CARPATHIAN J. MATH. Volume **41** (2025), No. 2, Pages 393-408 Online version at https://www.carpathian.cunbm.utcluj.ro/ ISSN 1584-2851 (Print edition); ISSN 1843-4401 (Electronic) DOI: https://doi.org/10.37193/CJM.2025.02.08

On statistical convergence of topological Henstock-Kurzweil integral

HEMANTA KALITA¹, SUMIT SOM², AND BIPAN HAZARIKA³

ABSTRACT. In this paper, we introduce Henstock-Kurzweil type integrable function (in brief, topological Henstock-Kurzweil integrable function) on a topological vector space associate with a Radon measure μ . Basic results of topological Henstock-Kurzweil integrable function are discussed. Also, the relationship between topological Henstock-Kurzweil integral and Lebesgue integral is discussed. Moreover, we investigate several convergence theorems for μ -measurable topological Henstock-Kurzweil integrable function on a topological vector space. Finally, we extent the notion of statistical convergence for topological Henstock-Kurzweil integrable function on a μ -subcell of a topological vector space.

1. INTRODUCTION

Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to \mathbb{R}$ be a bounded function. In the year 1854, Riemann first introduced the concept of Riemann integral of f through the concept of tagged partitions in the interval [a, b] and the limit of Riemann sums as the norm of the tagged partitions goes to zero. During 1950, Henstock and Kurzweil developed an integral, known as Henstock-Kurzweil integral which uses the concept of δ -fine tagged partition of the interval [a, b] where $\delta : [a, b] \to \mathbb{R}_+$. Henstock-Kurzweil integral is more general than Lebesgue integral as well as similar to that of Riemann integral (see [8, 10, 18]). Moreover, the Henstock-Kurzweil integral is non-absolute, in the sense that, some functions are Henstock-Kurzweil integrable but not absolutely Henstock-Kurzweil integrable. G. Carrao [1] investigated Henstock-Kurzweil type integral on a complete measure metric space endowed with a Radon measure μ and with a family \mathcal{F} of "intervals" satisfying the Vitali covering theorem called μ -cell (see [1, Definition 2.14]). Recently, H. Kalita et al. expanded the idea of μ -cell for Henstock-Kurzweil integrals in various settings in [12, 13].

In the context of linear topological vector space, Ch. Klein et al. [14] presented the Riemann integral with respect to any non-atomic measure of functions. R. Paluga et al. [15] presented several properties of Henstock-Kurzweil integrals on a topological space. Recently, H. Kalita et al. have introduced ap-Henstock-Kurzweil integrals on topological vector space in [11].

On the other hand, the concept of statistical convergence for sequences of real or complex numbers has been investigated by Fast in [3]. It uses the notion of natural density of subsets of natural numbers. If $K \subseteq \mathbb{N}$, then the natural density of K is denoted by d(K) and is defined by $d(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|$. Since then, it has been the subject of investigation in other articles, including [4, 5, 6], and [7]. Maio et al. [9] examined statistical convergence in uniform and topological spaces, and illustrate the applications of this convergence to function spaces, hyperspaces, and selection principles. Also, the

Received: 22.01.2024. In revised form: 20.07.2024. Accepted: 14.09.2024

²⁰²⁰ Mathematics Subject Classification. 26A39, 26A46, 54A20, 54B20.

Key words and phrases. Topological Henstock-Kurzweil integral, Cauchy's criterion, statistical convergence, topological vector spaces.

Corresponding author: Hemanta Kalita; hemanta30kalita@gmail.com; hemantakalita@vitbhopal.ac.in

notion of μ -statistically convergent function sequences was presented in [2]. Recently, statistical Riemann and Lebesgue integrable sequences of functions have been studied by Srivastava et al. in [17] and investigated Korovkin type approximation theorems for such class of functions. On the other hand, in [16], J. Sokolowski et al. defined the concept of topological derivatives.

The idea of [9] motivated us to introduce topological Henstock-Kurzweil integrals on a μ -cell of a topological vector space. The fascinating ideas of [17] impels us to extent the convergence of topological Henstock-Kurzweil integrable functions to statistical convergence in our setting.

The paper is organized as follows: in Section 2, some basic notions and terminologies has been introduced which will be needed throughtout the paper. In Section 3, we introduce the notion of topological Henstock-Kurzweil integral (denoted as THK integral) of a μ -cell-valued functions along with some properties. In Section 4, we extend the theory of convergence of THK integral to statistically convergence of THK integrable functions. Moreover, we introduce statistically equi-integrability for THK integrable functions to prove sequence of equi-integrable THK integrable functions are statistically Cauchy.

2. PRELIMINARIES

Let δ be a positive function on the closed interval [a, b]. We say $P = \left\{ ([x_{i-1}, x_i], t_i) : 1 \le i \le n \right\}$ is δ -fine tagged partition of [a, b] if $\left\{ [x_{i-1}, x_i] : 1 \le i \le n \right\}$ is a partition of [a, b], $t_i \in [a, b]$ and $[x_{i-1}, x_i] \subseteq (t_i - \delta(t_i), t_i + \delta(t_i))$ for every $i, 1 \le i \le n$. Riemann sum is defined as $S(f, P) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$ if exists.

Definition 2.1. [8, Definition 9.3] A function $f : [a, b] \to \mathbb{R}$ is called Henstock-Kurzweil integrable on [a, b] if there exists a real number L with the following property: for each $\epsilon > 0$, there exists a positive function δ such that $|S(f, P) - L| < \epsilon$ whenever P is tagged partition of [a, b]. We called $L = (HK) \int_a^b f$.

Recall Henstock-Kurzweil equi-integrable functions as follows.

Definition 2.2. A sequence $(f_n)_{n=1}^{\infty}$ of Henstock-Kurzweil integrable functions on [a, b] is said to be Henstock-Kurzweil equi-integrable on [a, b] if for each $\epsilon > 0$ there exists a gauge δ independent of n, on [a, b] such that

$$\sup_{n \in \mathbb{N}} \left| S(f_n, P) - (HK) \int_a^b f_n \right| < \epsilon$$

for each δ -fine partition P of [a, b].

Let \mathcal{X} be a compact Hausdorff topological vector space over real numbers. We denote support of μ by $supp(\mu) = \{x \in \mathcal{X} : \mu(\mathcal{U}) > 0 \text{ for every } \theta \text{ nbd } \mathcal{U} \text{ of } x\}$. Throughout our work $\mu(\mathcal{U}) > 0$ is understood. If $A \subset \mathcal{X}$, then \overline{A} denotes the closure of A in \mathcal{X} . ∂A denotes boundary of A where $\partial A = \overline{A} \cap \overline{\mathcal{X}} \setminus A$. Let $Bo(\mathcal{X})$ denotes the Borel sigma algebra of \mathcal{X} containing all compact subsets of \mathcal{X} . Recalling an element $A \in Bo(\mathcal{X})$ is called μ continuity set if $\mu(\partial A) = 0$.

Lemma 2.1. [11] Let \mathcal{X} be a topological vector space. Then there is a local base \mathcal{B} of θ (the zero vector), satisfying the following:

- (1) If $\mathcal{U}, \mathcal{V} \in \mathcal{B}$, then there is a $\mathcal{W} \in \mathcal{B}$ with $\mathcal{W} \subseteq \mathcal{U} \cap \mathcal{V}$.
- (2) If $U \in \mathcal{B}$ and $x \in \mathcal{U}$, there is a $\mathcal{V} \in \mathcal{B}$ such that $x + \mathcal{V} \subseteq \mathcal{U}$.

- (3) If $\mathcal{U} \in \mathcal{B}$, there is a $\mathcal{V} \in \mathcal{B}$ such that $\mathcal{V} + \mathcal{V} \subseteq \mathcal{U}$.
- (4) If $U \in \mathcal{B}$ and $x \in \mathcal{X}$, then there is $k \in \mathbb{R}$ such that $x \in k\mathcal{U}$
- (5) If $\mathcal{U} \in \mathcal{B}$ and $0 < |k| \le 1$, then $k\mathcal{U} \subseteq \mathcal{U}$ and $k\mathcal{U} \in \mathcal{B}$.
- (6) $T\{\mathcal{U}: \mathcal{U} \in \mathcal{B}\} = \{\theta\}.$

Conversely, given a collection \mathcal{B} of subsets containing θ and satisfying the above conditions, there is a topology for \mathcal{X} making \mathcal{X} a topological vector space and having B as a local base at θ .

Let $(\mathcal{X}, \mathcal{T})$ be a topological space. A family $\mathcal{F} = {\mathcal{Q}_i : i \in \mathbb{N}}$ of subsets of \mathcal{X} is a filter in \mathcal{X} if the following are satisfied:

- (1) For every $i \in \mathbb{N}$, $Q_i \neq \emptyset$.
- (2) For $Q_i, Q_i \in \mathcal{F}$ then $Q_i \cap Q_i \in \mathcal{F}$
- (3) If $Q \in \mathcal{F}$, and $Q \subseteq \mathcal{B}$ then $\mathcal{B} \in \mathcal{F}$.

The filter \mathcal{F} converges to $x \in \mathcal{X}$ if for every θ -nbd \mathcal{U} (θ is zero vector of \mathcal{X}) there exists $\mathcal{Q} \in \mathcal{F}$ such that $\mathcal{Q} - x \subseteq \mathcal{U}$. We say \mathcal{F} is Cauchy if for every θ -nbd \mathcal{U} there exists $\mathcal{Q} \in \mathcal{F}$ such that $\mathcal{Q} \subseteq \mathcal{U}$. Let \mathcal{X} be a topological vector space. We say that \mathcal{X} is complete if every Cauchy filter in \mathcal{X} converges. We say that \mathcal{X} is locally convex if there is a local base at θ whose members are convex.

Definition 2.3. (1) Let $Q, \mathcal{R} \in \mathcal{F}$. We say Q, \mathcal{R} are non overlapping if $Q \cap \mathcal{R} = \emptyset$.

(2) Let \mathcal{G} be a subfamily of \mathcal{F} . We say that \mathcal{G} is a fine cover of $E \subset \mathcal{X}$ if $\mu(\mathcal{Q}) \to 0$ whenever $x \in \mathcal{Q}$ for all $x \in E$.

Definition 2.4. We call \mathcal{F} is a family of μ -cells if it satisfies the following conditions:

- (1) Given $Q \in \mathcal{F}$ and a constant a > 0 there exists a division $\left\{ Q_1, Q_2, ..., Q_m \right\}$ and there exists \mathcal{U} , such that $\inf \left[\mu \left(\mathcal{U}(Q_i) \right) \right] < a$ for i = 1, 2, ..., m;
- (2) Given $A, Q \in \mathcal{F}$ and $A \subset Q$, there exists a division $\{Q_1, Q_2, ..., Q_m\}$ of Q and there exists \mathcal{U} , such that $\mathcal{U}(A) = \mathcal{U}(Q_1)$;
- (3) $\mu(\partial Q) = 0$ for each $Q \in \mathcal{F}$ where ∂Q is the boundary of Q.

Let us construct an example supporting Definition 2.4 as below.

Example 2.1. Consider n > 1. Let \mathcal{X} be the unit cube $[0,1]^n$ of \mathbb{R}^n endowed with the Euclidean distance in \mathbb{R}^n and with the *n*-dimensional Lebesgue measure μ_n . Let $0 < a \leq 1$, the system of \mathcal{F} of all non empty closed sub-intervals \mathcal{Q} of $[0,1]^n$ such that $\mu_n(\mathcal{Q}) > a\mu_n(B)$ for some ball B containing \mathcal{Q} is the family of μ_n -cell.

We call \mathcal{F} is μ -filter if for each subset E of \mathcal{X} and for each subfamily \mathcal{G} of \mathcal{F} that is a fine cover of E, there exists a countable system $\left\{\mathcal{Q}_1, \mathcal{Q}_2, ..., \mathcal{Q}_j, ...\right\}$ of pairwise nonoverlapping cells of \mathcal{G} such $\mu(E) \setminus \mu(\cup \mathcal{Q}_j) \ge 0$.

Definition 2.5. Let $Q \in \mathcal{F}$, $E \subset Q$ and δ be a gauge on Q. A collection $P = \left\{ (x_i, Q_i) \right\}_{i=1}^m$ of finite ordered pairs of points and cells is said to be

(1) partition of \mathcal{Q} if $\left\{ \mathcal{Q}_1, \mathcal{Q}_2, ..., \mathcal{Q}_m \right\} \subseteq Bo(\mathcal{X})$ is a division of \mathcal{Q} and $x_i \in \mathcal{Q}_i$ for i = 1, 2, ..., m;

- (2) a partial partition of Q if $\{Q_1, Q_2, ..., Q_m\} \subseteq Bo(\mathcal{X})$ is a subsystem of a division of Qand $x_i \in \mathcal{Q}_i$ for i = 1, 2, ...
- (3) δ -fine if $\mu\left(\mathcal{Q}_i\right) < \delta(x_i)$ for i = 1, 2, ..., m; (4) *E*-anchored if the points $x_1, x_2, ..., x_m$ belongs to *E*.

3. HENSTOCK-KURZWEIL INTEGRALS ON TOPOLOGICAL VECTOR SPACES

In this section, we introduce topological Henstock-Kurzweil integral on a μ -cell Q of a topological vector space \mathcal{X} . The following Cousin's type lemma addresses the existence of δ -fine partitions of a given cell Q.

Lemma 3.2. If δ is a gauge on \mathcal{Q} , then there exists a δ -fine partition of \mathcal{Q} .

Proof. The proof follows similar technique of [1, Lemma 2.2.1], so omitted.

Let $P = \left\{ (x_i, Q_i) \right\}_{i=1}^m$ be a partition of $Q \in \mathcal{F}$ and $f : Q \to \mathcal{X}$ be a given function.

 \Box

We define Riemann sum as $S(f, P) = \sum_{i=1}^{m} f(x_i) \mu(Q_i)$. We are ready to define topological Henstock-Kurzweil integral as follows:

Definition 3.6. A function $f : \mathcal{Q} \to \mathbb{R}$ is said to be Henstock-Kurzweil integrable on \mathcal{Q} with respect to μ if there exists a real number A such that for each U, there exists a gauge δ on Q, with

$$|S(f,P) - A| < \mu(\mathcal{U}) \text{ whenever } P = \left\{ (x_i, \mathcal{Q}_i) \right\}_{i=1}^m \text{ is } \delta \text{-fine partition on } \mathcal{Q} \text{ and } \mu(\mathcal{U}) > 0.$$

The number A is said to be the Henstock-Kurzweil integral of f on Q with respect to μ or topological Henstock-Kurzweil integral (in short, THK integral) on Q with respect to μ and we write $A = \int_{\Omega} f d\mu$. Now-onwards, we denote THK for topological Henstock-Kurzweil integral of f on Q with respect to μ . It is not hard to find the uniqueness of the integral value of a given THK integrable function $f : \mathcal{Q} \to \mathbb{R}$. The collection of all THK integrable functions on Q with respect to μ shall be denoted by THK(Q). The Alexiewicz semi-norm on THK(Q) can be defined by

$$||f|| = \sup_{\mathcal{Q}\in\mathcal{F}} \left| \int_{\mathcal{Q}} f \right|$$

where the integral is in the sense of THK. It is easy to see $(THK(\mathcal{Q}), ||.||)$ is a linear space.

Example 3.2. The function f(x) = c with $c \in \mathbb{R}$, for all $x \in Q$ is THK integrable on Q with $\int_{\mathcal{O}} f d\mu = c\mu(\mathcal{Q}).$

Proof. Let \mathcal{U} be given. Since $f(x) = c, \forall x \in \mathcal{Q}$. In this situation for any tagged partition *P* of \mathcal{Q} , we have $S(f, P) = \sum_{i=1}^{n} f(t_i)\mu(\mathcal{Q}_i) = c\mu(\mathcal{Q})$. Hence for any tagged partition *P*,

$$|S(f, P) - c\mu(\mathcal{Q})| = |c\mu(\mathcal{Q}) - c\mu(\mathcal{Q})|$$

= 0 < \mu(\mathcal{U}).

Let P be a tagged partition, that is δ -fine, and \mathcal{U} is any θ -nbd, it holds for all \mathcal{U} . Thus f(x) = c is THK on \mathcal{Q} with $\int_{\mathcal{O}} f d\mu = c\mu(\mathcal{Q})$.

Few simple properties of THK integrals are as follows.

Theorem 3.1. Let $f, g \in THK(\mathcal{Q})$, then $f + g \in THK(\mathcal{Q})$, and $\int_{\mathcal{Q}} (f + g) d\mu = \int_{\mathcal{Q}} f d\mu + \int_{\mathcal{Q}} g d\mu$.

Theorem 3.2. If $f \in THK(Q)$ and $k \in \mathbb{R}$, then $kf \in THK(Q)$ and $\int_{Q} kf d\mu = k \int_{Q} f d\mu$.

Theorem 3.3. If $f \in THK(\mathcal{Q})$ and $f(x) \geq 0$ for each $x \in \mathcal{Q}$, then $\int_{\mathcal{Q}} f d\mu \geq 0$.

Corollary 3.1. Let $f, g \in THK(Q)$. If $f \geq g$ for each $x \in Q$, then $\int_{Q} f d\mu \geq \int_{Q} g d\mu$.

Proposition 3.1. If $f : Q \to \mathbb{R}$ be THK integrable on Q and |f(x)| < M with $M \in \mathbb{R}$ for all $x \in Q$, then $|\int_{\Omega} f| \le M(\mu(Q))$.

Next, we prove Cauchy criterion for THK integrable functions on Q.

Theorem 3.4. (The Cauchy Criterion) A function $f : \mathcal{Q} \to \mathbb{R}$ is THK integrable on \mathcal{Q} if and only if for each \mathcal{U} , there exists a gauge δ on \mathcal{Q} such that $|S(f, P_1) - S(f, P_2)| < \mu(\mathcal{U})$ whenever P_1 and P_2 are δ -fine partitions of \mathcal{Q} .

Proof. Let $f : Q \to \mathbb{R}$ be a THK integrable function on Q. By definition, for each \mathcal{U} , there exists a gauge δ on Q, $|S(f, P) - \int_{Q} f d\mu| < \mu(\mathcal{U})$ whenever P is δ -fine partition of Q. Consider P_1 , P_2 are δ -fine partitions of Q, then

$$\begin{aligned} |S(f,P_1) - S(f,P_2)| &= |S(f,P_1) - \int_{\mathcal{Q}} f d\mu + \int_{\mathcal{Q}} f d\mu - S(f,P_2)| \\ &\leq |S(f,P_1) - \int_{\mathcal{Q}} f d\mu| + |S(f,P_2) - \int_{\mathcal{Q}} f d\mu \\ &< \frac{\mu(\mathcal{U})}{2} + \frac{\mu(\mathcal{U})}{2} = \mu(\mathcal{U}). \end{aligned}$$

Conversely, let $n \in \mathbb{N}$ and δ_n be a gauge on \mathcal{Q} such that $|S(f, P_n) - S(f, P'_n)| < \mu(\mathcal{U})$ whenever P_n, P'_n are δ_n -fine partitions of \mathcal{Q} . Let $\rho_n(x) = \min\{\delta_1(x), \delta_2(x), ..., \delta_n(x)\}$ be a gauge on \mathcal{Q} . By Lemma 3.2, there exists an ρ_n -fine partition P_n of \mathcal{Q} , for each $n \in \mathbb{N}$. Let \mathcal{U} be given and choose a positive natural number N such that $\frac{1}{N} < \mu(\mathcal{U})$. If m, n are positive natural (n < m) such that $n \ge N$, then P_n, P_m are ρ_N -fine partitions on \mathcal{Q} . Hence $|S(f, P_n) - S(f, P_m)| < \frac{1}{N} < \mu(\mathcal{U})$. Clearly, $\left\{S(f, P_n)\right\}_{n=1}^{\infty}$ is Cauchy sequence of real numbers, and convergent. Let $\lim_{n\to\infty} S(f, P_n) = \Delta$. Then $|S(f, P_n) - \Delta| < \mu(\mathcal{U})$, for each $n \ge N$. Let P be a ρ_N -fine partitions on \mathcal{Q} , then

$$|S(f,P) - \Delta| \le |S(f,P) - S(f,P_N)| + |S(f,P_N) - \Delta|$$

$$< \frac{\mu(\mathcal{U})}{2} + \frac{\mu(\mathcal{U})}{2} = \mu(\mathcal{U}).$$

Thus $f \in THK(Q)$ and $\Delta = \int_{\mathcal{O}} f d\mu$.

In the following theorem, we shall prove that THK integrability of f on a set Q implies its THK integrability on each subcells of Q.

Theorem 3.5. If $f \in THK(Q)$, and if A is a subcell of Q, then $f \in THK(Q)$ and $\int_{A} f d\mu = \int_{Q} f \chi_{A} d\mu$.

Proof. Let \mathcal{U} be given. By Theorem 3.4, there exists a gauge δ on \mathcal{Q} so that $|S(f, P_1) - S(f, P_2)| < \mu(\mathcal{U})$ for each pair of δ -fine partitions P_1 and P_2 of \mathcal{Q} . Given that there exists a division $P = \{\mathcal{Q}_1, \mathcal{Q}_2, ..., \mathcal{Q}_m\}$ of \mathcal{Q} and $A \subset \mathcal{Q}$, such that $A = \mathcal{Q}_1$. For each $k \in \mathcal{Q}$

 $\{2, 3, ..., m\}$ we fix a δ -fine partition P_k of Q_k . If R_1 and R_2 are δ -fine partitions of A, then $R_1 \cup \bigcup_{k=2}^m P_k$ and $R_2 \cup \bigcup_{k=2}^m P_k$ are δ -fine partitions of Q. Thus,

$$|S(f,R_1) - S(f,R_2)| = |S(f,R_1) + \sum_{k=2}^m S(f,P_k) - S(f,R_2) - \sum_{k=2}^m S(f,P_k)|$$

$$\leq |S\left(f,R_1 \cup \bigcup_{k=2}^m P_k\right) - S\left(f,R_2 \cup \bigcup_{k=2}^m P_k\right)| < \mu(\mathcal{U}).$$

Thus by Theorem 3.4, $f \in THK(A)$.

Proposition 3.2. Let
$$f : \mathcal{Q} \to \mathbb{R}$$
 be a THK integrable function on \mathcal{Q} . If $\left\{\mathcal{Q}_1, \mathcal{Q}_2, ..., \mathcal{Q}_m\right\}$ is a division of \mathcal{Q} , then $f \in THK(\mathcal{Q}_1) \cap ... \cap THK(\mathcal{Q}_m)$ and $\int_{\mathcal{Q}} f d\mu = \sum_{i=1}^m \int_{\mathcal{Q}_i} f d\mu$.

Proof. Given \mathcal{U} , there exists a gauge δ on \mathcal{Q} such that $|S(f, P) - \int_{\mathcal{O}} f d\mu| < \mu(\mathcal{U})$, for each δ -fine partition P of Q. By Theorem 3.5, $f \in THK(Q_i)$ for i = 1, 2, ..., m such that $\delta_i(x) < \delta(x)$ for each $x \in Q_i$ and such that $|S(f, P_i) - \int_{Q_i} fd\mu| < \frac{\mu(\mathcal{U})}{m}$, for each δ_i -fine partitions P_i of Q. Therefore $P = P_1 \cup ... \cup P_m$ is a δ -fine partition of Q. Consequently,

$$|S(f,P) - \sum_{i=1}^{m} \int_{\mathcal{Q}_{i}} fd\mu| \leq |S(f,P_{1}) - \int_{\mathcal{Q}_{1}} fd\mu| + \dots + |S(f,P_{m}) - \int_{\mathcal{Q}_{m}} fdm| < \mu(\mathcal{U}).$$

$$\lim_{i \neq m} \int_{\mathcal{Q}_{i}} fd\mu = \sum_{i=1}^{m} \int_{\mathcal{Q}_{i}} fd\mu.$$

Th $\underset{i=1}{\overset{\smile}{=}} J \mathcal{Q}_i$

We define indefinite THK integral of a given THK integrable function f as follows:

Definition 3.7. Let M be the collection of all subcells of Q and A be any subcell of Q. A function $F: M \to \mathbb{R}$ defined by $F(A) = \int_A f d\mu$ is called an indefinite THK integral of f.

It is easy to see by Proposition 3.2, each additive THK integrable function is an indefinite THK integrable on Q.

Lemma 3.3. (*Saks-Henstock Lemma*) A function $f : \mathcal{Q} \to \mathbb{R}$ is THK integrable on \mathcal{Q} if and only *if there exists an additive cell function* π *defined on the family of subcells of* Q *such that for each* U*,* there exists a gauge δ on Q with $\sum_{(x_i,Q_i)\in P} |\pi(Q_i) - f(x_i)\mu(Q_i)| < \mu(U)$, for each δ -fine partial

partition P of Q.

Proof. The proof is of similar to [1, Lemma 2.4.1].

Next, we see Lebesgue integrable function on each cell Q is THK integrable and the two integrals coincide. Let us denote $(L) \int_{\mathcal{O}} f d\mu$ be Lebesgue integrable functions with respect to μ .

Theorem 3.6. Let $f : \mathcal{Q} \to \mathbb{R}$ be a function. If f is Lebesgue integrable on \mathcal{Q} , with respect to μ , then f is THK integrable on Q and $(L) \int_Q f d\mu = \int_Q f d\mu$.

Proof. The proof is similar to [1, Theorem 2.5.2].

The following counter example shows that the converse of Theorem 3.6 is always not true.

 \square

 \Box

 \square

Example 3.3. Let C be Cantor topological subspace of [0, 1], where $C = \cap C_n$, and C_n is open intervals from C_{n-1} where $C_0 = [0, 1]$. It is easy to see the Cantor set C with the interval components of the space C_n form the basis for the topology on C. It is well known that Hausdorff measure H^s is a non-trivial radon measure on \mathbb{R}^n if and only if s = n. Let μ be $\log_3 2$ dimensional Hausdorff measure and $f : C \to \mathbb{R}$ be the function by

(3.1)
$$f(x) = \begin{cases} \frac{(-1)^n 3^n}{n}, \ x \in \left[\frac{2}{3^n}, \frac{1}{3^{n-1}}\right] \cap \mathcal{C}, \ n = 1, 2, 3...\\ 0, \ x = 0 \end{cases}$$

Let \mathcal{U} be any θ -nbd and let $N \in \mathbb{N}$ be such that $\mu(\mathcal{U})N \ge 2$ and $\left|\sum_{j=n+1}^{\infty} \frac{(-1)^{j+1}}{j}\right| < \frac{\mu(\mathcal{U})}{2}$ for each $n \ge N$. Let us construct a gauge δ on \mathcal{C} such that

$$\delta(x) = \begin{cases} K, \ x \in (x - \delta(x), x + \delta(x)) \cap C \\\\ \frac{1}{3^{n-1}}, \ x = 0 \end{cases}$$

Next consider a δ -fine partition $P = \left\{ (x_1, \mathcal{Q}_1), (x_2, \mathcal{Q}_2), ..., (x_m, \mathcal{Q}_m) \right\}$ of \mathcal{C} such that $\mathcal{Q}_1 = [0, c] \cap \mathcal{C}$ where $[0, c] \subset [0, 1]$. Then $x_1 = 0$ and $c < \frac{1}{3^{n-1}}$. Next, if we consider $n \in \mathbb{N}$ such that $\frac{1}{3^n} < c < \frac{1}{3^{n-1}}$ then $n \ge N$. In this situation

$$\bigcup_{j=2}^{m} \mathcal{Q}_{j} = \begin{cases} \left([c, \frac{1}{3^{n-1}}] \cup [\frac{2}{3^{n-1}}, 1] \right) \cap \mathcal{C} \text{ if } c > \frac{2}{3^{n}} \\ ([\frac{2}{3^{n}}, 1] \cap \mathcal{C}) \text{ if } c < \frac{2}{3^{n}} \end{cases}$$

Then

$$\left| S(f,P) - \log 2 \right| = \begin{cases} \mu(\mathcal{U}) \text{ if } c \ge \frac{2}{3^n} \\ \frac{\mu(\mathcal{U})}{2} \text{ if } c < \frac{2}{3^n} \end{cases}$$

Hence f is THK on C. But $(L) \int_{\mathcal{C}} |f| d\mu = \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$. Hence f is not Lebesgue integrable on C.

It is known that, any function f is Lebesgue integrable if and only if both f and |f| are Henstock-Kurzweil integrable. We shall investigate this for THK integrable functions defined on Q with respect to μ .

Definition 3.8. (1) Let M be the collection of all subcells of \mathcal{Q} . An additive cell function $\pi : M \to \mathbb{R}$ is said to be absolutely continuous with respect to μ if for each \mathcal{U} , there exists a constant $\nu > 0$ such that $\sum_{i=1}^{m} |\pi(\mathcal{Q}_i)| < \mu(\mathcal{U})$ whenever $\{\mathcal{Q}_1, \mathcal{Q}_2, ..., \mathcal{Q}_m\}$ is a collection of non-overlapping subcells of \mathcal{Q} with $\sum_{i=1}^{m} \mu(\mathcal{Q}_i) < \nu$. We denote it by AC_T .

(2) We say π is ACG_T on Q if there exists a countable sequence of closed subcells Q_i such that $\bigcup Q_i = Q$ and π is AC_T on Q_i for each $i \in \mathbb{N}$.

Theorem 3.7. Let Q be a cell. A function $f : Q \to \mathbb{R}$ is THK integrable on Q if and only if there exists an additive cell function F which is ACG_T on Q such that $F'_T(x) = f(x) \mu$ -a.e. in Q.

Proof. The proof is similar to [1, Theorem 2.6.1].

Definition 3.9. Let \mathcal{Q} be a cell. We say that a function $f : \mathcal{Q} \to \mathbb{R}$ is absolutely THK integrable on \mathcal{Q} if |f| is THK integrable on \mathcal{Q} .

Now, we define topological derivative at $x \in \mathcal{X}$ as follows.

Definition 3.10. Let $x \in \mathcal{X}$ and $A \in \mathcal{F}$. Let *F* be a cell function defined on \mathcal{F} .

- (1) We define the upper topological derivative of F at x, with respect to μ as $U_TF(x) =$ $\lim_{A \to x} \sup \frac{F(A)}{\mu(A)}$ whenever the limit superior is taken over all sequences of cells A such that $x \in A$ and $\partial A \to 0$.
- (2) We define the lower topological derivative of F at x, with respect to μ as $L_T F(x) =$ $\lim_{A\to x} \inf \frac{F(A)}{\mu(A)} \text{ whenever the limit inferior is taken over all sequences of cells A such that } x \in A \text{ and } \partial A \to 0.$

If $U_T F(x) = L_T F(x) < \infty$, then we call F is topological differentiable at x and their common value is called the topological derivative of F at x and we denote it by $F'_{T}(x)$.

Theorem 3.8. If f is a non-negative THK integrable function on a cell Q and F is its indefinite THK integral, then F is topological differentiable μ -a.e. in Q and $F'_{T}(x) = f(x)$ a.e. in Q,

Proof. We have, for all $x \in Q$, $L_T F(x) \leq U_T F(x)$. In order to prove $F'_T(x) = f(x)$ a.e. on \mathcal{Q} , we need to prove $U_T F(x) \leq f(x) \leq L_T F(x) \mu$ -a.e. in \mathcal{Q} . Let for $\alpha, \beta \in \mathbb{Q}, \alpha < \beta$.

$$\kappa_{\alpha,\beta} = \left\{ x \in \mathcal{Q} : U_T F(x) > \beta > \alpha > f(x) \right\}.$$

For a given \mathcal{U} , by Lemma 3.2, there exists a gauge δ on \mathcal{Q} such that

$$\sum_{j=1}^{m} \left| F(\mathcal{Q}_j) - f(x_j)\mu(\mathcal{Q}_j) \right| < \mu(\mathcal{U}),$$

for each δ -fine partition $\left\{ (x_j, Q_j) \right\}_{i=1}^m$ of Q. Consider \exists be the system of all cells $C \subset Q$ such that $F(C) > \beta\mu(C)$ and there exists $x \in C \cap \kappa_{\alpha,\beta}$ with $\mu(\mathcal{U}(C)) < \delta(x)$. Clearly the system \exists is a fine cover of $\kappa_{\alpha,\beta}$. Therefore \exists be a μ -filter family. Then there exists a system of pairwise non-overlapping cells $\left\{C_j\right\}_{j=1}^m \subset \exists$ such that $\mu(\kappa_{\alpha,\beta}) \leq \sum_{j=1}^m \mu(C_j)$. For j = 1, 2, ..., m, let $x_j \in C_j \cap \kappa_{\alpha,\beta}$ such that $\mu(C_j) < \delta(x_j)$. Since $\left\{ (x_j, C_j) \right\}_{j=1}^m$ is a δ -fine

partial partition of Q, we have

$$\beta \sum_{j=1}^{m} \mu(C_j) < \sum_{j=1}^{m} F(C_j)$$

$$\leq \sum_{j=1}^{m} |F(C_j) - f(x_j)\mu(C_j)| + \sum_{j=1}^{m} f(x_j)\mu(C_j)$$

$$< \mu(\mathcal{U}) + \alpha \sum_{j=1}^{m} \mu(C_j).$$

So, $(\beta - \alpha) \sum_{j=1^m} \mu(C_j) < \mu(\mathcal{U})$. Consequently, if $\mu(\mathcal{U}) \to 0$, then $\sum_{j=1}^m \mu(C_j) = 0$ and hence $\mu(\kappa_{\alpha,\beta}) = 0$. Hence $U_T F(x) \leq f(x) \mu$ -a.e. on \mathcal{Q} . Similar way we can find $L_T F(x) \geq 1$ f(x) μ -a.e. on \mathcal{Q} . So, $U_T F(x) \leq f(x) \leq L_T F(x) \mu$ -a.e. in \mathcal{Q} .

For analyzing the power of an integration theory, convergence results are crucial. The result we got for the THK integral is shown below.

Theorem 3.9. Let $f, f_n : \mathcal{Q} \to \mathbb{R}$, n = 1, 2, ... be given where the integral $\int_{\mathcal{Q}} f_n$ exists for all $n \in \mathbb{N}$. Let $\lim_{n \to \infty} f_n(x) = f(x)$ for $x \in \mathcal{Q}$. Further, Let for each \mathcal{U} , there exists a gauge δ on \mathcal{Q} such that

$$|S(f_n, P) - \int_{\mathcal{Q}} f_n| < \mu(\mathcal{U})$$

for every δ -fine partition P of Q and for every $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \int_{Q} f_n = \int_{Q} f$.

Proof. Let \mathcal{U} be given. By (3.2), we can find a gauge δ on \mathcal{Q} such that for every δ -fine partition P of \mathcal{Q} , we have $|S(f_n, P) - \int_{\mathcal{Q}} f_n d\mu| < \frac{\mu(\mathcal{U})}{2}$ for $n \in \mathbb{N}$. Since $\lim_{n \to \infty} f_n = f$, we have, for every fixed δ -fine partition P, there exists a positive integer n_0 such that for $n \geq n_0$, we have

$$\left|S(f_n, P) - S(f, P)\right| = \left|\sum_{j=1}^k f_n(\mathcal{Q}_j)\mu(\mathcal{Q}_j)\right| < \frac{\mu(\mathcal{U})}{2}.$$

This gives, $\lim_{n\to\infty} S(f_n, P) = S(f, P)$. Hence for any δ -fine partition P of Q, there is a positive integer n_0 such that for $n > n_0$,

$$|S(f,P) - \int_{\mathcal{Q}} f_n d\mu| < \mu(\mathcal{U})$$

From (3.3), for all positive integers, $n, l > n_0$, $\left| \int_{\mathcal{Q}} f_n d\mu - \int_{\mathcal{Q}} f_l d\mu \right| < \mu(\mathcal{U})$ holds. Clearly,

$$\left(\int_{\mathcal{Q}} f_n d\mu\right)_{n=1} \text{ is a Cauchy sequence in } \mathbb{R}. \text{ Therefore,}$$
(3.4)
$$\lim_{n \to \infty} \int_{\mathcal{Q}} f_n d\mu = \tau \in \mathbb{R}$$

Now, By (3.3),

$$\left| S(f,P) - \tau \right| \leq \left| S(f,P) - \int_{\mathcal{Q}} f_n d\mu \right| + \left| \int_{\mathcal{Q}} f_n d\mu - \tau \right|$$
$$< \mu(\mathcal{U}) + \left| \int_{\mathcal{Q}} f_n d\mu - \tau \right| \text{ for } n > n_0.$$

By (3.4), we obtain for every δ -fine partition P of Q, $|S(f, P) - \tau| < \mu(U)$ for $n > n_0$. Hence $\int_Q f d\mu$ exists and (3.2) satisfies.

Definition 3.11. A sequence $(f_n)_{n=1}^{\infty}$ in $THK(\mathcal{Q})$ is said to be THK equi-integrable on \mathcal{Q} if for each \mathcal{U} , there exists a gauge δ on \mathcal{Q} such that $\sup_{n \in \mathbb{N}} |S(f_n, P) - \int_{\mathcal{Q}} f_n| < \mu(\mathcal{U})$ whenever

$$P = \left\{ (x_i, Q_i) \right\}_{i=1}^m \text{ is } \delta \text{-fine partition on } Q.$$

Theorem 3.9 gives a sufficient condition for a sequence of THK integrable functions tends to an integrable limit and for the integrals of the members of the sequence tends to the integral of the limit function. The convergence $\lim_{n\to\infty} f_n(x) = f(x)$ for $x \in Q$ is pointwise convergence and the sufficient condition is the equi-integrability of the sequence of THK integrable functions (f_n) . Using equi-integrable sequence of THK integrable functions $f_n : Q \to \mathbb{R}$, Theorem 3.9 can be reformulated as follows.

Theorem 3.10. Let $f : \mathcal{Q} \to \mathbb{R}$ and let $(f_n)_{n=1}^{\infty}$ be a sequence of THK equi-integrable function on \mathcal{Q} . If $f_n \to f$ pointwise on \mathcal{Q} , then $f \in THK(\mathcal{Q})$ and $\lim_{n \to \infty} \int_{\mathcal{Q}} |f_n - f| d\mu = 0$.

Proof. Let \mathcal{U} be given. Since $(f_n)_{n=1}^{\infty}$ is a sequence of THK equi-integrable functions on \mathcal{Q} . By Saks-Henstock Lemma, choose a gauge δ , independent of n on \mathcal{Q} such that

(3.5)
$$\sum_{(x_i,\mathcal{Q}_i)\in P} |f_n(x_i) - f_p(x_i)| < \mu(\mathcal{U})$$

for each δ -fine partial partition P of Q. According to Cousin's Lemma, we fix a δ -fine partition P' of Q. Since $f_n \to f$ pointwise on Q, we may choose $N \in \mathbb{N}$ so that

(3.6)
$$\sum_{(x,\mathcal{Q})\in P'} |f_n(x) - f_p(x)| < \mu(\mathcal{U})$$

for all $n, p \ge N$. Now from (3.5) and (3.6),

$$|f_n - f_p| \le \sum_{x, Q \in P'} |f_n(x) - f_p(x)| + \sum_{x, Q \in P'} |f_n(x) - f(x)| + \sum_{x, Q \in P'} |f_p(x) - f(x)| < \mu(\mathcal{U})$$

for all $n, p \ge N$. By completeness of \mathbb{R} , there exists a function $F : \mathcal{Q} \to \mathbb{R}$ such that

(3.7)
$$\lim_{n \to \infty} \sup_{x \in \mathcal{Q}} \left| \int_{\mathcal{Q}} f_n(x) d\mu - F(\mathcal{Q}) \right| = 0.$$

By (3.5), $\sum_{(x,Q)\in P} |f(x)\mu(Q) - F(Q)| < \mu(\mathcal{U})$ for every δ -fine partial partition P of Q. So, $f \in THK(Q)$ and $F(x) = \int_{Q} f(x)dx$ for every $x \in Q$. Hence $\lim_{n \to \infty} |f_n - f| = 0$. \Box

Proposition 3.3. If f is a non-negative THK integrable on a cell Q and F is its indefinite THK integral, then f is μ -measurable.

Proof. Let f_n be μ -simple function defined by $f_n(x) = \sum_{(x,Q)\in P_n} \frac{F(Q)}{\mu(Q)}$. Let $\mathcal{C} = \bigcup_{n=1}^{\infty} \bigcup_{Q\in P_k} \mu(\mathcal{U}(Q))$ and $\mathcal{D} = \left\{ x \in \mathcal{Q} : F'_T(x) \text{ does not exists or } F'_T(x) \text{ exists nad } F'_T \neq f(x) \right\}$. By last condition of Definition 2.4 and Theorem 3.8, $\mu(\mathcal{C} \cup \mathcal{D}) = \emptyset$. Let $\Xi = \mu(\mathcal{C} \cup \mathcal{D})$. Let $x \in \mathcal{Q} \setminus \Xi$. Then for each $N \in \mathbb{N}$, there exists $\mathcal{Q}_{n,x} \in \mathcal{F}$ such that $(x, \mathcal{Q}_{n,x}) \in P_n$, $\mu(\mathcal{Q}_{n,x}) < \frac{1}{n}$ and $f_n(x) = \frac{F(\mathcal{Q}_{n,x})}{\mu(\mathcal{Q}_{n,x})}$. By $F'_T(x) = f(x)$, $f_n(x) \to f(x)$. s f_n is μ -measurability for $n \in \mathbb{N}$, so f(x) is μ -measurable.

Next, we prove monotone convergence type theorem for THK integrable function.

Theorem 3.11. Let $\{f_n\}$ be a non-decreasing sequence of THK integrable function on a cell Q and let $f = \lim_n f_n$. If $\lim_{n \to \infty} \int_Q f_n d\mu < \infty$ then f is THK integrable on Q and $\int_Q f d\mu = \lim_{n \to \infty} \int_Q f_n d\mu$.

Proof. Let (f_n) be a non-decreasing sequence of THK integrable function on a cell Q and since $\{\int_Q f_n d\mu\}$ is bounded on Q. So, $\{\int_Q f_n d\mu\}$ converges to a real number $\rho \in \mathbb{R}$. Then, given \mathcal{U} there exists $n \in \mathbb{N}$ such that $n \ge N$ we have $0 \le \rho - \int_Q f_n d\mu \le \mu(\mathcal{U})$. From Lemma 3.3 there exists an additive function π on the subcells of Q such that for all \mathcal{U} , there exists a gauge δ_n on Q with

$$\sum_{(x_i,\mathcal{Q}_i)\in P} \left| \pi(\mathcal{Q}_i) - f_n(x_i)\mu(\mathcal{Q}_i) \right| < \frac{\mu(\mathcal{U})}{2^n},$$

for each δ_n -fine partition P of Q and $\pi(Q_i) = \int_{Q_i} f_n d\mu$. Since $f = \lim_n f_n$, so for each $x \in Q$ there exists a natural number $n(x) \ge N$ such that

$$(3.8) |f(x) - f_n(x)| < \mu(\mathcal{U}),$$

whenever $n \ge n(x) \ge N$. Suppose $\delta(x) = \delta_{n(x)}$ for $x \in Q$, then δ is a gauge on Q which is δ -fine. If $P = \{(Q_1, x_1), (Q_2, x_2), ..., (Q_n, x_n)\}$ be a δ -fine partition of Q. Then from (3.8),

(3.9)
$$\sum_{i=1}^{n} |f(x_i) - f_{n(x_i)}| \mu(\mathcal{Q}_i) < \mu(\mathcal{U}(\mathcal{Q})).$$

Also,

$$\left|\sum_{i=1}^{n} f_{n(x_{i})}(x_{i})\mu(\mathcal{Q}_{i}) - \sum_{i=1}^{n} f_{n(x_{i})}d\mu\right| \leq \sum_{i=1}^{n} \left|f_{n(x_{i})}(x_{i})\mu(\mathcal{U}(\mathcal{Q}_{i})) - \int_{\mathcal{Q}_{i}} f_{n(x_{i})}d\mu\right| < \mu(\mathcal{U}).$$

Again, from the hypothesis $f = \lim_{n \to \infty} f_n$. So, (f_n) is a point-wise bounded sequence of functions. Indeed,

$$\int_{\mathcal{Q}} f_n d\mu = \sum_{i=1}^n \int_{\mathcal{Q}_i} f_n d\mu$$
$$\leq \sum_{i=1}^n f_{n(x_i)} d\mu.$$

Moreover,

$$0 \le \rho - \sum_{i=1}^{n} \int_{\mathcal{Q}_i} f_{n(x_i)} d\mu \le \rho - \int_{\mathcal{Q}} f_n d\mu < \mu(\mathcal{U}).$$

Now we have

$$\begin{aligned} |S(f,P)-\rho| &\leq \Big|\sum_{i=1}^{n} f(x_i)\mu(\mathcal{Q}_i) - \sum_{i=1}^{n} f_{n(x_i)}(x_i)\mu(\mathcal{Q}_i)\Big| \\ &+ \Big|\sum_{i=1}^{n} f_{n(x_i)}(x_i)\mu(\mathcal{Q}_i) - \sum_{i=1}^{n} \int_{\mathcal{Q}_i} f_{n(x_i)}d\mu\Big| \\ &+ \Big|\sum_{i=1}^{n} \int_{\mathcal{Q}_i} f_{n(x_i)}d\mu - \rho\Big| \\ &< \mu(\mathcal{Q}) + \mu(\mathcal{U}) + \mu(\mathcal{U}). \end{aligned}$$

Since $\mu(\mathcal{U})$ is arbitrary, *f* is THK integrable on \mathcal{Q} and $\rho = \int_{\mathcal{O}} f d\mu$.

Finally, we prove every absolute THK integrable functions are Lebesgue integrable on Q.

Theorem 3.12. If f is absolutely THK integrable on a cell Q, then f is Lebesgue integrable on Q.

Proof. Let us consider for $n \in \mathbb{N}$, $f_n(x) = \min\{|f(x)|, n\}$ for all $x \in Q$. By Theorem 3.3, |f| is Lebesgue measurable. Therefore f_n is Lebesgue measurable and bounded. By Theorem 3.6, f_n is THK integrable on Q. As (f_n) is an increasing sequence of non-negative function

convergent to |f|, by Theorem 3.11,

$$(L) \int_{\mathcal{Q}} |f| d\mu = \lim_{n \to \infty} \int_{\mathcal{Q}} f_n d\mu$$
$$= \int_{\mathcal{Q}} |f| d\mu < \infty.$$

Hence *f* is Lebesgue integrable on Q.

4. STATISTICAL CONVERGENCE

In this Section, we introduce statistical convergence of topological Henstock-Kurzweil integrals on a topological vector space. We prove that every convergence for topological Henstock-Kurzweil integrable function is also statistically convergent. Further, we introduce statistically equi-integrability for topological Henstock-Kurzweil integrable functions to prove statistically Cauchy on THK(Q).

Let $A \subset \mathbb{N}$ and $n \in \mathbb{N}$. Let $A(n) = \{k \in A : k \leq n\}$. Then the lower and upper asymptotic density of A are

$$\underline{d}(A) = \lim_{n \to \infty} \inf \frac{|A(n)|}{n}$$

and

$$\overline{d}(A) = \lim_{n \to \infty} \sup \frac{|A(n)|}{n}.$$

If $\underline{d}(A) = \overline{d}(A)$, then $d(A) = \lim_{n \to \infty} \frac{|A(n)|}{n}$. Clearly $d(\mathbb{N} \setminus A) = 1 - d(A)$ for $A \subset \mathbb{N}$.

Definition 4.12. [9] A sequence $(x_n)_{n \in \mathbb{N}}$ in a topological space \mathcal{X} is said to converge statistically to $x \in \mathcal{X}$ if for every \mathcal{U} of x,

$$d\bigg(\{n\in\mathbb{N}:\ x_n\notin\mathcal{U}\}\bigg)=0.$$

It is denoted by st-lim $x_n = x$.

Theorem 4.13. [9] The limit of a statistically convergent sequence is uniquely determined in Hausdorff topological spaces.

Definition 4.13. Let $\mathcal{Q} \in Bo(\mathcal{X})$. A sequence of THK integrable functions $f_n : \mathcal{Q} \to \mathbb{R}$ is said to be statistically convergent to f if for any θ -nbd \mathcal{U} and a δ -fine partition P, $d\left(\begin{cases}n \in \mathcal{R}\\ n \in \mathcal{R}\end{cases}\right)$

$$\mathbb{N}: \left| S(f_n, P) - \int_{\mathcal{Q}} f \right| \ge \mu(\mathcal{U}) \right\} = 0.$$

We denote st- $\lim_{n} f_n = f$. It is not hard to see if st-limit is unique then the following result is true.

Theorem 4.14. If a sequence of THK integrable functions (f_n) of statistically convergent, then its st-lim is unique.

Proof. Suppose st-lim $f_n = f$ and st-lim $f_n = g$. Given $\epsilon > 0$, define

$$K_1(\mu(\mathcal{U})) = \left\{ n \in \mathbb{N} : \left| S(f_n, P) - \int_{\mathcal{Q}} f \right| \ge \mu(\mathcal{U}) \right\}$$

and

$$K_2(\mu(\mathcal{U})) = \left\{ n \in \mathbb{N} : \left| S(f_n, P) - \int_{\mathcal{Q}} g \right| \ge \mu(\mathcal{U}) \right\}$$

404

Clearly $d(K_1(\mu(\mathcal{U})) = 0 \text{ and } d(K_2(\mu(\mathcal{U})) = 0. \text{ Let } K(\mu(\mathcal{U})) = K_1(\mu(\mathcal{U})) \mid JK_2(\mu(\mathcal{U})).$ Then $d\left(K(\mu(\mathcal{U}))\right) = 0$, gives $\mathbb{N} \setminus d\left(K(\mu(\mathcal{U}))\right) = 1$. Next, if $k \in \mathbb{N} \setminus K(\mu(\mathcal{U}))$, we have

$$\left| \int_{\mathcal{Q}} f - \int_{\mathcal{Q}} g \right| \leq \left| \int_{\mathcal{Q}} f - S(f_k, P) \right| + \left| S(f_k, P) - \int_{\mathcal{Q}} g \\ < \frac{\mu(\mathcal{U})}{2} + \frac{\mu(\mathcal{U})}{2} = \mu(\mathcal{U}).$$

Since $\mu(\mathcal{U})$ is arbitrary, we can find $\left|\int_{\mathcal{Q}} (f-g)\right| = 0$. Hence $\int_{\mathcal{Q}} (f-g) = 0$ gives f = g. \Box

Definition 4.14. We say that (f_n) of THK integrable functions is statistically Cauchy if for any θ -nbd \mathcal{U} , and a δ -fine partition P there exists $M \in \mathbb{N}$ such that

$$d\bigg(\{n \in \mathbb{N} : |S(f_n, P) - S(f_M, P)| \ge \mu(\mathcal{U})\}\bigg) = 0.$$

Next, we state several fundamental properties below.

Theorem 4.15. Let (f_n) and g_n are in THK([a, b], X) with $f = st-\lim_n f_n$ and $g = st-\lim_n g_n$. Then following holds:

- (1) $st-\lim_{n}(f_n+g_n) = f+g.$ (2) $st-\lim_{n}(\alpha f_n) = \alpha(st-\lim_{n}f_n) = \alpha f.$ (3) $st-\lim_{n}f_ng_n = fg.$

Proof. For (1): Let $f_n : \mathcal{Q} \to \mathbb{R}$ and $g_n : \mathcal{Q} \to \mathbb{R}$ are sequences of THK integrable functions. Let st-lim $f_n = f$ and st-lim $g_n = g$. Then for any θ -nbd \mathcal{U} , and δ -fine partition P, we have

$$d\left(\left\{k \in \mathbb{N} : |S(f_k, P) - \int_{\mathcal{Q}} f| < \mu(\mathcal{U})\right\}\right) = 1$$

and

$$d\left(\left\{k \in \mathbb{N} : |S(g_k, P) - \int_{\mathcal{Q}} g| < \mu(\mathcal{U})\right\}\right) = 1.$$

It is easy to see,

$$d\bigg(\left\{k \in \mathbb{N} : |S(f_k, P) - \int_{\mathcal{Q}} f| \ge \mu(\mathcal{U})\right\} \cup \left\{k \in \mathbb{N} : |S(g_k, P) - \int_{\mathcal{Q}} g| \ge \mu(\mathcal{U})\right\}\bigg) = 1.$$

Let $\mathcal{P} = \bigg\{k \in \mathbb{N} : |S(f_k, P) - \int_{\mathcal{Q}} f| < \mu(\mathcal{U})\bigg\} \cup \bigg\{k \in \mathbb{N} : |S(g_k, P) - \int_{\mathcal{Q}} g| < \mu(\mathcal{U})\bigg\}.$ Then for any $k \in \mathcal{P}$, we have $|S(f_n, P) + S(g_n, P) - \int_{\mathcal{Q}} (f + g)| < 2\mu(\mathcal{U}).$ Thus

$$d(\mathcal{P}) = 1 \le d\left(\left\{k \in \mathbb{N} : |S(f_n, P) + S(g_n, P) - \int_{\mathcal{Q}} (f+g)| < 2\mu(\mathcal{U})\right) \le 1.$$

Since $\mu(\mathcal{U})$ is arbitrary, we get st-lim $(f_n + g_n) = f + g$. Proof of (2) and (3) is straightforward, so ommitted.

Next, we show that every convergent sequence of THK integrable functions is statistically convergent.

Theorem 4.16. If a sequence (f_n) of THK integrable functions in $THK(\mathcal{Q}, \mathcal{X})$ converges to $f \in \mathcal{X}$, then (f_n) is statistically convergent to f.

 \Box

Proof. Let \mathcal{U} be a θ -nbd. Since (f_n) is a sequence of THK integrable functions on $THK([a, b], \mathcal{X})$ converges to f, so, there exists $\mathcal{N} \subset \mathbb{N}$ with $\delta(\mathcal{N}) = 1$ and $n_0 = n_0(\mathcal{U})$ such that $n \ge n_o$ and $n \in \mathcal{N}$ implies $|S(f_n, P) - \int_{\mathcal{Q}} f| < \mu(\mathcal{U})$ whenever P is a free tagged partition of \mathcal{Q} . Clearly $|f_n| < \mu(\mathcal{U})$. Again,

$$\left\{n \in \mathbb{N} : |S(f_n, P) - \int_{\mathcal{Q}} f| \ge \mu(\mathcal{U})\right\} \subset \left\{1, 2, ..., n_o\right\} \cup (\mathbb{N} \setminus \mathcal{N}).$$

Since $\delta \left\{1, 2, ..., n_0\right\} \cup (\mathbb{N} \setminus \mathcal{N}) = 0$, it follows $f = s - \lim_n f_n.$

The following example shows that converse of Theorem 4.16 does not hold.

Example 4.4. Consider a sequence (f_n) of THK integrable functions whose terms are

$$f_n = \begin{cases} n & \text{if } n = i^2, \ i = 1, 2, ..., \\ \\ \frac{1}{n} & \text{otherwise.} \end{cases}$$

It is easy to see the sequence (f_n) is divergence. Let $K = \{i^2 : i = 1, 2, ...\}$, then $\delta(K) = 0$, it follows $0 = s - \lim_{n \to \infty} f_n$.

We introduce statistical equi-integrability for THK integrable function as follows:

Definition 4.15. A sequence of statistical THK integrable functions $f_n : \mathcal{Q} \to \mathbb{R}$ is said to be statistically equi-integrable if for any θ -nbd \mathcal{U} and a δ -fine partition P, we have $d\left(\begin{cases}n \in \mathcal{A}^n \\ n \in \mathcal{A}^n \end{cases}\right)$

$$\mathbb{N}: \left| S(f_n, P) - \int_{\mathcal{Q}} f_n \right| \ge \mu(\mathcal{U}) \right\} = 0.$$

Proposition 4.4. Let (f_n) be statistically convergent sequence of THK integrable functions on Q. If (f_n) is statistically equi-integrable then (f_n) is statistically Cauchy on THK(Q).

Proof. Let st-lim $f_n = f$. Consider \mathcal{U}_n be a sequence of nested base of θ -nbd. Let $W^{(j)} = \left\{ w \in \mathbb{N} : w \leq n, |S(f_n, P) - \int_{\mathcal{Q}} f| \geq \mu(\mathcal{U}_j) \right\}$ for any positive integer j. Clearly for each , $W^{(j+1)} \subset W^{(j)} < \lim_{n \to \infty} \frac{1}{n} |W^{j}| = 1$. Let us choose $m \in \mathbb{N}$ such that n > m. Then $\frac{1}{n} |W^{(j)}| > 0$. This shows that $W^{(1)} \neq \emptyset$. In general we can find natural numbers m(p+1) > m(p) such that we can a positive number r > m(p+1) implies $W^{(p+1)} \neq \emptyset$. Further By Lemma 2.1, we have for every θ -nbd \mathcal{U} , there is a symmetric θ -nbd \mathcal{V} such that $\mathcal{V} + \mathcal{V} \subseteq \mathcal{U}$. Let us consider (f_n) be a statistically equi-integrable THK integrable functions on $THK(\mathcal{Q})$. Then by definition of equi-integrable THK integrable function, for any θ -nbd \mathcal{U} and a δ -fine partition P such that $d\left(\left\{n \in \mathbb{N} : \left|S(f_n, P) - \int_{\mathcal{Q}} f_n\right| \geq \mu(\mathcal{U})\right\}\right) = 0$. So,

(4.10)
$$d\left(\left\{n \in \mathbb{N} : |S(f_n, P) - \int_{\mathcal{Q}} f_n| \ge \mu(\mathcal{V})\right\}\right) = 0 \text{ and}$$

(4.11)
$$d\left(\left\{n \in \mathbb{N} : |S(f_m, P) - \int_{\mathcal{Q}} f_m| \ge \mu(\mathcal{V})\right\}\right) = 0$$

Thus we have,

$$\begin{split} d\bigg(\bigg\{k \le n : \ |S(f_n, P) - S(f_m, P)| \ge \mu(\mathcal{U})\bigg\}\bigg) \le d\bigg(\bigg\{n \in \mathbb{N} : \ |S(f_n, P) - \int_{\mathcal{Q}} f_n| \ge \mu(\mathcal{V})\bigg\}\bigg) \\ &+ d\bigg(\bigg\{n \in \mathbb{N} : \ |S(f_m, P) - \int_{\mathcal{Q}} f_m| \ge \mu(\mathcal{V})\bigg\}\bigg) \\ &\to 0 \ \text{ using (4.10), (11).} \end{split}$$

Hence (f_n) is statistically Cauchy on THK(Q).

5. CONCLUSIONS

In this work, topological Henstock-Kurzweil integral on a μ -cell Q of a topological vector space \mathcal{X} has been discussed. Several properties are discussed in this regard. Also, we have proved that every Lebesgue integrable function is topological Henstock-Kurzweil integrable. We introduce equi-integrability for topological Henstock-Kurzweil integrable functions and several convergence theorems are also proved. Finally, we extend the usual convergence of topological Henstock-Kurzweil integrable functions to statistical convergence and relationship between statistically equi-integrable topological Henstock-Kurzweil al in [2, Theorem 3.1] proved that in association with finitely additive measure λ , any λ -statistically uniformly sequence of functions (f_n) on [a, b] converges to function f and each f_n is integrable on [a, b] with st- λ -lim $\int_a^b f_n(x) dx = \int_a^b \text{st-}\lambda$ -lim $f_n(x) dx = \int_a^b f(x) dx$. We conclude this article with the following possibility: Is the following theorem true for topological Henstock-Kurzweil integrable functions?

Theorem 5.17. A sequence (f_n) of statistical convergent THK integrable functions converges to f. The limit function f is THK integrable if and only if (f_n) is statistical equi-integrable THK function.

ACKNOWLEDGMENTS

The authors thank to the Journal editors and reviewers for their constructive suggestions for better presentation of the article.

REFERENCES

- [1] Corrao, G. An Henstock-Kurzweil type integral on a measure metric space. Doctoral Thesis, Universita Degli Studi Di Palermo, Palermo, 2013.
- [2] Duman, O.; Orhan, C. μ-statistically convergent function sequences. Czec. Math. J. 54 (2004), no. 2, 413–422.
- [3] Fast, H. Sur la convergence statistique. Colloq. Math. 2 (1951), no. 3, 241–244.
- [4] Fridy, J. A. On statistical convergence. Analysis. 5 (1985), no. 4, 301-313.
- [5] Fridy, J. A. Statistical limit points. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192.
- [6] Fridy, J. A.; Miller, H. I. A matrix characterization of statistical convergence. Analysis. 11 (1991), no. 1, 59–66.
- [7] Fridy, J. A.; Orhan, C. Lacunary statistical convergence. Pacific J. Math. 160 (1993), no. 1, 43-51.
- [8] Gardon, R. G. The Integrals of Lebesgue, Denjoy, Perron, and Henstock. American Mathematical Society, 1994.
- [9] Giuseppe, D. M.; Kocinac, L. D. R. Statistical convergence in topology. Topol Appl. 156 (2008), no. 1, 28-45.
- [10] Henstock, R. The general theory of integration. Oxford University Press, Oxford, UK, 1991.
- [11] Kalita, H.; Hazarika, B. A convergence theorem for ap-Henstock-Kurzweil integral and its relation to topology. *Filomat.* 36 (2022), no. 20, 1–10.
- [12] Kalita, H; Hazarika, B.; Becerra, T. P. On AP-Henstock-Kurzweil Integrals and Non-Atomic Radon Measure. *Mathematics.* 11 (2023), no. 6, 1–16.
- [13] Kalita, H.; Agarwal, R. P.; Hazarika, B. Convergence of ap-Henstock-Kurzweil integral on locally compact spaces. *Czec. Math. J.* (2023), https://doi.org/10.21136/CMJ.2023.0450-22.
- [14] Klein, Ch.; Rolewicz, S. On Riemann integration of functions with values in topological linear spaces. *Studia Mathematica*. 80 (1984), no. 4, 109–118.

- [15] Paluga, R.; Canoy Jr, S. The Henstock Integral in topological vector spaces. *Mat. Matematika*. **24** (2001), no. 3, 34–47.
- [16] Sokolowski, J.; Zochowski, A. On the Topological Derivatives in Shape Optmization. SIAM. J. Control and Optimization. 37 (1999), no. 4, 1–35.
- [17] Srivastava, H. M.; Jena, B. B.; Paikray, S. K. Statistical Riemann and Lebesgue Integrable Sequence of Functions with Korovkin Type Approximation Theorems. Axioms. 10 (2021), no. 10, 1–16.
- [18] Yeong, L. T. Henstock-Kurzweil integration on Euclidean spaces. Series in Real Analysis, no. 12, World Scientific, 2011.

¹ MATHEMATICS DIVISION, SCHOOL OF ADVANCED SCIENCES AND LANGUAGES, VIT-BHOPAL UNIVER-SITY, KOTHRI-KALAN, BHOPAL-INDORE HIGHWAY, MADHYA PRADESH-466114, INDIA

Email address: hemanta30kalita@gmail.com; hemantakalita@vitbhopal.ac.in

² MATHEMATICS DIVISION, SCHOOL OF ADVANCED SCIENCES AND LANGUAGES, VIT-BHOPAL UNIVER-SITY, KOTHRI-KALAN, BHOPAL-INDORE HIGHWAY, MADHYA PRADESH-466114, INDIA *Email address*: somkakdwip@gmail.com

³ DEPARTMENT OF MATHEMATICS, GAUHATI UNIVERSITY, GUWAHATI 781014, ASSAM, INDIA *Email address*: bh.rqu@yahoo.co.in