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Unified Convergence Analysis of Certain At Least Fifth
Order Methods

RAMYA SADANANDA!, MANJUSREE GOPAL?, SANTHOSH GEORGE?, AND IOANNIS K.
ARGYROS?

ABSTRACT. A class of iterative methods was developed by Xiao and Yin in 2015 and obtained convergence
order five using Taylor expansion. They had imposed the conditions on the derivatives of the involved operator
of order at least up to four. In this paper, the order of convergence is achieved by imposing conditions only
on the first two derivatives of the operator involved. The assumptions under consideration are weaker and
the analysis is done in the more general setting of Banach spaces without using Taylor series expansion. The
semi-local convergence analysis is also given. Further, the theory is justified by numerical examples.

1. INTRODUCTION

Numerous problems in applied scientific branches and numerical analysis prominently
focus on solving a nonlinear equation given by

(1.1) p(z) =0

defined on suitable spaces i.e., to find a solution ¢* of [3, 5, 6]. Unlike linear cases,
direct methods do not hold good in finding solutions of nonlinear equations and thus
require iterative methods.

Number of iterations a method takes to reach the root within the desired precision,
characterized by its ‘convergence order’ is an important feature of any iterative method.
Recall [1} 15,16} 16} 19] that an iterative process is of convergence order at least £ > 0 if

Hxn+1 - Q*” < Ckan - Q*”kv

where ¢y, is called the rate of convergence or asymptotic error constant. One of the most
used methods is the Newton-Raphson’s method (also known as the Newton’s method) of
quadratic convergence. It is always of research interest to come up with efficient iterative
techniques of better order of convergence at a justified computational cost.

Several authors [2,[3}4}17,8,9] 10,111} 12,13} 14} [15}[18] have come up with the construc-
tion of many new multi-point iterative methods with faster convergence rate compared to
that of the one-point Newton’s method. One such class of efficient iterative methods was
developed by Xiao and Yin in 2015 [22]. This class gives rise to methods of order at least
three and five, respectively, for different choices of a # 0 defined forn =0,1,2,--- by

Yn = xn_apl(xn)_lp(xn)
1
a2) s = = gl + (15 ) )| ot
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and
Yn = Tp — ap’(mn)_lp(xn)

R DR (Iy P e

rast = %—(4%@@0+@—i)ﬁ@41mﬁml>ﬂ%)

Some of the particular cases of , by taking a = —1, 1, 2,1 give rise to the four well
known extended Newton-like methods studied in ([18} 22]]) (based on the predictor step),
respectively, as given below:

Method in [22]:

Yn = Tp+ @/(xn)_lp(xn)
(1.4) 2 = @+ 2(0 (Yn) — 3¢ (@n)) " plan)
Tt =zt (419n) = 3¢/ @)+ 9 (@) ) L),
Method in [18] 22]:
Yn = Tp — %@l(xn)_lp(xn)
(1.5) Zn = Tn— p/(yn)ilp(xn)
Tn+l = Zn — [QP,(yn)71 - @/(zn)il]@(zn)-
Method in [22]:
b = n—%mm olan)
(1.6) Zn = (p/(.%' )+3@ (yn)) 1@(5571)
Tn+l = Zn — (S(P/(xn) + 3@ (yn)) - p/(xn)_l)p(zn).
Method in [22]:
Yo = Tp — p/(xn)_lp(x’ﬂ)
(1.7) 2 = @ —2(0 () + ¢ (@) p(n)
ren = 2= (1) + )] o)) ol

In this paper, we study the local convergence of the methods and in the
Banach space setting, i.e., we consider p : D C X — Y to be a Fréchet differentiable
operator between Banach spaces X and Y, D is an open convex set. Also, the earlier
studies [22] on local convergence is done based on the Taylor expansion for X = Y = R/
which requires the operator to have high order derivatives not on the method. This is not
always possible, as evidenced below.

Consider g : [-2, 2] — R defined by

1 (41 mm2 1 6 BY g
_ | s(@tlogz® + 2% —x°) if x#0
Q(x)_{o if x=0.
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Then,
]. 5
qd(r) = %(2x3 + 4x3loga® + 62° — 5a?),
1
q'(z) = %(14;52 + 122%loga? + 30x* — 2023),
" 1 2 3 2
q"(x) = %(52;10 + 24zlogx” + 12027 — 60x~),
1
V) = 27)(24109%2 + 36022 — 120z + 100).

Note that, ¢’V at x = 0 is unbounded. Thus, the results in [22] assuming the existence
of ¢!V cannot assure convergence of the method to the solution p* = 1 € [-2,2].
But converges to p* if, e.g. x9 = 1.1. Thus, the results in [22] can be weakened.
Other drawbacks of the Taylor series approach are, lack of apriori error estimates on the
distances ||z, — p*|| and uniqueness results for the solution. We are motivated by these
problems. That is why we positively address all these problems in this paper.

Our study relaxes this condition and requires p to be just two times differentiable, even
though the order of convergence of the considered method is five.

Section 2] of the paper deals with local convergence analysis of the method of
order three and method of order five, without using Taylor expansion. The semi-
local convergence analysis of the general class of methods and is discussed in
Section [3| The theory is supported by numerical examples in Section |4} with concluding
remarks in Section Bl

2. LocAL CONVERGENCE OF ([1.2)) AND (1.3

Let S(o*, ) be the ball with center ¢* and radius r and S(o*, r) be the closure of S(o*, 7).
Take into account the assumptions listed below:

(A1) o*is a solution (simple) of and ¢'(0*)7! € L(Y, X).
(A2) [|p'(0*) (¢ (x) — 9" (e")]| < Lallz — o*|| V2 € D.

(A3) [l (")~ (g (x) — 9" (")l < Ls|lz — o*|| V2 € D.

(Ad) ||@' (o) o' (2)| < LyV o € Dand Ly, L3, Ly > 0.

From (A2) we can obtain,
(2.8) lp"(e") ™ ¢ (@) <1+ Lalz — o"].-

Consider the functions ¢, ¢1, hy : [0, %1) — R defined by

6(t) = 1_1th [|1—a|+<1—a+@>L1t],
ht) = 1o+ 1]

and
hi(t) = o1(t)t — 1.
_1 1

Observe that, since — 7.7 is monotonic increasing in [0, L—l), we have ¢, ¢; and h; are con-
tinuous and non-decreasing function (C.N.D.E) with 7, (0) = —1 < Oand lim, , 1 -hi(t) =
Ly

+00. Thus, 3 smallest r; € (0, 7-) such that iy (r1) = 0.
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Consider the functions ¢, hs : [0,71) — R defined by

_ Ls L3(2 + Lit)® lal 2+ Lit
“0 = 50-Ly Tsi-woo0-Lu? ' 1 0L
3L4Ly (4 + 3Lyt) Li(2+ Lat)

80— 010 —Li)® | 80— o101 — Lab)?

and

ho(t) = ¢o(t)t* — 1.
Again, since 171th = ¢11( 7 are monotonic increasing in [0,71), ¢2 is monotonic in-
creasing. Further, since ¢ is the ratio of two nonzero polynomials, it is continuous, hence
hs is CN.D.E. with h2(0) = -1 < 0 and lim,__,, - ha(t) = +o0. Thus, 3 smallest p € (0,r7)
such that ha(p) = 0.
Next, we define the functions ¢, hs : [0,71) — R by

() = (1201 g e + g (e +o0)

4 [2a = 1]Ls¢a(t) < o (£)E2 + 1)

and

4Ia\(1 — d1(t)t)
|a| 2+ Lyt 2+ Lit Ly
2(1 - ¢1 <1 (1- th)> 21— L (1 * Mt)t) $a(t)
3L4L1¢2(t) Ly(2 4 Lit) () L ,
=0 OD (0 — L) 20— (1)1 — Lit)? <L1 + 5 e2(1)t )

and

ha(t) = d(t)4 — 1.
As above, one can prove that, h3 is CN.D.E. with h3(0) = —1 < 0 and lim,__,,— hs(t) =
+00. Thus, 3 smallest p; € (0,71) such that hg(p1) = 0.

Let
(2.9) r = min{p, p1,1}.
Then,
< gt <1,
< g()? <1
and
0 < g¢s(t)t' <1,
vVt e[o,r).

For simplicity, we write ||z,, — 0*|| = ey,,, |z, — 0*|| = e, and

An = (¢ (yn) + 2a = )" (2n))-

THEOREM 2.1. Let (A1)-(A4) hold and sequence {x,,} be as in with xg € S(o0*,7)—{0*}.
Then, x, € S(0*,r) is well defined Vn € N U {0} and lim,,_, oo x, = p*. Furthermore, we can
estimate

(2.10) Canir < Ga(r)ed

|yn — 0"l = ey,
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Proof. We proceed to prove (2.10) inductively. Let z € S(o*, 7). Then by assumption (A2),
we have

9" (")~ (' (2) = @' (@D < Liflz — "l < Lar < 1,
so by Banach Lemma on invertible operators (B.L.1.O.) [1], we have

1

211 ") (0" € ———.

By the Mean Value Theorem (M.V.T.),

1
Q1) )= ele) - ele) = [ $e +tle - o Ndtla - o)
0
Consider the sub-step 1 of (1.2). One can observe that
Yo — 0"

1
= zo—0" — ap’(ﬂfo)_l/ ©'(0* + t(zo — 0"))dt(zo — 0%)
0

= @I(xo)_l [@I(CEO) - CL/O @/(Q* +t(zo — Q*))dt] (zo — 0%)
= ¢'(z0) ¢ (0")
X [(1 —a)p'(0") 1! (xo) + a/o o' (0") 79 (w0) — ¢ (0" + t(xo — 0*)))dt| (w0 — 0¥).

Then, by using and (2.11), we get

1 la| L4
€yo m“l = a|(1+ Luea,) + — = eaoles

(2.13) < Pleg,)en-

We now prove the invertibility of Ay = (¢’ (yo) + (2a — 1)e (x0)).
Consider

12a¢' (")~ [¢' (o) + (20 — 1)’ (o) — 2a¢’ (")
ﬁ (6" (")~ 16 (wo) — ¢/ ()] + [2a — L{[[¢' (")~ (9 (20) — ¢' ("]

IA

IN

1 Ly
3a] [Liey, +[2a — 1|Lies,] < 2al [p(ex,) + [2a — 1] €z,

(214) < 1(exy)er, < 1.
Thus, Aal exists by B.L.1.O [1]] and

IN

1
2|al(1 — ¢1(exo)eao)

(2.15) A 9 (0" <
Consider

1 —0° = x0— 0" —2aA; " p(v0)
= 20— 0" — ¢ (w0) "p(w0) + (' (o) " — 2aA; ") p(x0)

= Pl(ﬂfo)_l/o [0 (o) — (0% + t(xo — 0%))]dt(xo — 0%)

+A 1 (o) + (2a — 1) (w0) — 2ag’ (x0)]¢' (o) ™ o).
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By the MLV.T., we get

-0 = ¢'(x0)” / / (0" + (t+0(1 —t))(wo — ¢))dO(1 — t)dit(xo — 0")?
+ A5 9 (o) — ¢ (z0)]¢ (z0) ™ p(x0).

Again by applying the M.V.T. on the second term and adding and substracting ¢ (0*) to
the first term, we get,

*
I — 0

= (0! / / [ (0" + (t+0(1— 1) (0 — 0°)) — o (¢")]dB(L — t)di(o — ¢")?

(o)~ / / )df(1 — t)dt(zo — 0*)?
A7 / (w0 + (o — 0))d8(yo — 20 (z0) (o)
Then, by the sub-step 1 of method (1.2), we obtain
v = Hi+ ép’(xorl@“(g*)(% ')
(2.16) —aAy? /01 " (w0 + 0(yo — x0))dO(' (z0) " p(20))?,
where
11
= o/ [ [ 160+ (00 = ) = 27) = o (€)aB(1 = )dt(zo — o)
Next, by adding and substracting ¢”(¢*) to the third term of we get,
r -0 = Hi+ %@/(930)71@”(9*)(% —0%)?
—aA;! /01[@//(% +0(yo — x0)) — " (0)]do (P/(xo)fl@(fﬂo))Q
—aAy 0" (0")(¢' (o)~ p(0)).

Adding and substracting (zo — ¢*)? to the fourth term, we get

-0t = Hyt el (o) (o) o — o)’
—aA;! / (6" (@0 + 6y — o)) — 9" (*)]dB(g () (o))’

—aAg o (0)(9' (0) ™ p(20))* = (20 — )]
—CLA 1 /I( *)(xO_Q*)2~

Combine the second and fifth term and taking

(¢ (z0) M p(20))* = (w0 — 0)% = (¢ (x0) " p(0) — (z0 — ")) (¢ (w0) "' p(0) + (z0 — 0%))
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to get,
T — Q*
= M= adst [ 6o+ 000 = 20)) = o (20 (@) olao)
—a Ay " (079 (x0)  p(x0) — (z0 — 09)][¢ (x0) (o) + (z0 — 0*)]
+A;! [;(@’(yo) + (2a — 1)¢ (x0)) — ag'(z0) | ¢'(z0) 9" (0*)(z0 — 0")?
— H,+H,
+aAy 0" (0")[wo — 0 — ¢/ (x0) " p(0)][w0 — 0" + ¢ (20) ' p(20)]
Q1) A7 9 ) — ¢ @] 9/ (o) (") o — )
where

1
Hy = *aAal/ [0 (20 + 0(yo — o)) — 9" (€")]dO(¢' (x0) " p(x0))?.
0
Applying M.V.T. to the fourth term of (2.17), gives
T — 0"
= H,+ Ho+ Hs
I - | :
@18 +5A" [+ Ol — 20))d8(an — )/ zn) o (0" oo — 7,
0
where
Hy = a Ay 0" (e")[xo — 0" — ¢/ (20) ™ p(wo)][wo — o” + ¢/ (o) ™ p(wo)]-
Then by substituting the sub-step 1 of in the fourth term of (2.18), we get
1 —0" = Hy+Hy+ Hs+ Hy,

where

1
a ,_
Hy, = —§Aol/ 0" (o + 0(yo — xo))dl
0

x (9 (o)~ (o)) (x0) 1" (0%) (w0 — 0%)%.

We use the assumptions (Al)-(A4) in order to compute e;, and the following inequalities.
Observe that by applying M.V.T., we get

1" (o)t p(zo) | < €z

1
o (w0) " / o/ (0" + t(zo — 0*))dt

0

<

€z0

1
o (20)" ¢ (") / o (%) 9 (0" + tzo — o*))dt
0
(2 + Llexo)
7 €z
- 2(1 — Llemg) ©

(2.19)
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o — 0* + ¢ (z0) " p(z0) |

1
< |lwo = o + ¢/ (20) ! / o (0" + t{zo — 0"))dt(zo — o)
0
1
< Jl¢(z0) e L' (ao) + ¢ (07) ! /0 o/ (0" + t(zo — 0"))dt ey
1
(220) S m(4+3L16m0)6m0
and
20 — 0" — ¢ (o) (o)
1
= oo 0" — ¢/(z0) " / o/ (6" + (o — ¢"))dt(zo — ¢)]
0
< Jl¢@) o ()]
/ 16/(0) (¢ (x0) — 9'(%) + ¢/ (0") — ' (&" + t(z0 — 0°))) |dteay
< ||@/($0)_1@/(Q*)||/0 19" (") [ (o) — ¢ (0")]l|dteq,
Hlg' () ' (") / 160" ' (e") — (0" + t{zo — o)) dteay
(221) < 3Ly 2

2(1— Lieg,) ™
Then by using assumption (A3), (2.11) and (2.15),
L < [l (z0) "¢/ (27) H

[ I e 00— D) ) o 1 e,
< 1Ll%/ / 41— 1) + 01 — £)2|dbdtc?,
e2) < 3(1Lffle>€3
[Hal < lal||A5te'( 1" (w0 + 0(yo — o)) — 9" (") 10| (0) " p(0) ||
< 5o ¢f{;x0)em) [ewo+||||@($o) o] 1o Gan) ol I

Then by using (2.19), we get
L3(2 + Liey,)?
02 | 223 Dice)

= 8(1 _qj)l(eﬂio)ewo)(l_LleiL’o)Q |:

al|Agte'( )"l (0")
x|[zo — 0" = p (xo) p(@o)llllzo — o* + ¢ (z0) " p(o)l-
Again by the assumption (A4), and (2.21), we have

g BLiLi(4+3Lies) 4

T 8(1 — d1(ewy)eny) (1 — Lieg, )2 0

|a| 2JrLleﬂﬂo 3
14121 2T~
T 0= TLien)] @

| Hsl

IN

(2.24) || Hs||




Unified Convergence Analysis of a Class of Fifth Order Methods 487

and
< gt [ 19 oo + 00 — o)t
g/ ao) gl (o) (@)l )6 e,
(225) < Li(Q + Llefﬂo) 3

8(1— 01 (€an)ean) (1 — Lieg,)? ™
Thus by 222), 2-23), (2.24) and (2.25), we get

ez, < |[Hull + [[Hall + [[Hsll + || Hall
(2.26) < galen, e,

Thus, since ¢;(e,)e2, < 1, we have e,, < r and the iterate z; € S(o*, 7).
Simply replace o, Yo, 1 bY Zn, Yn, Tn+1 in the estimates above to complete the induc-

tion for (2.10). |

THEOREM 2.2. Let (A1)-(A4) hold and sequence {x.,,} be as in with xg € S(o*,7) —{0*}.
Then, z,, € S(o*,r) is well defined Vn € NU {0} and lim,,_, o x,, = p*. Further,

(2.27) ez, < da(r)ed,
and
(2.28) Conir < (bg(r)ei

Proof. Observe that, (2.27) holds as in Theorem 2.1]by taking 41 = 2.
Next consider,

Tnp1 = 0" = 2 — 0" —4ad; p(zn) + 0/ (2n) T p(2n).
Applying the M.V.T., we obtain

Tn4+1 — Q*

= z,—0" — 4a.A;1/ o (0" + t(zn — 0%))dt(zn — 0")
0
! () ! / o (0" + t(zn — 0"))dt(zn — 0°)
0
1
-4 [myn) T (20— 1)/ () — da / 00"+t — g*))dt} (2 — 0%)

() / o (6" + t{zn — 0%))dt(zn — 0°).

0
Rearranging the first term, we get

1
-0 = AT [myn) / p’(g*ﬂ(zng*))dt} (20 — o)
1
20 1A [mxn) - [ o+t g*))dt} (2n — 0")
1
204! / O (0" + t(zn — 0"))dt(zn — o)
0

! (a0n) ! /O o (0" + tzn — 0%))dt(zn — 0°).
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Combining the last two terms,

Tapr— 0t = A {@’(yn) - /01 O (0" +t(zn — 9*))dt] (2n — 0")

1
20 DA (o) = [ e 10 - i o = 0
—A; 209 (2n) — ¢ (yn) — (20 — 1)¢ ()]

% (1) / o/ (0" + t(zn — 0°))dt(zn — 0°)

— U / h(t,0,yn, 2n))d0(yn — 0* — (2 — g*))dt} (2 — 0%)

+(2a —1)A!

[/ / it 0, n, 2n))d0(n = 0" = tzn — Q*))df] (zn — 0")

1
FA )~ o/l @) [0+t~ 0t — 0,
0
where the function h(t,6,w, z) : [0,1] x [0,1] x X x X — X is defined as
h(t,0,w,z) = 0" +1(z — 0") + 0(w — 0" —t(z — ¢")).

Then,
1 1
a1 — 0" = AT / / O ({8, Y 20))AOGE (g — 0") (20 — &) + I

+(2a — 1) A, / / h(t,0, T, 2,))d0dt(x, — 0" )(zn — 0°) + I2
LA / O (& + By — 22))d0 (—ag! (20) ()
0

1
(2.29) xp’(mn)_l/ o (0" + t(zn — 0%))dt(zn — 0"),
0

where

11

L= —A / / O (h(t, 0, yn, 20))d0tdt (2 — 0")?

o Jo

and

1 1
b = —(2a— 1A / / o (h(t, 0, s 2))dOtdt (2, — 0™)2.
0 0
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Add and substract o’ (¢*) in the first, third and fifth terms of (2.29) to get,

1

oo = A / (h(t, 8, 4, 7)) — 0" (0BGt (1 — 0") (20 — o)

0 0
+ A4, 0" (0%)(yn — 0) (20 — 0*) + 11

(20— 1) A / / P (h(t, 0,2, 2)) — " (0")]dOdE (0 — 0") (20 — 07)
+(2a — DA 9" (0%) (@n — 0°) (20 — 0%) + I

—aA;! / [ (2 + O — 7)) — 9" (0°)]dB ()~ o(an)
0

1
% (1n) " / O (0" + t(zn — 0%))dt(zn — 0°)
—aA " (079 (zn) " o(2)

1
(2.30) xp’(xnfl /0 @ (0% + t(zn — 07))dt(zn, — 0).

Let

o= 00z o N~ o) ),
o= Gae DA [ 60000z o N~ ) )
Iy = —aA.! /Ol[p”(wn +0(yn — wa)) — 0" (0")]d09" (w0) " ()
X (an) ! /01 /(0" +t(zn — 07))dt(z — 07).
Combining the fourth, sixth and eighth terms in (2.30), we get

v —0" = L+L+L+1+1s+ A, 0 (o)

|0 = 07+ 20 = D - 27 - a9/ () Mot
1
%/ (n) [ ol b — 0t (20— ).
0
By the sub-step 1 of (T.2), we get

$n+1—Q*
= L+L+L+L+1+ A, ! ¢ (0")

x [(wn = 0" —ag/(xa) " p(xn)) + (20 = 1) (20 — 0%) = ag'(za) " ()

1
X/ ()1 / o (0" + t(zn — 0%))dt| (20 — 0°).
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1

On adding and substracting ap’(z,,) ™" p(z,) to the last term, we get

X1 *Q*
= Lh+DL+L+IL+15+ A, " (o)

x [(acn 0 ag! () () + (20— 1)(n — 0°) — ag () ()
X () ! / o (0" + tzn — 0%))dt + ag () pln)

—ap’(xnwp(xn)} (2n — 0")
= L+Dbh+L+L++A,; ! ©"(0%)

x [mm 0 () () + ag (@) ()

X/ () ! / [0/(@n) — 9(0" + (2 — 0" )]dt] (20 — 0°)

231) = Lh+L+I3+14+ 15+ I+ I,
where

Is = 2aA,"'0"(0%) [wn— 0" — ¢ (zn) " p(2n)] (20 — 0")
and

.[7 — aA 1 //( )
x @’(wn)‘lp(wn)@’(wn)‘l/o [0 (xn) — @' (0" + t(zn — 0"))]dt| (20 — 07).

We use the assumptions (A1)-(A4) in order to compute e . Consider

Ll < 1470 / / 19/ (0") " ((t, 8, y, =)l |tldOdEC2.
L4(¢2(6r )) €x
2.32 n)) %o o5
(2:32) S Tal(l = 61(ew Yo )
Similarly,
12a — 1| La(¢2(eq, ) en, 5
2.33 I n n .
( ) H 2” = 4|a‘(1*¢1(6a¢n)ezn) e:pn
Further,
1Ll < 14 @)
/ / 16 (e") [0 (h(t, 0, g, 20)) — 9" (0" dBdtey -,
<
B 2\a| l_d)l eml)ezn)
/ / 16z — 0%) + 0y — 0 — t(z — o)) dbdtey -,
L3¢5(€m )¢2(€x ) 1 2 5
. < ~ ~ a xT xT .
(2.34) S Tl =i )en) 5P2(ean)ez, +dles,) | e,
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Similarly considering (2.13) and (2.15)), one can observe that
[l < 120 = 1A 0 (oY)
11
o A R e R [ e

|2a — 1|Lypa(es,) (1 5 )
2.35 < | 5020z, )er, +1) €,
23 1al(1= bales,)er,) 272050 H1) €5
Using (2.19), (A3) and (2.11), we get

sl < IalllAﬁlp’(Q*)ll/ " (")~ " (wn + O(yn — xn)) — 9" (")]I|dO

x| (zn) " p(zn) |19 (2n) "' ( ||/ 19" (0") "9’ (0" + t(zn — 0%))l|dtes,
L3 / —1 *
= 2(1 — ¢1(ea, )ea,) /0 |z + 0(—ap' (zn) p(x,)) — 0" ||df
2+ Llezn 1 L1 3 3
8 (2(1 - Llezn)> Con 1- Llezn <1 M 2¢2(emn)emn> ¢2(emn)emn
<

L3 (1+a| 2+L16In > 2+L16fc" 2

2(1 = 1(ea, )ear) 2(1— Lie,, )2 "

(2.36) X (1 + 1;1¢2(ewn)emn) $2(ex,)er,

4 (1 - Llezn)

16l < 2lalll A7 e ()" (e") 7 " (0")llllzn — 0 = ¢ (n) " pl@n) ez,
3L4L1¢2(6$n) 5

(2.37) S 0 pi(en)en (1 — Lren ) on
and
1B < lall AT (@)le ()~ 6" (@) lle (@)L p(za)l
X6/ () "' (") / 16/(0") M/ () — /(0 + tzn — @) dtes,
< Jall A5 (@) (@) " (@) 6 (@) o)
%16/ ()~ 6 ()] (1 (@)1 () — ()]
/ 1/ (e") ' (0" + t(zn — ")) - ’<g*>]||dt)ezn
Ly(2+ Lieg, )¢2(es,) Lig o 102 oo
(2.38) S T PP TC B <L1+ 5 92(¢a,) x> -

Combining (2.32), (2.33), (2.34), (2.35), (2.36), (2:37) and (2.38), we get
I3l + 20l + sl + [ Lall + [ 151 + [ L6 ] + [ 27 ]l
< ¢3(€In)ein.

IN

e-'1’5n+1

We next give the uniqueness of ¢*.

PROPOSITION 2.3. Suppose:
(1) 3 a solution (simple) o* € S(o*,v) of (I.1) for some v > 0 and a parameter K > 0 such that

(2.39) 16"(0*) 1 (¢ (0*) — ¢’ (@))|| < K]lo* — x|
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for each x € S(p*, p).
(2) 36 > v such that

2
(2.40) 5 <

Set B = 8(0*,8) ND. Then, is uniquely solvable at o* in B.

Proof. Let v € B be a solution of the equation (L.I). A linear operator M is defined as
L (o« *
M = [; ¢ (0" + 7(y — 0*))dr. By 1} and ,we get

1
16/ (M - ()| < K / rllg* — ylldr

IA

K
—6< 1.
9 <

i.e, M is invertible. But then, v — ¢* = M~(p(y) — p(0*)) = M~1(0) = 0 implies
v = po*. ]

3. SEMI-LOCAL CONVERGENCE OF (1.2)) AND (1.3)

The w— continuity concepts and scalar majorizing sequences are employed to formu-
late the analysis of semi-local convergence [1}2].

For the method (1.2), we define the scalar sequences { X, } and {J,,}. Letwy : [0, +00) —>
Rand w : [0,4+00) — R be two C.N.D.E..

For Xy = 0and ), > 0, let

1
Sn = M(WO(%HI%—lIwo(Xn)),
W =wn — &) + 2|1 —al(1 +wo(Xy))
Wy, = or )
w2 = wo(Xn) +wo(Vn) + 21 — al(1 + wo(,))
Xn+1 - yn+ 2‘a|(1—8n) )
1
Opnt1 = (1 —|—/ wo (X +0(Xny1 — Xn))d9> (Xnt1 — Xn)
0
1
+m(1 + WO(XTL))(yn - Xn)v
|aldn1
3.41 1 = Xy 4 Ot
( ) y +1 +1+1_WO(XTL+1)

The forthcoming Theorem [3.3| will show that the above sequences serve as majorizers for
the method (1.2). However, we offer a general convergence result for the methods.

LEMMA 3.1. Assume that for eachn =0,1,2,... 3k > 0 with
(3.42) wo(X,) < 1,8, <1and X, < k.

Then, the sequences { X, },{Vn} as in converge to some A € (Yo, k] and 0 < X, < Y, <
XnJrl S A

Proof. By the properties of wy and w, (3.41) and (3.42), one can deduce that {X,,}, {),,} are
non-decreasing sequences bounded above by «. Thus, they converge to A. O
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REMARK 3.2. (i) A is the unique, common least upper bound of {X,,} and {I,,}.

(ii) Suppose wy is strictly increasing, then one can choose k = wy *(1).

(iii) If the function wo(t) — 1 has a minimal zero p € (0, 400), then w can be constrained to the
interval (0, p) and r > p.

We now link wy, w, the scalar sequences and the parameter \ to the operator g’ as given
below:
(C1) Janinitial point 7o € D and a parameter ), > 0 with ¢/(x¢) ! € £(Y, X) and
allle’(@o) (a0 < b
(C2) [l¢' (o)~ (' (v) = ¢’ (o))l < wo([Jv = o]} forall v € D.
Set Dy=DnN S(J?o, p).
(C3) [|g" (w0) (¢ (v2) — ¢’ (01)) || < w([[v2 — v1]]) for all vy, vz € Dy
(C4) The inequalities in (3.42) hold for k = p.
(C5) S(zo,A) CD.

THEOREM 3.3. Assume (C1)-(C5). Then, the sequence {x,,} developed by method is con-
vergent to some * € S(wo, \) solving (1.1).

Proof. First, we verify that

(3.43) 1Y — 2|l < Vo — X
and
(344) H-rn—i-l - ynH < Xn-i—l = Vn-

The proof is through induction. By (C1) and (3.41), we get

lyo — @ol| = lall|@(z0) ™ p(z0)|| < Vo= Vo — X < A.

Thus, (3.43) is true whenever n = 0 and yg € S(xg, A).
Let v € S(zg, A). By the definition of A and (C2),

(3.45) 1" (z0) " (' (v) — ¢ (x0)) | < wolllv = zol)) S wo(N) < 1
showing ¢'(v)~! € L(Y, X) and

/ -1 1
(3.46) " ()™ e (o)l < = wo(Jlv — o))’
Further, by
(3.47) 19" (0) T ' ()| < 1+ wo([lo — o))

We also need the estimate

1(2ag" (20)) ™" (9" (yn) + (2a — 1) (zx) — 2a¢’ (xo))|

< %aunp’(xo))-l(p’(yk) — ¢/ (w0) | + 12 — 1] (20) " (¢/ (k) — ¢/ (0))
< el —zol) + 2= Lo = wo])

< ﬁ(wo(yk) + 2a — 1wo (X))

< s <1l

Thus, by taking Ai, = ©'(yx) + (2a — 1)’ (x1), we get
1

(3.48) 14 0! (o) < SNl —sn)”
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Further, by

(ag' (1) p(r) — 204, (1))

= (¢'(zn) 7" = 24 Hap(xy)

A (A = 20 (en))ag (2x) ()

= A2 (xk) — ¢ (k) — (20 — 1) (k) (i — w1
A (0 (zk) = 0/ (yr) +2(1 = @) (zn)) (Y — @)

Tr+1 — Yk

Consider
19" (zo) (9 (xr) — 9" (yr)) +2(1 — @)’ (z)]|
< 9 (o) M (9 (zk) — 0 ()l + 21 — al[|9" (z0) "' (2 |
< w(llye — @ell) + 21 = af (1 + wo([lzk — o))
< WO — k) + 2|1 = a|(1 + wo (X))
(3.49) < wp <@
or,
9 (z0) (¢ (zx) — ¢ (yk)) + 2(1 — a)p' ()] |
<l (o) M9 (zn) — ¢ (z0) + ¢ (0) — ' (wr)) + 2(1 — @)’ ()]
< wolllzr — woll) +wolllyk — woll) + 2|1 — al(1 + wo(l|zx — zoll))
< wo(Xk) +wo(Vk) + 2|1 — af(1 + wo(Xy))
(3.50) < wi<ay.

By (3.48)-(3.50), we obtain

k(Y — X)

(3-51) ka+1 kafW Xk+1 Yk

and
lzks1 — zoll < N2kt — yell + lue — zol| < X1 — Ve + Ve — Xo = X1 < A

These estimates indicate that the iterate ;11 € S(xzo, \) thereby validating (3.44).
Now, by the sub-step 1 of the method (T.2),

plery) = p(ar) — oler) — p(ex)
652) = plakn) — pla) = 20! () — o),
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It follows by the M.V.T., (8.41), (C2), (C3) and (3.52) that

1

I (20) ™ p(xkﬂ)ll

< / 16/ (20) (6 (@ + Oasn — 1)) 0641 — 2]
+m||@’($0)71@/($k)\|”yk — x|
1
< (1 +/ wo [z — wol| + Oflwk+1 — fk)Cw) [@r41 — @l
0

1
g+ wolllzw = zoll)llye = il

! 1
< <]. + /0 wo(Xk —+ G(Xk_._l — Xk))d9> (Xk—O—l — Xk) + 7(1 + wo(Xk))(yk — Xk)

lal
(353 641,
Hence, sub-step 1 of the method (L.2), (3.46) (for v = x41) and (8.53) give
k1 = il < alllp’ (@) ™' (o) 10 (o)~ p(@resa)
5k+1 5k+1
< la <la =Y — &
| |1—W0(Hmk+1 — wol|) | ‘1—wo(Xk+1) e

and

lye+1 — zoll < NYk+1 — Trgrll + [|2hs1 — 0|
< yk+1 — X1 + X1 — X = Vi1 < A
Therefore the induction for (3.43] is complete and x,, yx € S(wo,\) V k = O, 1,2,...
By (C4) and Lemma 3.7} {Xk} {yk} are Cauchy sequences. Consequently, by (3.43) and

3.44), {zr}, {yx} are also Cauchy sequences and converge to some ¢* € S(xg, A). Fmally,
3.53) and the continuity of p imply p(¢*) = 0 (if & — +00). O

Next, uniqueness of the solution is established.

PROPOSITION 3.4. Suppose :
(i) 3asolution (simple) d € S(xg, ro) of the equation p(x) = 0 for some 1o > 0.
(ii) The condition (C2) holds in S(zo, 7).
(iii) I r > rg such that
1
(354) / wo((l — 9)7"0 + 9r)d0 <1
0

Set D1 =DnN S(JJQ, ’/‘).
Then 3 a unique d € Dy such that p(d) = 0.

Proof. Letd; € Dy with p(d;) = 0. A linear operator M is defined as
M= /1 o (d + 0(dy — d))de.
Applying (C2) and yields O
' (@o) ™ (M — ¢/ (@)l < / (1 = 8)[d = wol] + 6ds — aol)a

1
< /wo((1—9)7“0+9r)d9<1,
0
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so M is invertible. Thus d; = d, since 0 = p(dy) — p(d) = M(dy — d). O

REMARK 3.5. (a) We can replace (C5) by S(xo, p) C D.
(b) One can choose d = o* and zy = A, assuming the conditions (C1)-(C5).
Similarly, we analyse the semi-local convergence of the method (1.3).

Majorizing sequences {X,,}, {V»}, {Z,} for the method are given by

CI)n(.)}n - Xn)
Zn = n a4 N
It a1 =)
1
= (1 —|—/ wo(Xy + 0(Z2, — X,))dO) (2, — X,)
0
1
+m(1 + wo(Xn)) (Vo — Xn),
2 1
X, = Z
n+1 n+<1_sn+1_w0(~)(n))pn’
|a‘5n+1
3.55 Yn = Xy +—-.
(3.55) +1 S s -
The convergence conditions corresponding to (3.42) are
(356) WO(Xn) < 1aW0(yn> < 1a5n < 1aXn <k

and replace (C4). The limit point need not be the same for both the methods. Yet for
simplicity, we consider the same notation .

THEOREM 3.6. Assume (C1)-(C5). Then, 3 o* € S(wo, \) satisfying p(0*) = 0 under the
method (I.3).

Proof. The proof is similar to that of Theorem 3.3 with some necessary modifications.
Observe that

-l < FOEZ gy,
Notice that
p(ze) = p(zr) — plor) + p(zr)
= /01 o (zk + 0(z1 — 21))d0 (21 — 21) — %@’(xk)(yk — Tp).
Then, by

I o) o) < (1+ / wo<xk+e<zk—xk>>d9) (24 — %)

+i(1 + wo (X)) (Ve — Xk) = P

lal
So, by the third substep of the method

lepsr — 2l < 4Alalll AL (i)l + (19" (@) o(ze) |
< (“alll AL e (@o) | + o' (k) ™ 0 (o) D19 (o) ™ oz
2 1
< = X - Z
S <1sk+1w0(/1’k)>pk k+1 k>
lzi —zoll < llze —yell +llue —2ol| S Zp =V + V6 — X = 2 < A
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and

lzee1r —2oll < optr — 2&ll + llzx — 2oll < Xky1 — 2k + 25 — X = X1 < A
The rest is similar to Theorem [3.3] O

The uniqueness of the solution follows as in Proposition 3.4}

4. NUMERICAL EXAMPLES

In this section, we analyse several examples to validate the parameters used in prov-
ing the theorems. Further, we observe the convergence of the discussed methods with
Newton- Cotes method studied in [17] and a method by Xiao and Yin in [23] through an
example.

EXAMPLE 4.1. Let X =Y = C[0,1] = {g : [0,1] — C : g is continuous}, with max norm.
Let D =8(0,1). Let p : D C X — Y be given by

(4.57) o(e)a) = @) =5 [ arelr)iar.
Then, )
@ (p(€))(x) = &(x) — 15/0 x7<,0(7)2£(7)d77 foreach £ € D.

Observe o* = 0 and the conditions (A1)-(A4) hold, provided L, = 15, L3 = 8.5 and Ly = 31.
The parameter values obtained are shown in Table[T]

TABLE 1. Parameter values for Example

Method T P Pl r
a=—2 0.022876 | 0.015203 | 0.014416 | 0.014416
a= —% 0.021605 | 0.014819 | 0.013976 | 0.013976
) a = —110.019453 | 0.014077 | 0.013160 | 0.013160
)a=1 10.035168 | 0.018430 | 0.018004 | 0.018004
.6) a = % 0.040370 | 0.018813 | 0.018402 | 0.018402
(1.7) @ =1 | 0.050929 | 0.019213 | 0.018824 | 0.018824
a= % 0.039566 | 0.018249 | 0.017801 | 0.017801
a=2 0.035727 | 0.017776 | 0.017305 | 0.017305

EXAMPLE4.2. Let X =Y = R3 D = §(0, 1) equipped with max normand ¢ : D C X — Y

defined for w = (w1, we, w3) by

Then, o* = (0,0,0). Observe,

2

5

. w
p(w) = (sinwy, =24 Wa, W3).

coswy 0 0
o' (w) = 0 w241 0
0 0 1
and
—stnw; 0 0|0 O O[O0 O O
o' (w) = 0 0 0/{0 2 0[{0 0 O
0 0 0{0 O 0|0 O O
The condtions (A1)-(A4) are true if Ly = Ls = 1 and Ly = 0.84147. The parameter values

obtained are shown in Table[2
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TABLE 2. Parameter values for Example

Method 1 P P1 T

0.343146 | 0.247367 | 0.234681 | 0.234681
0.324081 | 0.243619 | 0.230275 | 0.230275
0.291796 | 0.232677 | 0.218821 | 0.218821
0.527525 | 0.321750 | 0.323505 | 0.321750
0.605551 | 0.327926 | 0.333544 | 0.327926
0.763932 | 0.331341 | 0.341537 | 0.331341
0.593485 | 0.306562 | 0.312249 | 0.306562
0.535898 | 0.292498 | 0.295987 | 0.292498

EXAMPLE43. Let X =Y =R3, D = §(0,1). Define p on D for w = (wy, wa, w3) by

-1
p(w) = (ewl -1, Lw% + wg,w3> .

2
Then,
et 0 0
Pw)y=1 0 (e—1Dwx+1 0
0 0 1
and
e’ 0 010 0 0j0 0 O
o'(wy=| 0 0 00 (e=1) 0[0 0 0
0 0 010 0 00 0 O

Observe, p* = (0,0,0). The conditions (A1)—(A4) are true if Ly = Ls = Ly = e. The parameter
values obtained are shown in Table[3]

TABLE 3. Parameter values for Example

Method 1 P 01 r

0.126236 | 0.094984 | 0.090884 | 0.090884
0.119223 | 0.092575 | 0.088283 | 0.088283
0.107346 | 0.087389 | 0.082923 | 0.082923
0.194066 | 0.121753 | 0.120938 | 0.120938
0.222770 | 0.125084 | 0.124993 | 0.124993
0.281035 | 0.128116 | 0.128996 | 0.128116
0.218331 | 0.119267 | 0.119149 | 0.119149
0.197146 | 0.114599 | 0.114057 | 0.114057

REMARK 4.4. Figure[l|displays the behaviour of the parameters v, p, py and r with a # 0. In
the plot, the parameter values for 60 different values of a € [—2,0)U(0, 2] have been computed. It is
observed that the parameter values are directly proportional to the absolute values of a, whenever
a € [-1,0) U (0,1]. A slight decrease in the radii is observed beyond a = 1, while no much

variation in radii is seen beyond a = —1 towards the negative axis.
EXAMPLE 4.5. Let X =Y = R2. Consider the system of equations
3t +t3 = 1

(4.58) th+tts = 1.
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FIGURE 1. Variation of the parameters with a # 0 for Example
Example[d.3] respectively.

Observe, x1 = (0.9,0.3) is one of the solutions of [@.58). The approximation to this solution x:
using two particular cases of the class of methods mentioned, a = —1, %, 2,1 (method method
(1.5), method (I.6), method are studied (similarly follows for the other values a#0), starting
with xg = (2, —1). The outcomes are shown in Table 4} pland 6]

TABLE 4. Iterates using the Method , and the Method

k Method M E{atlo Method @ 13;1’(10
xp = (17, 15) (:::)lo ay, = (t},15) (;k:)ls

0 (2.000000, —1.000000) (2.000000, —1.000000)

1] (1.113917,0.121073) | 0.004043 | (1.154301, —0.007924) | 0.004735

2| (0.993030,0.306162) | 0.733683 | (0.994370,0.304228) | 0.334158

3| (0.992780,0.306440) | 3.904849 | (0.992780,0.306440) | 3.837488

4 (0.9927807 0.306440) 3.916553

TABLE 5. Iterates using the Method , and the method from [23]]

k Method Ratio [ Xiao and Yin’s method [23] | Ratio
i = (t5,15) Tt o = (tF,5) O
0 | (2.000000, —1.000000) (2.000000, —1.000000)
1| (1.142149,0.026558) | 0.004541 (1.182085, —0.044631) 0.004999
2| (0.994022,0.304907) | 0.411510 (0.918554, 0.388269) 0.225379
3| (0.992780,0.306440) | 3.856951 (1.015845,0.281451) 7.490528
4| (0.992780,0.306440) | 3.916553 (0.991633,0.307778) 2.949116
5 (0.992778,0.306443) 3.971186
6 (0.992780, 0.306440) 3.916671
7 (0.992780, 0.306440) 3.916553
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TABLE 6. Iterates using the Method (1.6) and the method from [17]

k Method Ratio | Newton Cotes method [17] | Ratio
o = (1, 15) s i = (1, 15) N
0 | (2.000000, —1.000000) (2.000000, —1.000000)
1| (1.145979,0.014904) | 0.004605 (1.263927, —0.166887) 0.052792
2| (0.994146,0.304698) | 0.383700 (1.019452,0.265424) 0.259156
3| (0.992780,0.306440) | 3.850384 (0.992853,0.306348) 1.580144
4| (0.992780,0.306440) | 3.916553 (0.992780,0.306440) 1.977957
5 (0.992780,0.306440) 1.979028

REMARK 4.6. Note that the columns corresponding to the Ratios in Table[d} Table 5| and Table

[6] show that the method (1.4), method (L.5), method and method are of order 5 (by
neglecting few initial iterates). Also, observe that method , method , method and

method converge faster than the other two methods under consideration, even though of the
same order, hence showing method — method to be efficient.

Next, we define and compute the Approximate computational order of convergence of
methods (I.4)- (1.7) for the Example[4.3/and Example
DEFINITION 4.7. The "Approximate computational order of convergence’ (ACOC) [21] is de-
In (
ACOC =

fined by
s
In ( )

where T, _o, Tp—1, Ty and x,1 are the consecutive iterates near the root.

Tn+4+1—Tn
Tn—Tn—1

Tn—Tn—1
Tn—1—Tn-2

TABLE 7. ACOC of method —method for Exampleand Example

ACOC for ACOC for ACOC for ACOC for
Example Root To method method method method
4.3] (0,0,0) | (1.9,0.5,0.5) 4.5995 4.1051 4.8288 4.8625
(1,0.03,0.03) 5.8235 4.6622 4.3906 4.5331
I@I (0.9,0.3) (2,-0.05) 4.2016 4.8295 4.8047 4.7514
(0.3,—0.05) 5.7595 4.9737 4.8962 4.6328

REMARK 4.8. The calculated value ACOC, does not estimate the theoretical order of convergence
accurately when "pathological behavior” of the iterative method (for instance, slow convergence at
the beginning of the implemented iterative method, oscillating behavior of approximations, etc.)
exists. Therefore, it is not regarded as an ideal tool for estimating the order in most of the cases.

5. CONCLUSION

The local convergence of a class of fifth order iterative methods is discussed. Earlier
works rely on Taylor’s expansion and require higher order derivatives to exist, which is
not the case in several real life problems. But, our work requires the operator to be just
twice differentiable and the order of convergence is proved without Taylor expansion.
Further, weaker assumptions are taken and the theory is in the more general setting of a
Banach space. The semi-local convergence analysis has also been discussed. The theory
developed is verified through examples.
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