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On statistical convergence of topological
Henstock-Kurzweil integral

HEMANTA KALITA1 , SUMIT SOM2, AND BIPAN HAZARIKA3

ABSTRACT. In this paper, we introduce Henstock-Kurzweil type integrable function (in brief, topological
Henstock-Kurzweil integrable function) on a topological vector space associate with a Radon measure µ. Ba-
sic results of topological Henstock-Kurzweil integrable function are discussed. Also, the relationship between
topological Henstock-Kurzweil integral and Lebesgue integral is discussed. Moreover, we investigate several
convergence theorems for µ-measurable topological Henstock-Kurzweil integrable function on a topological
vector space. Finally, we extent the notion of statistical convergence for topological Henstock-Kurzweil inte-
grable function on a µ-subcell of a topological vector space.

1. INTRODUCTION

Let a, b ∈ R with a < b and f : [a, b] → R be a bounded function. In the year 1854,
Riemann first introduced the concept of Riemann integral of f through the concept of
tagged partitions in the interval [a, b] and the limit of Riemann sums as the norm of the
tagged partitions goes to zero. During 1950, Henstock and Kurzweil developed an inte-
gral, known as Henstock-Kurzweil integral which uses the concept of δ-fine tagged parti-
tion of the interval [a, b] where δ : [a, b] → R+. Henstock-Kurzweil integral is more general
than Lebesgue integral as well as similar to that of Riemann integral (see [8, 10, 18]). More-
over, the Henstock-Kurzweil integral is non-absolute, in the sense that, some functions are
Henstock-Kurzweil integrable but not absolutely Henstock-Kurzweil integrable. G. Car-
rao [1] investigated Henstock-Kurzweil type integral on a complete measure metric space
endowed with a Radon measure µ and with a family F of “intervals” satisfying the Vitali
covering theorem called µ-cell (see [1, Definition 2.14]). Recently, H. Kalita et al. expanded
the idea of µ-cell for Henstock-Kurzweil integrals in various settings in [12, 13].

In the context of linear topological vector space, Ch. Klein et al. [14] presented the
Riemann integral with respect to any non-atomic measure of functions. R. Paluga et al.
[15] presented several properties of Henstock-Kurzweil integrals on a topological space.
Recently, H. Kalita et al. have introduced ap-Henstock-Kurzweil integrals on topological
vector space in [11].

On the other hand, the concept of statistical convergence for sequences of real or com-
plex numbers has been investigated by Fast in [3]. It uses the notion of natural density of
subsets of natural numbers. If K ⊆ N, then the natural density of K is denoted by d(K)

and is defined by d(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}|. Since then, it has been the subject

of investigation in other articles, including [4, 5, 6], and [7]. Maio et al. [9] examined
statistical convergence in uniform and topological spaces, and illustrate the applications
of this convergence to function spaces, hyperspaces, and selection principles. Also, the
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notion of µ-statistically convergent function sequences was presented in [2]. Recently, sta-
tistical Riemann and Lebesgue integrable sequences of functions have been studied by
Srivastava et al. in [17] and investigated Korovkin type approximation theorems for such
class of functions. On the other hand, in [16], J. Sokolowski et al. defined the concept of
topological derivatives.

The idea of [9] motivated us to introduce topological Henstock-Kurzweil integrals on
a µ-cell of a topological vector space. The fascinating ideas of [17] impels us to extent the
convergence of topological Henstock-Kurzweil integrable functions to statistical conver-
gence in our setting.

The paper is organized as follows: in Section 2, some basic notions and terminologies
has been introduced which will be needed throughtout the paper. In Section 3, we intro-
duce the notion of topological Henstock-Kurzweil integral (denoted as THK integral) of
a µ-cell-valued functions along with some properties. In Section 4, we extend the theory
of convergence of THK integral to statistically convergence of THK integrable functions.
Moreover, we introduce statistically equi-integrability for THK integrable functions to
prove sequence of equi-integrable THK integrable functions are statistically Cauchy.

2. PRELIMINARIES

Let δ be a positive function on the closed interval [a, b]. We say P =

{
([xi−1, xi], ti) : 1 ≤

i ≤ n

}
is δ-fine tagged partition of [a, b] if

{
[xi−1, xi] : 1 ≤ i ≤ n

}
is a partition of

[a, b], ti ∈ [a, b] and [xi−1, xi] ⊆ (ti − δ(ti), ti + δ(ti)) for every i, 1 ≤ i ≤ n. Riemann sum

is defined as S(f, P ) =
n∑

i=1

f(ti)(xi − xi−1) if exists.

Definition 2.1. [8, Definition 9.3] A function f : [a, b] → R is called Henstock-Kurzweil
integrable on [a, b] if there exists a real number L with the following property: for each ϵ > 0, there
exists a positive function δ such that |S(f, P ) − L| < ϵ whenever P is tagged partition of [a, b].
We called L = (HK)

∫ b

a
f.

Recall Henstock-Kurzweil equi-integrable functions as follows.

Definition 2.2. A sequence (fn)∞n=1 of Henstock-Kurzweil integrable functions on [a, b] is said to
be Henstock-Kurzweil equi-integrable on [a, b] if for each ϵ > 0 there exists a gauge δ independent
of n, on [a, b] such that

sup
n∈N

∣∣∣∣S(fn, P )− (HK)

∫ b

a

fn

∣∣∣∣ < ϵ

for each δ-fine partition P of [a, b].

Let X be a compact Hausdorff topological vector space over real numbers. We denote
support of µ by supp(µ) =

{
x ∈ X : µ(U) > 0 for every θ nbd U of x

}
. Throughout

our work µ(U) > 0 is understood. If A ⊂ X , then A denotes the closure of A in X . ∂A

denotes boundary of A where ∂A = A∩X \A. Let Bo(X ) denotes the Borel sigma algebra
of X containing all compact subsets of X . Recalling an element A ∈ Bo(X ) is called µ-
continuity set if µ(∂A) = 0.

Lemma 2.1. [11] Let X be a topological vector space. Then there is a local base B of θ (the zero
vector), satisfying the following:

(1) If U ,V ∈ B, then there is a W ∈ B with W ⊆ U ∩ V .
(2) If U ∈ B and x ∈ U , there is a V ∈ B such that x+ V ⊆ U .
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(3) If U ∈ B, there is a V ∈ B such that V + V ⊆ U .
(4) If U ∈ B and x ∈ X , then there is k ∈ R such that x ∈ kU
(5) If U ∈ B and 0 < |k| ≤ 1, then kU ⊆ U and kU ∈ B.
(6) T

{
U : U ∈ B

}
= {θ}.

Conversely, given a collection B of subsets containing θ and satisfying the above con-
ditions, there is a topology for X making X a topological vector space and having B as a
local base at θ.

Let
(
X , T

)
be a topological space. A family F = {Qi : i ∈ N} of subsets of X is a filter

in X if the following are satisfied:

(1) For every i ∈ N, Qi ̸= ∅.
(2) For Qi,Qj ∈ F then Qi ∩Qj ∈ F
(3) If Q ∈ F , and Q ⊆ B then B ∈ F .

The filter F converges to x ∈ X if for every θ-nbd U (θ is zero vector of X ) there exists
Q ∈ F such that Q− x ⊆ U . We say F is Cauchy if for every θ-nbd U there exists Q ∈ F
such that Q ⊆ U . Let X be a topological vector space. We say that X is complete if every
Cauchy filter in X converges. We say that X is locally convex if there is a local base at θ
whose members are convex.

Definition 2.3. (1) Let Q,R ∈ F . We say Q,R are non overlapping if Q∩R = ∅.
(2) Let G be a subfamily of F . We say that G is a fine cover of E ⊂ X if µ(Q) → 0 whenever

x ∈ Q for all x ∈ E.

Definition 2.4. We call F is a family of µ-cells if it satisfies the following conditions:

(1) Given Q ∈ F and a constant a > 0 there exists a division
{
Q1,Q2, ...,Qm

}
and there

exists U , such that inf
[
µ

(
U(Qi)

)]
< a for i = 1, 2, ...,m;

(2) Given A, Q ∈ F and A ⊂ Q, there exists a division
{
Q1,Q2, ...,Qm

}
of Q and there

exists U , such that U(A) = U(Q1);
(3) µ(∂Q) = 0 for each Q ∈ F where ∂Q is the boundary of Q.

Let us construct an example supporting Definition 2.4 as below.

Example 2.1. Consider n > 1. Let X be the unit cube [0, 1]n of Rn endowed with the Euclidean
distance in Rn and with the n-dimensional Lebesgue measure µn. Let 0 < a ≤ 1, the system of
F of all non empty closed sub-intervals Q of [0, 1]n such that µn(Q) > aµn(B) for some ball B
containing Q is the family of µn-cell.

We call F is µ-filter if for each subset E of X and for each subfamily G of F that is

a fine cover of E, there exists a countable system
{
Q1,Q2, ...,Qj , ..

}
of pairwise non-

overlapping cells of G such µ(E) \ µ(∪Qj) ≥ 0.

Definition 2.5. Let Q ∈ F , E ⊂ Q and δ be a gauge on Q. A collection P =

{
(xi,Qi)

}m

i=1

of

finite ordered pairs of points and cells is said to be

(1) partition of Q if
{
Q1,Q2, ...,Qm

}
⊆ Bo(X ) is a division of Q and xi ∈ Qi for i =

1, 2, ...,m;
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(2) a partial partition of Q if
{
Q1,Q2, ...,Qm

}
⊆ Bo(X ) is a subsystem of a division of Q

and xi ∈ Qi for i = 1, 2, ...,m;

(3) δ-fine if µ
(
Qi

)
< δ(xi) for i = 1, 2, ...,m;

(4) E-anchored if the points x1, x2, ..., xm belongs to E.

3. HENSTOCK-KURZWEIL INTEGRALS ON TOPOLOGICAL VECTOR SPACES

In this section, we introduce topological Henstock-Kurzweil integral on a µ-cell Q of a
topological vector space X . The following Cousin’s type lemma addresses the existence
of δ-fine partitions of a given cell Q.

Lemma 3.2. If δ is a gauge on Q, then there exists a δ-fine partition of Q.

Proof. The proof follows similar technique of [1, Lemma 2.2.1], so omitted. □

Let P =

{
(xi,Qi)

}m

i=1

be a partition of Q ∈ F and f : Q → X be a given function.

We define Riemann sum as S(f, P ) =
m∑
i=1

f(xi)µ

(
Qi

)
. We are ready to define topological

Henstock-Kurzweil integral as follows:

Definition 3.6. A function f : Q → R is said to be Henstock-Kurzweil integrable on Q with
respect to µ if there exists a real number A such that for each U , there exists a gauge δ on Q, with

|S(f, P )−A| < µ(U) whenever P =

{
(xi,Qi)

}m

i=1

is δ-fine partition on Q and µ(U) > 0.

The number A is said to be the Henstock-Kurzweil integral of f on Q with respect to
µ or topological Henstock-Kurzweil integral (in short, THK integral) on Q with respect
to µ and we write A =

∫
Q fdµ. Now-onwards, we denote THK for topological Henstock-

Kurzweil integral of f on Q with respect to µ. It is not hard to find the uniqueness of the
integral value of a given THK integrable function f : Q → R. The collection of all THK
integrable functions on Q with respect to µ shall be denoted by THK(Q). The Alexiewicz
semi-norm on THK(Q) can be defined by

||f || = sup
Q∈F

∣∣∣∣ ∫
Q
f

∣∣∣∣
where the integral is in the sense of THK. It is easy to see (THK(Q), ||.||) is a linear space.

Example 3.2. The function f(x) = c with c ∈ R, for all x ∈ Q is THK integrable on Q with∫
Q fdµ = cµ(Q).

Proof. Let U be given. Since f(x) = c, ∀ x ∈ Q. In this situation for any tagged partition

P of Q, we have S(f, P ) =
n∑

i=1

f(ti)µ(Qi) = cµ(Q). Hence for any tagged partition P ,

|S(f, P )− cµ(Q)| = |cµ(Q)− cµ(Q)|
= 0 < µ(U).

Let P be a tagged partition, that is δ-fine, and U is any θ-nbd, it holds for all U . Thus
f(x) = c is THK on Q with

∫
Q fdµ = cµ(Q). □

Few simple properties of THK integrals are as follows.
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Theorem 3.1. Let f, g ∈ THK(Q), then f + g ∈ THK(Q), and
∫
Q(f + g)dµ =

∫
Q fdµ +∫

Q gdµ.

Theorem 3.2. If f ∈ THK(Q) and k ∈ R, then kf ∈ THK(Q) and
∫
Q kfdµ = k

∫
Q fdµ.

Theorem 3.3. If f ∈ THK(Q) and f(x) ≥ 0 for each x ∈ Q, then
∫
Q fdµ ≥ 0.

Corollary 3.1. Let f, g ∈ THK(Q). If f ≥ g for each x ∈ Q, then
∫
Q fdµ ≥

∫
Q gdµ.

Proposition 3.1. If f : Q → R be THK integrable on Q and |f(x)| < M with M ∈ R for all
x ∈ Q, then |

∫
Q f | ≤ M

(
µ(Q)

)
.

Next, we prove Cauchy criterion for THK integrable functions on Q.

Theorem 3.4. (The Cauchy Criterion) A function f : Q → R is THK integrable on Q if
and only if for each U , there exists a gauge δ on Q such that |S(f, P1) − S(f, P2)| < µ(U)
whenever P1 and P2 are δ-fine partitions of Q.

Proof. Let f : Q → R be a THK integrable function on Q. By definition, for each U , there
exists a gauge δ on Q, |S(f, P ) −

∫
Q fdµ| < µ(U) whenever P is δ-fine partition of Q.

Consider P1, P2 are δ-fine partitions of Q, then

|S(f, P1)− S(f, P2)| = |S(f, P1)−
∫
Q
fdµ+

∫
Q
fdµ− S(f, P2)|

≤ |S(f, P1)−
∫
Q
fdµ|+ |S(f, P2)−

∫
Q
fdµ|

<
µ(U)
2

+
µ(U)
2

= µ(U).

Conversely, let n ∈ N and δn be a gauge on Q such that |S(f, Pn) − S(f, P ′
n)| < µ(U)

whenever Pn, P
′
n are δn-fine partitions of Q. Let ρn(x) = min

{
δ1(x), δ2(x), ..., δn(x)

}
be

a gauge on Q. By Lemma 3.2, there exists an ρn-fine partition Pn of Q, for each n ∈ N.
Let U be given and choose a positive natural number N such that 1

N < µ(U). If m,n are
positive natural (n < m) such that n ≥ N, then Pn, Pm are ρN -fine partitions on Q. Hence

|S(f, Pn) − S(f, Pm)| < 1
N < µ(U). Clearly,

{
S(f, Pn)

}∞

n=1

is Cauchy sequence of real

numbers, and convergent. Let lim
n→∞

S(f, Pn) = ∆. Then |S(f, Pn) − ∆| < µ(U), for each
n ≥ N. Let P be a ρN -fine partitions on Q, then

|S(f, P )−∆| ≤ |S(f, P )− S(f, PN )|+ |S(f, PN )−∆|

<
µ(U)
2

+
µ(U)
2

= µ(U).

Thus f ∈ THK(Q) and ∆ =
∫
Q fdµ. □

In the following theorem, we shall prove that THK integrability of f on a set Q implies
its THK integrability on each subcells of Q.

Theorem 3.5. If f ∈ THK(Q), and if A is a subcell of Q, then f ∈ THK(Q) and
∫
A fdµ =∫

Q fχAdµ.

Proof. Let U be given. By Theorem 3.4, there exists a gauge δ on Q so that |S(f, P1) −
S(f, P2)| < µ(U) for each pair of δ-fine partitions P1 and P2 of Q. Given that there exists
a division P =

{
Q1,Q2, ...,Qm

}
of Q and A ⊂ Q, such that A = Q1. For each k ∈
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{2, 3, ...,m} we fix a δ-fine partition Pk of Qk. If R1 and R2 are δ-fine partitions of A, then

R1 ∪
m⋃

k=2

Pk and R2 ∪
m⋃

k=2

Pk are δ-fine partitions of Q. Thus,

|S(f,R1)− S(f,R2)| = |S(f,R1) +

m∑
k=2

S(f, Pk)− S(f,R2)−
m∑

k=2

S(f, Pk)|

≤
∣∣S(f,R1 ∪

m⋃
k=2

Pk

)
− S

(
f,R2 ∪

m⋃
k=2

Pk

)∣∣ < µ(U).

Thus by Theorem 3.4, f ∈ THK(A). □

Proposition 3.2. Let f : Q → R be a THK integrable function on Q. If
{
Q1,Q2, ...,Qm

}
is a

division of Q, then f ∈ THK(Q1) ∩ ... ∩ THK(Qm) and
∫
Q fdµ =

m∑
i=1

∫
Qi

fdµ.

Proof. Given U , there exists a gauge δ on Q such that |S(f, P ) −
∫
Q fdµ| < µ(U), for

each δ-fine partition P of Q. By Theorem 3.5, f ∈ THK(Qi) for i = 1, 2, ...,m such that
δi(x) < δ(x) for each x ∈ Qi and such that |S(f, Pi) −

∫
Qi

fdµ| < µ(U)
m , for each δi-fine

partitions Pi of Q. Therefore P = P1 ∪ ... ∪ Pm is a δ-fine partition of Q. Consequently,

|S(f, P )−
m∑
i=1

∫
Qi

fdµ| ≤ |S(f, P1)−
∫
Q1

fdµ|+ ...+ |S(f, Pm)−
∫
Qm

fdm| < µ(U).

Thus
∫
Q fdµ =

m∑
i=1

∫
Qi

fdµ. □

We define indefinite THK integral of a given THK integrable function f as follows:

Definition 3.7. Let M be the collection of all subcells of Q and A be any subcell of Q. A function
F : M → R defined by F (A) =

∫
A
fdµ is called an indefinite THK integral of f.

It is easy to see by Proposition 3.2, each additive THK integrable function is an indefi-
nite THK integrable on Q.

Lemma 3.3. (Saks-Henstock Lemma) A function f : Q → R is THK integrable on Q if and only
if there exists an additive cell function π defined on the family of subcells of Q such that for each U ,
there exists a gauge δ on Q with

∑
(xi,Qi)∈P

|π(Qi) − f(xi)µ(Qi)| < µ(U), for each δ-fine partial

partition P of Q.

Proof. The proof is of similar to [1, Lemma 2.4.1]. □

Next, we see Lebesgue integrable function on each cell Q is THK integrable and the
two integrals coincide. Let us denote (L)

∫
Q fdµ be Lebesgue integrable functions with

respect to µ.

Theorem 3.6. Let f : Q → R be a function. If f is Lebesgue integrable on Q, with respect to µ,
then f is THK integrable on Q and (L)

∫
Q fdµ =

∫
Q fdµ.

Proof. The proof is similar to [1, Theorem 2.5.2]. □

The following counter example shows that the converse of Theorem 3.6 is always not
true.



Topological Henstock-Kurzweil integrable functions 399

Example 3.3. Let C be Cantor topological subspace of [0, 1], where C = ∩Cn, and Cn is open in-
tervals from Cn−1 where C0 = [0, 1]. It is easy to see the Cantor set C with the interval components
of the space Cn form the basis for the topology on C. It is well known that Hausdorff measure Hs

is a non-trivial radon measure on Rn if and only if s = n. Let µ be log32 dimensional Hausdorff
measure and f : C → R be the function by

f(x) =


(−1)n3n

n , x ∈
[

2
3n ,

1
3n−1

]
∩ C, n = 1, 2, 3...

0, x = 0

(3.1)

Let U be any θ-nbd and let N ∈ N be such that µ(U)N ≥ 2 and
∣∣∣∣ ∞∑
j=n+1

(−1)j+1

j

∣∣∣∣ < µ(U)
2 for each

n ≥ N. Let us construct a gauge δ on C such that

δ(x) =

 K, x ∈ (x− δ(x), x+ δ(x)) ∩ C

1
3n−1 , x = 0

Next consider a δ-fine partition P =

{
(x1,Q1), (x2,Q2), ..., (xm,Qm)

}
of C such that Q1 =

[0, c] ∩ C where [0, c] ⊂ [0, 1]. Then x1 = 0 and c < 1
3n−1 . Next, if we consider n ∈ N such that

1
3n < c < 1

3n−1 then n ≥ N. In this situation

m⋃
j=2

Qj =


(
[c, 1

3n−1 ] ∪ [ 2
3n−1 , 1]

)
∩ C if c > 2

3n

([ 2
3n , 1] ∩ C) if c < 2

3n

Then ∣∣∣∣S(f, P )− log2

∣∣∣∣ =


µ(U) if c ≥ 2
3n

µ(U)
2 if c < 2

3n

Hence f is THK on C. But (L)
∫
C |f |dµ =

∞∑
n=1

1
n = +∞. Hence f is not Lebesgue integrable on

C.

It is known that, any function f is Lebesgue integrable if and only if both f and |f |
are Henstock-Kurzweil integrable. We shall investigate this for THK integrable functions
defined on Q with respect to µ.

Definition 3.8. (1) Let M be the collection of all subcells of Q. An additive cell function
π : M → R is said to be absolutely continuous with respect to µ if for each U , there

exists a constant ν > 0 such that
m∑
i=1

|π(Qi)| < µ(U) whenever
{
Q1,Q2, ...,Qm

}
is a

collection of non-overlapping subcells of Q with
m∑
i=1

µ(Qi) < ν. We denote it by ACT .

(2) We say π is ACGT on Q if there exists a countable sequence of closed subcells Qi such
that

⋃
i

Qi = Q and π is ACT on Qi for each i ∈ N.

Theorem 3.7. Let Q be a cell. A function f : Q → R is THK integrable on Q if and only if there
exists an additive cell function F which is ACGT on Q such that F ′

T (x) = f(x) µ-a.e. in Q.

Proof. The proof is similar to [1, Theorem 2.6.1]. □
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Definition 3.9. Let Q be a cell. We say that a function f : Q → R is absolutely THK integrable
on Q if |f | is THK integrable on Q.

Now, we define topological derivative at x ∈ X as follows.

Definition 3.10. Let x ∈ X and A ∈ F . Let F be a cell function defined on F .

(1) We define the upper topological derivative of F at x, with respect to µ as UTF (x) =

lim
A→x

sup F (A)
µ(A) whenever the limit superior is taken over all sequences of cells A such that

x ∈ A and ∂A → 0.
(2) We define the lower topological derivative of F at x, with respect to µ as LTF (x) =

lim
A→x

inf F (A)
µ(A) whenever the limit inferior is taken over all sequences of cells A such that

x ∈ A and ∂A → 0.

If UTF (x) = LTF (x) < ∞, then we call F is topological differentiable at x and their common
value is called the topological derivative of F at x and we denote it by F ′

T (x).

Theorem 3.8. If f is a non-negative THK integrable function on a cell Q and F is its indefinite
THK integral, then F is topological differentiable µ-a.e. in Q and F ′

T (x) = f(x) a.e. in Q,

Proof. We have, for all x ∈ Q, LTF (x) ≤ UTF (x). In order to prove F ′
T (x) = f(x) a.e. on

Q, we need to prove UTF (x) ≤ f(x) ≤ LTF (x) µ-a.e. in Q. Let for α, β ∈ Q, α < β.,

κα,β =

{
x ∈ Q : UTF (x) > β > α > f(x)

}
.

For a given U , by Lemma 3.2, there exists a gauge δ on Q such that
m∑
j=1

∣∣∣∣F (Qj)− f(xj)µ(Qj)

∣∣∣∣ < µ(U),

for each δ-fine partition
{
(xj ,Qj)

}m

j=1

of Q. Consider Ⅎ be the system of all cells C ⊂ Q

such that F (C) > βµ(C) and there exists x ∈ C ∩ κα,β with µ

(
U(C)

)
< δ(x). Clearly

the system Ⅎ is a fine cover of κα,β . Therefore Ⅎ be a µ-filter family. Then there exists a

system of pairwise non-overlapping cells
{
Cj

}m

j=1

⊂ Ⅎ such that µ(κα,β) ≤
m∑
j=1

µ(Cj). For

j = 1, 2, ...,m, let xj ∈ Cj ∩ κα,β such that µ(Cj) < δ(xj). Since
{
(xj , Cj)

}m

j=1

is a δ-fine

partial partition of Q, we have

β
m∑
j=1

µ(Cj) <

m∑
j=1

F (Cj)

≤
m∑
j=1

|F (Cj)− f(xj)µ(Cj)|+
m∑
j=1

f(xj)µ(Cj)

< µ(U) + α

m∑
j=1

µ(Cj).

So, (β − α)
∑

j=1m
µ(Cj) < µ(U). Consequently, if µ(U) → 0, then

m∑
j=1

µ(Cj) = 0 and hence

µ(κα,β) = 0. Hence UTF (x) ≤ f(x) µ-a.e. on Q. Similar way we can find LTF (x) ≥
f(x) µ-a.e. on Q. So, UTF (x) ≤ f(x) ≤ LTF (x) µ-a.e. in Q. □
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For analyzing the power of an integration theory, convergence results are crucial. The
result we got for the THK integral is shown below.

Theorem 3.9. Let f, fn : Q → R, n = 1, 2, ... be given where the integral
∫
Q fn exists for all

n ∈ N. Let lim
n→∞

fn(x) = f(x) for x ∈ Q. Further, Let for each U , there exists a gauge δ on Q
such that

|S(fn, P )−
∫
Q
fn| < µ(U)(3.2)

for every δ-fine partition P of Q and for every n ∈ N. Then lim
n→∞

∫
Q fn =

∫
Q f.

Proof. Let U be given. By (3.2), we can find a gauge δ on Q such that for every δ-fine
partition P of Q, we have |S(fn, P ) −

∫
Q fndµ| < µ(U)

2 for n ∈ N. Since lim
n→∞

fn = f,

we have, for every fixed δ-fine partition P, there exists a positive integer n0 such that for
n ≥ n0, we have ∣∣∣∣S(fn, P )− S(f, P )

∣∣∣∣ = ∣∣∣∣ k∑
j=1

fn(Qj)µ(Qj)

∣∣∣∣ < µ(U)
2

.

This gives, lim
n→∞

S(fn, P ) = S(f, P ). Hence for any δ-fine partition P of Q, there is a
positive integer n0 such that for n > n0,

|S(f, P )−
∫
Q
fndµ| < µ(U).(3.3)

From (3.3), for all positive integers, n, l > n0,
∣∣∣∣ ∫Q fndµ −

∫
Q fldµ

∣∣∣∣ < µ(U) holds. Clearly,(∫
Q fndµ

)∞

n=1

is a Cauchy sequence in R. Therefore,

lim
n→∞

∫
Q
fndµ = τ ∈ R.(3.4)

Now, By (3.3), ∣∣∣∣S(f, P )− τ

∣∣∣∣ ≤ ∣∣∣∣S(f, P )−
∫
Q
fndµ

∣∣∣∣+ ∣∣∣∣ ∫
Q
fndµ− τ

∣∣∣∣
< µ(U) +

∣∣∣∣ ∫
Q
fndµ− τ

∣∣∣∣ for n > n0.

By (3.4), we obtain for every δ-fine partition P of Q, |S(f, P )−τ | < µ(U) for n > n0. Hence∫
Q fdµ exists and (3.2) satisfies. □

Definition 3.11. A sequence (fn)
∞
n=1 in THK(Q) is said to be THK equi-integrable on Q if

for each U , there exists a gauge δ on Q such that sup
n∈N

|S(fn, P ) −
∫
Q fn| < µ(U) whenever

P =

{
(xi,Qi)

}m

i=1

is δ-fine partition on Q.

Theorem 3.9 gives a sufficient condition for a sequence of THK integrable functions
tends to an integrable limit and for the integrals of the members of the sequence tends to
the integral of the limit function. The convergence lim

n→∞
fn(x) = f(x) for x ∈ Q is point-

wise convergence and the sufficient condition is the equi-integrability of the sequence of
THK integrable functions (fn). Using equi-integrable sequence of THK integrable func-
tions fn : Q → R, Theorem 3.9 can be reformulated as follows.
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Theorem 3.10. Let f : Q → R and let (fn)∞n=1 be a sequence of THK equi-integrable function
on Q. If fn → f pointwise on Q, then f ∈ THK(Q) and lim

n→∞

∫
Q |fn − f |dµ = 0.

Proof. Let U be given. Since (fn)
∞
n=1 is a sequence of THK equi-integrable functions on Q.

By Saks-Henstock Lemma, choose a gauge δ, independent of n on Q such that∑
(xi,Qi)∈P

|fn(xi)− fp(xi)| < µ(U)(3.5)

for each δ-fine partial partition P of Q. According to Cousin’s Lemma, we fix a δ-fine
partition P ′ of Q. Since fn → f pointwise on Q, we may choose N ∈ N so that∑

(x,Q)∈P ′

|fn(x)− fp(x)| < µ(U)(3.6)

for all n, p ≥ N. Now from (3.5) and (3.6),

|fn − fp| ≤
∑

x,Q∈P ′

|fn(x)− fp(x)|+
∑

x,Q∈P ′

|fn(x)− f(x)|+
∑

x,Q∈P ′

|fp(x)− f(x)|

< µ(U)
for all n, p ≥ N. By completeness of R, there exists a function F : Q → R such that

lim
n→∞

sup
x∈Q

|
∫
Q
fn(x)dµ− F (Q)| = 0.(3.7)

By (3.5),
∑

(x,Q)∈P

|f(x)µ(Q) − F (Q)| < µ(U) for every δ-fine partial partition P of Q. So,

f ∈ THK(Q) and F (x) =
∫
Q f(x)dx for every x ∈ Q. Hence lim

n→∞
|fn − f | = 0. □

Proposition 3.3. If f is a non-negative THK integrable on a cell Q and F is its indefinite THK
integral, then f is µ-measurable.

Proof. Let fn be µ-simple function defined by fn(x) =
∑

(x,Q)∈Pn

F (Q)
µ(Q) . Let C =

∞⋃
n=1

⋃
Q∈Pk

µ(U(Q))

and D =

{
x ∈ Q : F ′

T (x) does not exists or F ′
T (x) exists nad F ′

T ̸= f(x)

}
. By last condi-

tion of Definition 2.4 and Theorem 3.8, µ(C ∪ D) = ∅. Let Ξ = µ(C ∪ D). Let x ∈ Q \ Ξ.
Then for each N ∈ N, there exists Qn,x ∈ F such that (x,Qn,x) ∈ Pn, µ(Qn,x) < 1

n and
fn(x) =

F (Qn,x)
µ(Qn,x))

. By F ′
T (x) = f(x), fn(x) → f(x). s fn is µ-measurability for n ∈ N, so

f(x) is µ-measurable. □

Next, we prove monotone convergence type theorem for THK integrable function.

Theorem 3.11. Let {fn} be a non-decreasing sequence of THK integrable function on a cell
Q and let f = lim

n
fn. If lim

n→∞

∫
Q fndµ < ∞ then f is THK integrable on Q and

∫
Q fdµ =

lim
n→∞

∫
Q fndµ.

Proof. Let (fn) be a non-decreasing sequence of THK integrable function on a cell Q and
since {

∫
Q fndµ} is bounded on Q. So, {

∫
Q fndµ} converges to a real number ρ ∈ R. Then,

given U there exists n ∈ N such that n ≥ N we have 0 ≤ ρ−
∫
Q fndµ ≤ µ(U). From Lemma

3.3 there exists an additive function π on the subcells of Q such that for all U , there exists
a gauge δn on Q with ∑

(xi,Qi)∈P

∣∣∣∣π(Qi)− fn(xi)µ(Qi)

∣∣∣∣ < µ(U)
2n

,
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for each δn-fine partition P of Q and π(Qi) =
∫
Qi

fndµ. Since f = lim
n

fn, so for each x ∈ Q
there exists a natural number n(x) ≥ N such that

|f(x)− fn(x)| < µ(U),(3.8)

whenever n ≥ n(x) ≥ N. Suppose δ(x) = δn(x) for x ∈ Q, then δ is a gauge on Q which is
δ-fine. If P =

{
(Q1, x1), (Q2, x2), ..., (Qn, xn)

}
be a δ-fine partition of Q. Then from (3.8),

n∑
i=1

|f(xi)− fn(xi)|µ(Qi) < µ(U(Q)).(3.9)

Also,∣∣∣∣ n∑
i=1

fn(xi)(xi)µ(Qi)−
n∑

i=1

fn(xi)dµ

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣fn(xi)(xi)µ(U(Qi))−
∫
Qi

fn(xi)dµ

∣∣∣∣ < µ(U).

Again, from the hypothesis f = lim
n→∞

fn. So, (fn) is a point-wise bounded sequence of
functions. Indeed, ∫

Q
fndµ =

n∑
i=1

∫
Qi

fndµ

≤
n∑

i=1

fn(xi)dµ.

Moreover,

0 ≤ ρ−
n∑

i=1

∫
Qi

fn(xi)dµ ≤ ρ−
∫
Q
fndµ < µ(U).

Now we have

|S(f, P )− ρ| ≤
∣∣ n∑
i=1

f(xi)µ(Qi)−
n∑

i=1

fn(xi)(xi)µ(Qi)
∣∣

+
∣∣ n∑
i=1

fn(xi)(xi)µ(Qi)−
n∑

i=1

∫
Qi

fn(xi)dµ
∣∣

+
∣∣ n∑
i=1

∫
Qi

fn(xi)dµ− ρ
∣∣

< µ(Q) + µ(U) + µ(U).

Since µ(U) is arbitrary, f is THK integrable on Q and ρ =
∫
Q fdµ. □

Finally, we prove every absolute THK integrable functions are Lebesgue integrable on
Q.

Theorem 3.12. If f is absolutely THK integrable on a cell Q, then f is Lebesgue integrable on Q.

Proof. Let us consider for n ∈ N, fn(x) = min
{
|f(x)|, n

}
for all x ∈ Q. By Theorem 3.3, |f |

is Lebesgue measurable. Therefore fn is Lebesgue measurable and bounded. By Theorem
3.6, fn is THK integrable on Q. As (fn) is an increasing sequence of non-negative function
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convergent to |f |, by Theorem 3.11,

(L)

∫
Q
|f |dµ = lim

n→∞

∫
Q
fndµ

=

∫
Q
|f |dµ < ∞.

Hence f is Lebesgue integrable on Q. □

4. STATISTICAL CONVERGENCE

In this Section, we introduce statistical convergence of topological Henstock-Kurzweil
integrals on a topological vector space. We prove that every convergence for topological
Henstock-Kurzweil integrable function is also statistically convergent. Further, we in-
troduce statistically equi-integrability for topological Henstock-Kurzweil integrable func-
tions to prove statistically Cauchy on THK(Q).

Let A ⊂ N and n ∈ N. Let A(n) =
{
k ∈ A : k ≤ n

}
. Then the lower and upper

asymptotic density of A are

d(A) = lim
n→∞

inf
|A(n)|

n

and

d(A) = lim
n→∞

sup
|A(n)|

n
.

If d(A) = d(A), then d(A) = lim
n→∞

|A(n)|
n . Clearly d(N \A) = 1− d(A) for A ⊂ N.

Definition 4.12. [9] A sequence (xn)n∈N in a topological space X is said to converge statistically
to x ∈ X if for every U of x,

d

(
{n ∈ N : xn /∈ U}

)
= 0.

It is denoted by st-lim
n

xn = x.

Theorem 4.13. [9] The limit of a statistically convergent sequence is uniquely determined in
Hausdorff topological spaces.

Definition 4.13. Let Q ∈ Bo(X ). A sequence of THK integrable functions fn : Q → R is

said to be statistically convergent to f if for any θ-nbd U and a δ-fine partition P, d

({
n ∈

N :

∣∣∣∣S(fn, P )−
∫
Q f

∣∣∣∣ ≥ µ(U)
})

= 0.

We denote st-lim
n

fn = f. It is not hard to see if st-limit is unique then the following
result is true.

Theorem 4.14. If a sequence of THK integrable functions (fn) of statistically convergent, then
its st-lim

n
is unique.

Proof. Suppose st-lim
n

fn = f and st-lim
n

fn = g. Given ϵ > 0, define

K1(µ(U)) =
{
n ∈ N :

∣∣∣∣S(fn, P )−
∫
Q
f

∣∣∣∣ ≥ µ(U)
}

and

K2(µ(U)) =
{
n ∈ N :

∣∣∣∣S(fn, P )−
∫
Q
g

∣∣∣∣ ≥ µ(U)
}
.
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Clearly d
(
K1(µ(U)

)
= 0 and d

(
K2(µ(U)

)
= 0. Let K

(
µ(U)

)
= K1

(
µ(U)

)⋃
K2

(
µ(U)

)
.

Then d

(
K(µ(U)

)
= 0, gives N \ d

(
K(µ(U)

)
= 1. Next, if k ∈ N \K(µ(U)), we have∣∣∣∣ ∫

Q
f −

∫
Q
g

∣∣∣∣ ≤ |
∫
Q
f − S(fk, P )|+ |S(fk, P )−

∫
Q
g|

<
µ(U)
2

+
µ(U)
2

= µ(U).

Since µ(U) is arbitrary, we can find
∣∣∣∣ ∫Q(f − g)

∣∣∣∣ = 0. Hence
∫
Q(f − g) = 0 gives f = g. □

Definition 4.14. We say that (fn) of THK integrable functions is statistically Cauchy if for any
θ-nbd U , and a δ-fine partition P there exists M ∈ N such that

d

(
{n ∈ N : |S(fn, P )− S(fM , P )| ≥ µ(U)}

)
= 0.

Next, we state several fundamental properties below.

Theorem 4.15. Let (fn) and gn) are in THK([a, b], X) with f = st-lim
n

fn and g = st-lim
n

gn.

Then following holds:
(1) st-lim

n
(fn + gn) = f + g.

(2) st-lim
n
(αfn) = α(st-lim

n
fn) = αf.

(3) st-lim
n

fngn = fg.

Proof. For (1): Let fn : Q → R and gn : Q → R are sequences of THK integrable functions.
Let st-lim

n
fn = f and st-lim

n
gn = g. Then for any θ-nbd U , and δ-fine partition P, we have

d

({
k ∈ N : |S(fk, P )−

∫
Q
f | < µ(U)

})
= 1

and

d

({
k ∈ N : |S(gk, P )−

∫
Q
g| < µ(U)

})
= 1.

It is easy to see,

d

({
k ∈ N : |S(fk, P )−

∫
Q
f | ≥ µ(U)

}
∪
{
k ∈ N : |S(gk, P )−

∫
Q
g| ≥ µ(U)

})
= 1.

Let P =

{
k ∈ N : |S(fk, P )−

∫
Q f | < µ(U)

}
∪
{
k ∈ N : |S(gk, P )−

∫
Q g| < µ(U)

}
. Then

for any k ∈ P, we have |S(fn, P ) + S(gn, P )−
∫
Q(f + g)| < 2µ(U). Thus

d(P) = 1 ≤ d

({
k ∈ N : |S(fn, P ) + S(gn, P )−

∫
Q
(f + g)| < 2µ(U)

)
≤ 1.

Since µ(U) is arbitrary, we get st-lim
n
(fn + gn) = f + g.

Proof of (2) and (3) is straightforward, so ommitted. □

Next, we show that every convergent sequence of THK integrable functions is statisti-
cally convergent.

Theorem 4.16. If a sequence (fn) of THK integrable functions in THK(Q,X ) converges to
f ∈ X , then (fn) is statistically convergent to f.



406 Author (s)

Proof. Let U be a θ-nbd. Since (fn) is a sequence of THK integrable functions on THK([a, b],X )
converges to f, so, there exists N ⊂ N with δ(N ) = 1 and n0 = n0(U) such that n ≥ no

and n ∈ N implies |S(fn, P ) −
∫
Q f | < µ(U) whenever P is a free tagged partition of Q.

Clearly |fn| < µ(U). Again,{
n ∈ N : |S(fn, P )−

∫
Q
f | ≥ µ(U)

}
⊂

{
1, 2, ..., no

}
∪ (N \ N ).

Since δ

{
1, 2, ..., n0

}
∪ (N \ N ) = 0, it follows f = s-lim

n
fn. □

The following example shows that converse of Theorem 4.16 does not hold.

Example 4.4. Consider a sequence (fn) of THK integrable functions whose terms are

fn =

 n if n = i2, i = 1, 2, ...,

1
n otherwise.

It is easy to see the sequence (fn) is divergence. Let K =
{
i2 : i = 1, 2, ...

}
, then δ(K) = 0, it

follows 0 = s-lim
n

fn.

We introduce statistical equi-integrability for THK integrable function as follows:

Definition 4.15. A sequence of statistical THK integrable functions fn : Q → R is said to

be statistically equi-integrable if for any θ-nbd U and a δ-fine partition P, we have d

({
n ∈

N :

∣∣∣∣S(fn, P )−
∫
Q fn

∣∣∣∣ ≥ µ(U)
})

= 0.

Proposition 4.4. Let (fn) be statistically convergent sequence of THK integrable functions on Q.
If (fn) is statistically equi-integrable then (fn) is statistically Cauchy on THK(Q).

Proof. Let st-lim
n

fn = f. Consider Un be a sequence of nested base of θ-nbd.

Let W (j) =

{
w ∈ N : w ≤ n, |S(fn, P )−

∫
Q f | ≥ µ(Uj)

}
for any positive integer j. Clearly

for each , W (j+1) ⊂ W (j) < lim
n→∞

1
n |W

j)| = 1. Let us choose m ∈ N such that n > m.

Then 1
n |W

(j)| > 0. This shows that W (1) ̸= ∅. In general we can find natural numbers
m(p + 1) > m(p) such that we can a positive number r > m(p + 1) implies W (p+1) ̸= ∅.
Further By Lemma 2.1, we have for every θ-nbd U , there is a symmetric θ-nbd V such that
V+V ⊆ U . Let us consider (fn) be a statistically equi-integrable THK integrable functions
on THK(Q). Then by definition of equi-integrable THK integrable function, for any θ-

nbd U and a δ-fine partition P such that d
({

n ∈ N :

∣∣∣∣S(fn, P ) −
∫
Q fn

∣∣∣∣ ≥ µ(U)
})

= 0.

So,

d

({
n ∈ N : |S(fn, P )−

∫
Q
fn| ≥ µ(V)

})
= 0 and(4.10)

d

({
n ∈ N : |S(fm, P )−

∫
Q
fm| ≥ µ(V)

})
= 0(4.11)
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Thus we have,

d

({
k ≤ n : |S(fn, P )− S(fm, P )| ≥ µ(U)

})
≤ d

({
n ∈ N : |S(fn, P )−

∫
Q
fn| ≥ µ(V)

})
+ d

({
n ∈ N : |S(fm, P )−

∫
Q
fm| ≥ µ(V)

})
→ 0 using (4.10), (11).

Hence (fn) is statistically Cauchy on THK(Q). □

5. CONCLUSIONS

In this work, topological Henstock-Kurzweil integral on a µ-cell Q of a topological vec-
tor space X has been discussed. Several properties are discussed in this regard. Also, we
have proved that every Lebesgue integrable function is topological Henstock-Kurzweil
integrable. We introduce equi-integrability for topological Henstock-Kurzweil integrable
functions and several convergence theorems are also proved. Finally, we extend the
usual convergence of topological Henstock-Kurzweil integrable functions to statistical
convergence and relationship between statistically equi-integrable topological Henstock-
Kurzweil integral and statistical Cauchy convergence has been established. O. Dumanet
al in [2, Theorem 3.1] proved that in association with finitely additive measure λ, any
λ-statistically uniformly sequence of functions (fn) on [a, b] converges to function f and
each fn is integrable on [a, b] with st-λ-lim

n

∫ b

a
fn(x)dx =

∫ b

a
st-λ-lim

n
fn(x)dx =

∫ b

a
f(x)dx.

We conclude this article with the following possibility: Is the following theorem true for
topological Henstock-Kurzweil integrable functions?

Theorem 5.17. A sequence (fn) of statistical convergent THK integrable functions converges to
f. The limit function f is THK integrable if and only if (fn) is statistical equi-integrable THK
function.
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