ is in V1. So T (4)m5 ∈ V1.

Also, from (2.19) it follows that Mn(R5(t, ·))(t) ∈ V1 because all the other terms are from
V1.

Now, we will apply operators nPn to relation (2.22), and since we have that (I −
Mn)(P ) ∈ V1 we can use Lemma 2.1 and for x ∈ [0, 1] we obtain

P (x) =
n

n+ 2
Pn(Tψ

′) (x) +
n

2
Pn

(
2n− 6

(n+ 2) (n+ 3)
T ′ψ +

2

(n+ 2) (n+ 3)
T ′

)
(x)

+
n

6
Pn (T

′′m3) (x) +
n

24
Pn(T

′′′m4) (x) +
n

120
Pn

(
T (4)m5

)
(x)

+ nPn (Kn) (x) ,

(2.25)

where Kn(t) =Mn(R5(t, ·))(t).
Then, because f = ψ′T + T ′ψ, we have

n (P (f)− Pn (f)) (x) =
−2n

n+ 2
Pn(Tψ

′)(x)− 8n2 + 6n

(n+ 2) (n+ 3)
Pn (T

′ψ) (x)

+
n2

(n+ 2) (n+ 3)
Pn(T

′)(x) +
n2

6
Pn (T

′′m3) (x)

+
n2

24
Pn(T

′′′m4)(x) +
n2

120
Pn

(
T (4)m5

)
(t)

+ n2Pn (Kn) (x) .

(2.26)

Now, we will prove that remainder n2Pn (Kn) , from (2.26), converges to 0 in the norm
∥ · ∥∗. First, for s, t ∈ [0, 1] we have

|R5(t, s)| =
∣∣∣∣ 1

120

∫ s

t

(s− u)5T (5)(u)du

∣∣∣∣
≤ ∥T (5)(u)∥∞

120

∣∣∣∣∫ s

t

(s− u)5du

∣∣∣∣
=

∥T (5)(u)∥∞
6!

(s− u)6.

Then for t ∈ [0, 1] we obtain

|Kn(t)| = |Mn(R5(t, ·))(t)| ≤
∥T (5)(u)∥∞

6!
m6(t) = O

(
1

n3

)
.
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Hence, n2∥Kn∥∞ = O
(
1
n

)
, which together with Lemma 2.2 imply that Pn(Kn) converges

to 0 in the norm ∥ · ∥∗.
Next, using Theorem 1.1 and (2.21), returning to (2.26) we see that

lim
n→∞

n(Pn (f)− P (f)) = 2P (Tψ′) + 8P (T ′ψ)− P (T ′)

− 2P (T ′′ψ′ψ)− 1

2
P (T ′′′ψ2),

(2.27)

with regard to the norm ∥ · ∥∗, which is,

lim
n→∞

n(Pn (f)− P (f)) = 2P (f) + 6P (T ′ψ)− P (T ′)

− 2P (T ′′ψ′ψ)− 1

2
P (T ′′′ψ2),

(2.28)

with regard to the norm ∥ · ∥∗. Now, we have that

P (T ′′ψ′ψ)(x) =

−
∫ x

0

t

ψ(t)

(∫ t

0

T ′′(y)ψ(y)ψ′(y)dy

)
dt+

∫ 1

x

1− t

ψ(t)

(∫ t

0

T ′′(y)ψ(y)ψ′(y)dy

)
dt,

where, if we integrate by parts and use the fact that (ψ′(y))2 = 1− 4ψ(y), we get that:∫ t

0

T ′′(y)ψ(y)ψ′(y)dy =

∫ t

0

(T ′(y))′ψ(y)ψ′(y)dy

= ψ(t)ψ′(t)T ′(t)−
∫ t

0

T ′(y)dy + 6

∫ t

0

T ′(y)ψ(y)dy,

so,

P (T ′′ψ′ψ)(x) = −
∫ x

0

tψ′(t)T ′(t)dt+

∫ 1

x

(1− t)ψ′(t)T ′(t)dt(2.29)

+

∫ x

0

t

ψ(t)

(∫ t

0

T ′(y)dy

)
dt−

∫ 1

x

1− t

ψ(t)

(∫ t

0

T ′(y)dy

)
dt

−6

∫ x

0

t

ψ(t)

(∫ t

0

T ′(y)ψ(y)dy

)
dt+ 6

∫ 1

x

1− t

ψ(t)

(∫ t

0

T ′(y)ψ(y)dy

)
dt,

which becomes

(2.30) P (T ′′ψ′ψ)(x) = Θ(T ′ψ′)(x)− P (T ′)(x) + 6P (T ′ψ)(x).

Next,

P (T ′′′ψ2)(x) =(2.31)

−
∫ x

0

t

ψ(t)

(∫ t

0

T ′′′(y)ψ2(y)dy

)
dt+

∫ 1

x

1− t

ψ(t)

(∫ t

0

T ′′′(y)ψ2(y)dy

)
dt,

and since integration by parts yields∫ t

0

T ′′′(y)ψ2(y)dy = ψ2(t)T (t)− 2

∫ t

0

T ′′(y)ψ′(y)ψ(y)dy,



360 S, tefan - Lucian GAROIU

we can see that (2.31) becomes

P (T ′′′ψ2)(x) =(2.32)

−
∫ x

0

tψ(t)T ′′(t)dt+

∫ 1

x

(1− t)ψ(t)T ′′(t)dt

−2

[
−
∫ x

0

t

ψ(t)

(∫ t

0

T ′′(y)ψ′(y)ψ(y)dy

)
dt+

∫ 1

x

1− t

ψ(t)

(∫ t

0

T ′′(y)ψ′(y)ψ(y)dy

)
dt

]
= Θ(T ′′ψ)(x)− 2P (T ′′ψψ′)(x).

Therefore, from (2.30) we see that (2.32) becomes

(2.33) P (T ′′′ψ2)(x) = Θ(T ′′ψ)(x)− 2Θ(T ′ψ′)(x) + 2P (T ′)(x)− 12P (T ′ψ)(x).

Now, replacing (2.30) and (2.33) in (2.28) we obtain

lim
n→∞

n(Pn (f)− P (f)) = 2P (f)−Θ(T ′ψ′)− 1

2
Θ(T ′′ψ)(2.34)

with regard to the norm ∥ · ∥∗, which is our Voronovskaya type result. □
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