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On simple normal structure and best proximity points in
reflexive Banach space

BELKASSEM SEDDOUG, KARIM CHAIRA AND JANUSZ MATKOWSKI

ABSTRACT. We introduce the concept of simple normal structure (see Definition 2.3) for a pair of subsets
in a normed space that is not proximal. Using this concept, we show that if E is a reflexive Banach space,
A and B are two nonempty, convex, bounded and closed subsets of E having a simple normal structure, and
T : A ∪ B −→ A ∪ B is a cyclic relatively nonexpansive map, then T2 admits a fixed point in A. Moreover, if T
satisfies a min-max condition, then this fixed point of T2 is also a best proximity point for T.
Using this concept, we obtain the same result for the best proximity point of a cyclic contraction map. We also
provide an example of a reflexive Banach space that is strictly convex but not uniformly convex.

1. INTRODUCTION AND PRELIMINARY

Let (E, ∥.∥) be a normed linear space. Consider two nonempty subsets A and B of
E. Recall that a mapping T : A ∪ B −→ A ∪ B is said to be relatively nonexpansive if,
∥T(x)−T(y)∥ ⩽ ∥x−y∥ for every pair (x, y) of A×B. Notice that a relatively nonexpansive
mapping need not be continuous in general.

A self-mapping T : A∪B → A∪B is called cyclic if T(A) ⊆ B and T(B) ⊆ A. For such a
mapping, a best proximity point is an element p of A that solves the minimization problem :

∥p− T(p)∥ = dist(A,B),

where dist(A,B) := inf{∥x − y∥ : (x, y) ∈ A × B}. Note that in this case, if T is relatively
nonexpansive, then q = T(p) ∈ B is also a proximity point of T, since

dist(A,B) ⩽ ∥q − T(q)∥ ⩽ ∥p− T(p)∥ = dist(A,B).

The importance of the best proximity points stems in their ability to offer optimal solu-
tions to the problem of the best approximation between two sets. Relevant references on
best proximity points can be found in [9, 10, 16, 2, 3, 4, 19]. In [10], Eldred and Veeramani
proved a theorem establishing the existence of a best proximity point for cyclic contrac-
tions within the setting of uniformly convex Banach spaces. In [19], Suzuki, Kikkawa, and
Vetro introduced the concept of the property UC and extended Eldred and Veeramani’s
result to metric spaces with the UC property. Subsequent contributions by Espı́nola and
Fernández-León [11], as well as Sintunavarat and Kumam [18], have continued to explore
the existence of best proximity points for cyclic maps under various domain-related con-
ditions. These works reflect the growing interest in this area in recent years.

For the reader’s convenience, we provide some vocabulary and results. The pair (A,B)
is said to be proximal, if for each (x, y) ∈ A × B there exists (a, b) ∈ A × B such that
∥x − b∥ = ∥y − a∥ = dist(A,B). It is said to have proximal normal structure (see [9]), if for
any nonempty closed bounded convex proximal pair (H,K) in (A,B) with δ(H,K) >
dist(H,K) and dist(H,K) = dist(A,B), the inequality max{δp(K), δq(H)} < δ(H,K)
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holds for some (p, q) ∈ (H,K). Here δ(H,K) = sup{∥x − y∥ : x ∈ H, y ∈ K} and
δx(K) = sup{∥x− y∥ : y ∈ K}, for any x ∈ H.

Recall that a Banach space (E, ∥.∥) is said to be uniformly convex [6], if there exists a
strictly increasing function ζ : (0, 2] → (0, 1] (the modulus of uniform convexity) such that
the following implication holds for all x, y, p ∈ E, R > 0 and r ∈ [0, 2R] :

∥x− p∥ ≤ R,

∥y − p∥ ≤ R,

∥x− y∥ ⩾ r

⇒ ∥x+ y

2
− p∥ ⩽ (1− ζ(

r

R
))R.

It is said to be strictly convex if the following implication holds for all x, y, p ∈ E and
R > 0 : 

∥x− p∥ ≤ R,

∥y − p∥ ≤ R,

x ̸= y

⇒ ∥x+ y

2
− p∥ < R.

In the entire paper, we will say that (A,B) satisfies a specific property if both the sets
A and B satisfy that property.

The study of the existence of a best proximity pair was initially introduced and ex-
plored in [9]. Specifically, the following key result was established :

Theorem 1.1 (Corollary 2.1 in [9]). If (A,B) is a nonempty closed bounded convex pair of a
uniformly convex Banach space E, then every cyclic relatively nonexpansive mapping defined on
A ∪B has a best proximity pair.

The concepts of reflexivity and strict convexity are closely linked to the existence of
projection onto a closed convex set.

Definition 1.1. (see Definition 5.1.17 in [15]) Let (E, ∥.∥) be a normed linear space and A be a
nonempty subset of E.

– A is a set of uniqueness if, for every x of E, there is no more than one element y of A such
that ∥x− y∥ = dist(x,A), where dist(x,A) = inf{∥x− a∥ : a ∈ A}.

– A is a set of existence or proximinal if, for every x of E, there is at least one element y of A
such that ∥x− y∥ = dist(x,A).

– A is a Chebyshev set if, for every x of E, there is exactly one element y of A such that
∥x− y∥ = dist(x,A); that is, if A is both a set of uniqueness and a set of existence.

Theorem 1.2 (Corollary 2.12 in [12]). Let (E, ∥.∥) be a Banach space. The following are equiva-
lent:

– E is reflexive;
– every nonempty weakly closed subset of E is proximinal;
– every nonempty closed convex subset of E is proximinal;
– every closed subspace of E is proximinal.

Remark 1.1. It is shown (see Theorem 5.1.18, Corollary 5.1.19, and the accompanying comments
in [15]) that a normed space E is reflexive and strictly convex if and only if every nonempty convex
and closed subset of E is a Chebyshev set. Therefore, in this setting, the projection mapping PA on
a nonempty closed convex subset A is well-defined and single-valued.

In the following proposition, we establish the relationship between best proximity
point and fixed point.

Proposition 1.1. Let T : A ∪ B −→ A ∪ B be a cyclic relatively nonexpansive, where (A,B) is
a pair of nonempty subsets of a normed space E. Suppose that A is a set of uniqueness and that T
admits a best proximity point x ∈ A. Then x is also a fixed point for T2.
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Proof. Since T admits a best proximity point x ∈ A, i.e. ∥x− T(x)∥ = dist(A,B), we have
∥x− T(x)∥ = dist(T(x),A). As A is a set of uniqueness, x is the projection of T(x) onto A,
we also have

dist(A,B) ⩽ ∥T(x)− T(T(x))∥ ⩽ ∥x− T(x)∥ = dist(A,B),

so ∥T(T(x)) − T(x)∥ = dist(A,B) and T(T(x)) is also the projection of T(x) onto A. Thus
T2(x) = x. □

Remark 1.2. The result of Proposition 1.1 holds true when the set A is nonempty, closed, and
convex, and when E is reflexive and strictly convex. In particular, under the hypothesis of Theorem
1.1, T admits a best proximity point which is also a fixed point of T2.

The notion of a cyclic contraction map was introduced in [10].

Definition 1.2. Let A and B be nonempty subsets of a normed space. A cyclic mapping T :
A∪B → A∪B is termed a cyclic contraction if there is κ ∈ (0, 1) such that, for all (x, y) ∈ A×B,

∥T(x)− T(y)∥ ⩽ κ∥x− y∥+ (1− κ)dist(A,B).

Theorem 1.3 (Theorem 3.10. in [10]). Let A and B be nonempty closed and convex subsets of a
uniformly convex Banach space. Suppose T : A∪B −→ A∪B is a cyclic contraction. Then, there
exists a unique best proximity point x ∈ A. Further, for every x0 ∈ A the sequence (T2n(x0))n∈N
converges to x.

Theorem 1.4 (Theorem 11. in [1]). Let A and B be nonempty closed and convex subsets of a
reflexive and strictly convex Banach space. Suppose T : A∪B → A∪B is a cyclic contraction and
assume that (A − A) ∩ (B − B) = {0}. Then, there exists a unique x ∈ A such that T2(x) = x
and ∥x− T(x)∥ = dist(A,B).

The rest of the paper is organized as follows :
The following section contains the main results of the paper. In Subsection 2.1, we in-

troduce a new concept called “simple normal structure,” which is a natural generalization
of the notion of “normal structure” introduced in [5] and studied by W. A. Kirk in [14], and
distinct from the concept of “proximal normal structure” introduced in [10]. Remark 2.3
justifies that every pair of nonempty convex subsets of E having simple normal struc-
ture also has proximal normal structure. Theorem 2.5 shows that if (A,B) is a nonempty
bounded convex closed pair having simple normal structure in a reflexive Banach space,
then for all cyclic, relatively nonexpansive mappings T : A ∪ B → A ∪ B, the map T2

admits a fixed point in A. Moreover, if T satisfies the min-max condition, then this fixed
point of T2 is also a best proximity point for T.

In Subsection 2.2, we deal with the case of cyclic contraction mappings. Theorem 2.6
justifies that if (A,B) is a nonempty, bounded, and closed convex pair having simple nor-
mal structure in a reflexive and strictly convex Banach space, then any cyclic contraction
T : A∪B → A∪B admits a unique best proximity point in A. We thus obtain the existence
of a best proximity point for a cyclic contraction in a reflexive and strictly convex Banach
space, which provides a positive answer to Eldred and Veeramani’s question (see [10]).
We end the article with an example of a cyclic contraction in a reflexive Banach space that
is strictly convex but not uniformly convex.
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2. MAIN RESULT

2.1. Simple normal structure and best proximity points of a cyclic relatively nonexpan-
sive map. Let (E, ∥.∥) be a reflexive Banach space. For any nonempty closed convex and
bounded subsets A and B of E, we set

δx(B) = sup{∥x− y∥ : y ∈ B},

δA(B) = inf{δx(B) : x ∈ A} and

AB = {x ∈ A : δx(B) = δA(B)}.
We define in the same manner δy(A), for every y ∈ B, δB(A) and BA. We denote also

δ(A,B) := sup{∥x− y∥ : (x, y) ∈ A×B}.

Definition 2.3. Let A,B be nonempty subsets of E. We say that (A,B) has a simple normal
structure, if for every nonempty closed bounded and convex pair (X ,Y) of E such that X ⊂ A

and Y ⊂ B, the following implications hold true :
(i) if X contains more than one point then there is some point x ∈ X such that : δx(Y) <

δ(X ,Y);
(ii) if Y contains more than one point then there is some point y ∈ Y such that : δy(X ) <

δ(X ,Y).

Remark 2.3. In Definition 2.3, the pair (X ,Y) is not necessarily proximal; therefore, a pair
(A,B) can have proximal normal structure but not a simple normal structure. But the reciprocal
is always true : if (A,B) is a convex pair, in a Banach space E, having a simple normal structure,
then (A,B) has a proximal normal structure.

Indeed, suppose that (A,B) has a simple normal structure and let (H,K) be a nonempty
closed bounded convex proximal pair in (A,B) with δ(H,K) > dist(H,K). It suffices to
show that H and K are not singletons. Suppose H = {h0} for some h0 ∈ E. Since (H,K)
is proximal then, for all k ∈ K, ∥k − h0∥ = dist(H,K), whence δ(H,K) = δh0

(K) =
dist(H,K), which contradicts the hypothesis. Thus H is not a singleton. Similarly we
show that K is not a singleton.

Example 2.1. Let E = R2 be equipped with the norm ∥.∥∞, defined for every (x, y) ∈ R2 by
∥(x, y)∥∞ = max(|x|, |y|). Consider a = (0, 0), a′ = (1, 0), b = (2, 0), b′ = (3, 0), and let A be
the line segment [a, a′] and B = [b, b′]. It is not difficult to show that (A,B) has a simple normal
structure. Note that in this case, if T is a relatively nonexpansive cyclic mapping on A ∪ B, then
necessarily T(a′) = b and T(b) = a′. Hence, T2(a′) = a′ and T2(b) = b. Therefore, T2 admits
fixed points in A and B, which are also proximity points.

Example 2.2. Let ℓnn = (ℓn, ∥.∥n), n ∈ N \ {0}, where the Banach space ℓn is of the zero real
sequences starting from the index n+ 1, endowed with the norm ∥.∥n defined by

∀ x(n) = (x(n)(i))k⩾1 ∈ ℓn, ∥x(n)∥n =

(
+∞∑
i=1

|x(n)(i)|n
) 1

n

.

Let L2 = {x = (x(n))n⩾1 : (∀n ∈ N \ {0}, x(n) ∈ ℓnn) and
+∞∑
n=1

∥x(n)∥2n < +∞}. The set L2

endowed with the norms ∥.∥ defined by ∥x∥ = (

+∞∑
i=1

∥x(n)∥2n)
1
2 , is a Banach space. Since the ℓnn,

n ∈ N \ {0}, are finite-dimensional vector spaces endowed with the norms ∥.∥n, they are reflexive
and strictly convex. Thus, by [17] and Theorem 2 of [7], the space (L2, ∥.∥) is a strictly convex



On simple normal structure and best proximity points in reflexive Banach space 507

reflexive Banach space which is not uniformly convex.

• Let n ∈ N \ {0}. We consider the four elements Un = (x(k))k⩾1, V2n = (v(k))k⩾1, and
V2n+1 = (w(k))k⩾1 of L2 defined by:

x(n)(i) =


1

n
1
n

if 1 ⩽ i ⩽ n,

0 if i > n
, and u(k) = 0 if k ̸= n,

v(2n)(i) =


1

(2n)
1
2n

if 1 ⩽ i ⩽ n,

−1

(2n)
1
2n

if n+ 1 ⩽ i ⩽ 2n,

0 if i > n

, and v(k) = 0 if k ̸= 2n,

w(2n+ 1)(i) =


1

(2n+ 1)
1

2n+1

if 1 ⩽ i ⩽ n+ 1,

−1

(2n+ 1)
1

2n+2

if n+ 2 ⩽ i ⩽ 2n+ 1,

0 if i > 2n+ 1

and w(k) = 0 if k ̸= 2n+ 1.

It is clear that ∥Un∥ = ∥Un+1∥ = ∥V2n∥ = ∥V2n+1∥ = 1, for all n ∈ N \ {0}. Therefore the
subsets A = co(Un, V2n) and B = co(Un+1, V2n+1) are closed convex of BL2([0, 1]). We have
A = {λ.Un + (1− λ).V2n : λ ∈ [0, 1]} and B = {µ.Un+1 + (1− µ).V2n+1 : µ ∈ [0, 1]}.

• (A,B) have a simple normal structure. Indeed, let (X ,Y) be a nonempty closed convex pair
contained in (A,B). Then, there exist a, b, a′, b′ ∈ [0, 1] such that

X = {λ.Un + (1− λ).V2n ∈ A : λ ∈ [a, b]}

Y = {µ.Un+1 + (1− µ).V2n+1 ∈ B : µ ∈ [a′, b′]},

with a ⩽ b and a′ ⩽ b′.

Suppose the set Y is not a singleton, so a′ < b′. We put ρ(t) = t2 + (1− t)2, for all t ∈ [0, 1].

Case 1: a′, b′ ∈ [0,
1

2
], so ρ(b′) < ρ(a′). We have

δb′.Un+1+(1−b′).V2n+1
(X ) = sup

λ∈[a,b]

∥(λ.Un + (1− λ).V2n)− (b′.Un+1 + (1− b′).V2n+1)∥

= sup
λ∈[a,b]

√
λ2 + (1− λ)2 + b′2 + (1− b′)2

⩽
√
max{ρ(a), ρ(b)}+ b′2 + (1− b′)2

<
√
max{ρ(a), ρ(b)}+max{ρ(a′), ρ(b′)},

⩽ sup
(λ,µ)∈[a,b]×[a′,b′]

√
λ2 ++(1− λ)2 + µ2 + (1− µ)2

= δ(X ,Y).
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Case 2: a′, b′ ∈] 1
2
, 1], so ρ(a′) < ρ(b′). We have

δa′.Un+1+(1−a′).V2n+1
(X ) = sup

λ∈[a,b]

∥(λ.Un + (1− λ).V2n)− (a′.Un+1 + (1− a′).V2n+1)∥

= sup
λ∈[a,b]

√
λ2 + (1− λ)2 + a′2 + (1− a′)2

<
√
max{ρ(a), ρ(b)}+max{ρ(a′), ρ(b′)},

⩽ δ(X ,Y).

Case 3: 0 ⩽ a′ ⩽
1

2
⩽ b′ ⩽ 1. We have

δ 1
2 .(Un+1+V2n+1)(X ) = sup

λ∈[a,b]

∥(λ.Un + (1− λ).V2n)−
1

2
.(Un+1 + V2n+1)∥

= sup
λ∈[a,b]

√
λ2 + (1− λ)2 +

1

2

<
√
max{ρ(a), ρ(b)}+max{ρ(a′), ρ(b′)}, because a′ < b′,

⩽ δ(X ,Y).

Similarly, since a < b, if the set X is not a singleton, then there exists λ0 ∈ [0, 1] such that
δλ0.Un+(1−λ0).V2n)(Y) < δ(X ,Y).

In the following example, we give a compact convex pair (A,B) which has proximal
normal structure but does not have a simple normal structure.

Example 2.3. As in Example 2.1, we consider E = R2 equipped with the norm ∥.∥∞. Let a =
(0, 0), a′ = (0, 1), b = (2, 0), b′ = (2, 1), A = [a, a′] and B = [b, b′]. On the one hand, since for
every (x, y) ∈ A × B, ∥x − y∥∞ = 2, then (A,B) does not have a simple normal structure. On
the other hand, as (A,B) is compact convex pair of a Banach space, according to Proposition 2.2.
of [9], (A,B) has proximal normal structure.

Following almost the same steps of the proof of Proposition 2.1 in [9], without using
the notion of proximal pair, we obtain the following result.

Proposition 2.2. If (A,B) is a nonempty convex pair in a uniformly convex Banach space E, then
(A,B) has a simple normal structure.

Proof. Let (X ,Y) be a nonempty closed bounded and convex pair in E such that X ⊂ A

(resp. Y ⊂ B). Suppose that X is not a singleton. Then there exists (x1, x2) ∈ X 2 such that
x1 ̸= x2. For y ∈ Y , by the definition of δ(X ,Y), we have

∥x1 − y∥ ⩽ δ(X ,Y) and ∥x2 − y∥ ⩽ δ(X ,Y).

Put η = 1−ζ
∥x1 − x2∥
δ(X ,Y)

(for the function ζ, see the definition of a uniformly convex space).

By the convexity of X , x∗ =
x1 + x2

2
∈ X and by the uniform convexity of E, one has

∥x∗ − y∥ ⩽ η δ(X ,Y).

Hence, δx∗(Y) ⩽ η δ(X ,Y) < δ(X ,Y). Similarly, if Y is not a singleton there exists y∗ ∈ Y
such that δy∗(X ) < δ(X ,Y). That is (A,B) has a simple normal structure. □

Example 2.3 shows that a compact convex pair in a Banach space does not necessarily
have a simple normal structure. But it is the case in a strictly convex Banach space.
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Proposition 2.3. Let (A,B) be a nonempty compact convex pair in a Banach space E. If E is
strictly convex, then (A,B) has a simple normal structure.

Proof. Let (X ,Y) be any nonempty bounded closed and convex pair contained in (A,B).
Suppose that X is not a singleton and let x1 ̸= x2 be elements of X . By the convexity of

X , x0 =
x1 + x2

2
∈ X . On the one hand, since Y is compact, there is y0 ∈ Y such that

∥x0 − y0∥ = δx0
(Y). On the other hand, ∥xi − y0∥ ≤ δ(X ,Y) for i = 1, 2. Therefore, by the

strict convexity of E, δx0(Y) = ∥x0 − y0∥ < δ(X ,Y). □

Proposition 2.4. Let (A,B) be a nonempty weakly compact convex pair in a Banach space E.
Suppose δ(X ,Y) > max{δ(X ), δ(Y)} + dist(X ,Y) for every nonempty bounded closed and
convex pair (X ,Y) such that X or Y is not a singleton, and X ⊂ A and Y ⊂ B. Then, (A,B) has
a simple normal structure.

Proof. Let (X ,Y) be any nonempty bounded closed and convex pair contained in (A,B).
Suppose Y is not a singleton. If we assume that δy(X ) = δ(X ,Y), for each y ∈ Y , then there
exists a sequence ((xn, yn))n⩾0 of X × Y such that lim

n→+∞
∥xn − yn∥ = dist(X ,Y). Since

(X ,Y) is a closed convex pair, it is therefore weakly closed, and by hypothesis (A,B)
is weakly compact. Thus there exists a subsequence ((xϕ(n), yϕ(n)))n⩾0 of ((xn, yn))n⩾0

which weakly converges to (h, k) ∈ X × Y , and we have

∥h− k∥ ⩽ lim
n→+∞

∥xϕ(n) − yϕ(n)∥ = dist(X ,Y).

Hence, ∥h− k∥ = dist(X ,Y).
Let m ∈ N. There exists a sequence (zn)n⩾0 of X such that

lim
n→+∞

∥zn − yϕ(m)∥ = δyϕ(m)
(X ).

For each n ∈ N, we have

∥zn − yϕ(m)∥ ⩽ ∥zn − xϕ(m)∥+ ∥xϕ(m) − yϕ(m)∥ ⩽ δ(X ) + ∥xϕ(m) − yϕ(m)∥.
Taking the limit as n → +∞ in the previous inequality, we obtain

(2.1) δ(X ,Y) = δyϕ(m)
(X ) ⩽ δ(X ) + ∥xϕ(m) − yϕ(m)∥, for all m ∈ N.

Letting m → +∞ in the inequality (2.1), we get

δ(X ,Y) ⩽ δ(X ) + dist(X ,Y) ⩽ max{δ(X ), δ(Y)}+ dist(X ,Y),

which contradicts hypothesis of the Proposition 2.4. Thus there exists k0 ∈ Y such that
δk0(X ) < δ(X ,Y).
Similarly, if X is a singleton, there exists h0 ∈ X such that δh0(Y) < δ(X ,Y). □

In order to establish our first result (Theorem 2.5 below), we need to prove two techni-
cal lemmas.

Lemma 2.1. If A and B are nonempty closed bounded and convex subsets of a reflexive Banach
space E, then AB and BA are nonempty closed bounded and convex.

Proof. For every ε > 0 and for every y ∈ B, we set

(2.2) C(y, ε) =

{
x ∈ A : ∥x− y∥ ⩽ δA(B) +

1

ε

}
and; Cε =

⋂
y∈B

C(y, ε).

Let ε > 0. According to the characterization of the lower bound, for this ε, there exists
x ∈ A such that δx(B) ⩽ δA(B) + ε, whence, for every y ∈ B,

∥x− y∥ ≤ δx(B) ⩽ δA(B) + ε,
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which shows that x ∈ Cε. Thus Cε ̸= ∅.

AB =
⋂
ε>0

Cε. Indeed, if x ∈ AB, then for all y ∈ B,

∥x− y∥ ⩽ δx(B) = δA(B) < δA(B) +
1

ε
, for all ε > 0.

So x ∈
⋂
y∈B

C(y, ε), for all ε > 0, i.e. x ∈
⋂
ε>0

Cε.

Conversely, if x ∈
⋂
ε>0

Cε, then for all ε > 0 and y ∈ B, ∥x− y∥ ⩽ δA(B) +
1

ε
. Therefore,

δA(B) ⩽ δx(B) ⩽ δA(B) +
1

ε
, for all ε > 0.

By letting ε tend to +∞ in the inequality, we obtain δA(B) = δx(B), which shows that
x ∈ AB.

For each ε > 0 and y ∈ B, the set C(y, ε) is closed and convex, so Cε and AB are too. As
A is bounded, so is AB.

The family {Cε : ε > 0} is made up of decreasing (in the sense of inclusion), nonempty
bounded closed and convex parts and as E is a reflexive Banach space, then

AB =
⋂
ε>0

Cε ̸= ∅.

which was to be shown. □

Lemma 2.2. If (A,B) is nonempty closed bounded and convex subset of a reflexive Banach space
E having a simple normal structure. Then, for every pair (X ,Y) of nonempty closed bounded and
convex pair in (A,B) we have the following implication :

(X and Y contains more than on point) ⇒ max{δ(YX ,X ), δ(XY ,Y)} < δ(X ,Y).

Proof. By the assumed simple normal structure, there is some x ∈ X such that δx(Y) <
δ(X ,Y). For every (a, y) ∈ XY × Y ,

∥a− y∥ ≤ δa(Y) = δX (Y).

Therefore,
δ(XY ,Y) ⩽ δX (Y) ⩽ δx(Y) < δ(X ,Y).

Similarly we show that δ(YX ,X ) < δ(X ,Y). □

Definition 2.4. Given a map T : A∪B → A∪B, we say that T satisfies the min-max condition
if, for all (x, y) ∈ A×B, we have

dist(A,B) < d(x, y) ⇒ max(Tx,Ty) ̸= min(Tx,Ty),

where min(Tx,Ty) and max(Tx,Ty) are defined as

min(Tx,Ty) = min{d(x, y), d(x,Tx), d(y,Ty), d(Tx,Ty), d(x,T2y),

d(y,T2x), d(Tx,T2x), d(Ty,T2y), d(T2x,T2y)}

max(Tx,Ty) = min{d(x, y), d(x,Tx), d(y,Ty), d(Tx,Ty), d(x,T2y),

d(y,T2x), d(Tx,T2x), d(Ty,T2y), d(T2x,T2y)}.

Here, for all u, v ∈ E , d(u, v) denotes the real ∥u− v∥.
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Theorem 2.5. Let E be a reflexive Banach space, and let A, B be two nonempty, convex, bounded,
and closed subsets of E having a simple normal structure. Let T : A ∪ B −→ A ∪ B a cyclic
relatively nonexpansive. Then, there exists (x∗, y∗) ∈ A×B such that

(2.3) Tx∗ = y∗ and Ty∗ = x∗

and so T2x∗ = x∗ and T2y∗ = y∗.

If furthermore, T satisfies the min-max condition, then

(2.4) dist(x∗,Tx∗) = dist(A,B) = dist(y∗,Ty∗).

Proof. Let F denote the collection of all the pairs (X,Y ) such that X and Y are nonempty
bounded closed and convex subsets of E verifying X ⊂ A, Y ⊂ B,T(X) ⊂ Y and T(Y ) ⊂
X . Obviously, F is nonempty since (A,B) ∈ F . The set F is equipped with the order
relation ’⪯’ defined by for all (X,Y ), (X ′, Y ′) ∈ F ,

(X,Y ) ⪯ (X ′, Y ′) ⇐⇒ (X ⊆ X ′, Y ⊆ Y ′).

Let (Xα, Yα)α∈Γ be a decreasing chain in F . Define (L,K) by

L =
⋂
α∈Γ

Xα and K =
⋂
α∈Γ

Yα.

It is clear that (L,K) ̸= ∅, since for all α ∈ Γ, Xα and Yα are nonempty bounded closed and
convex subsets of reflexive space E. Moreover, T(L) ⊂ K, T(K) ⊂ L and (L,K) ⊆ (A,B).
Thus (L,K) ∈ F . Hence, Zorn’s lemma implies that F has a minimal element, which we
denote by (U, V ).
Let x ∈ UV . For all y ∈ V , ∥Tx− Ty∥ ⩽ ∥x− y∥ ⩽ δU (V ). Then

T(V ) ⊂ U ∩ B(T x, δU (V )),

Similarly, let y′ ∈ VU , for all x′ ∈ U , ∥Tx′ − Ty′∥ ⩽ ∥x′ − y′∥ ≤ δV (U). Then

T(U) ⊂ V ∩ B(Ty′, δV (U)),

where B(Tx, δU (V )) (resp. B(Ty′, δV (U))) is the closed ball with radius δU (V ) centered at
Tx (resp. radius δV (U) centered at Ty′). We have U ∩B(Tx, δU (V )) and V ∩B(Ty′, δV (U))
are nonempty bounded closed and convex subsets of A and B resp., and

T(V ∩ B(Ty′, δV (U))) ⊂ U ∩ B(Tx, δU (V ))

T(U ∩ B(Tx, δU (V ))) ⊂ V ∩ B(Ty′, δV (U)).

By minimality of (U, V ), we have

U = U ∩ B(Tx, δU (V )) and V = V ∩ B(Ty′, δV (U))).

So
U ⊆ B(Tx, δU (V )) and V ⊆ B(Ty′, δV (U))).

Hence, δTx(U) ⩽ δU (V ) and δTy′(V ) ⩽ δV (U). Therefore δV (U) ⩽ δU (V ) and δU (V ) ⩽
δV (U). This give δU (V ) = δV (U), which implies that, for all z ∈ U , ∥Tx − z∥ ⩽ δU (V ) =
δV (U), whence δTx(V ) = δV (U) and Tx ∈ VU . Therefore TUV ⊂ VU . Similarly one has
TVU ⊂ UV .
By Lemma 2.1, (UV , VU ) ∈ F and since UV ⊆ U , VU ⊆ V and F has a minimal element
(U, V ), then (UV , VU ) = (U, V ). Consequently δ(UV , V ) = δ(U, V ), so

max{δ(UV , V ), δ(VU , U)} = δ(U, V ).

Hence by Lemma 2.2, U or V is a singleton. If for example U is a singleton, there exists
x∗ ∈ A such that U = {x∗}. The following inclusions T(V ) ⊆ U give us T2x∗ = x∗. Setting
y∗ = Tx∗, we obtain Ty∗ = x∗ and T2y∗ = y∗. Similarly, if we consider V a singleton.
As a result, max(Tx∗,Ty∗) = d(x∗, y∗) = min(Tx∗,Ty∗).
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Since, T satisfies the min-max condition, we obtain that d(x∗, y∗) = dist(A,B). It fol-
lows that

d(x∗,Tx∗) = dist(A,B) = d(y∗,Ty∗),

which completes the proof. □

Example 2.4. Consider the real space Rm, m ≥ 2, endowed with the norm ∥.∥1 defined by

∀x = (x1, · · · , xm) ∈ Rm, ∥x∥1 =

m∑
k=1

|xk|.

Let
A = {x = (x1, · · · , xm) ∈ Rm : 1 ⩽ x1 ⩽ 2 and x2 = · · · = xm = 1};

B = {y = (y1, · · · , ym) ∈ Rm : −2 ⩽ y1 ⩽ −1 and y2 = · · · = ym = −1}.
The space Rm equipped with the norm ∥.∥1, is reflexive and not strictly convex. Then the sets A
and B are convex, nonempty, closed and the pair (A,B) has a simple normal structure. Moreover,
dist(A,B) = 2m. Consider the mapping T : A×B → A×B defined by

for x = (x1, 1, · · · , 1) ∈ A, T(x) = (−
√
x1,−1, · · · ,−1)

for y = (y1,−1, · · · ,−1) ∈ B, T(y) = (
√
−y1, 1, · · · , 1).

We have T2(x) = (x
1
4
1 , 1, · · · , 1) and T2(y) = (−(−y1)

1
4 ,−1, · · · ,−1). Moreover, for all

(x, y) ∈ A×B,

∥T(x)− T(y)|1 = ∥(−
√
x1,−1, · · · ,−1)− (

√
−y1, 1, · · · , 1)∥1 = |

√
x1 +

√
−y1|+ 2(m− 1)

⩽ (x1 − y1) + 2(m− 1)

= ∥x− y∥1.

Furthermore, the mapping T satisfies the min-max condition. By Theorem 2.5, there exists
(x∗, y∗) ∈ A×B such that x∗ and y∗ are best proximity points, and

T2x∗ = x∗ and T2y∗ = y∗,

with x∗ = (1, 1, · · · , 1), y∗ = (−1,−1, · · · ,−1).

The notion of “simple normal structure” is a natural extension of the concept of “nor-
mal structure” introduced by Milman and Brodskii [5] and studied by W. A. Kirk in [14].
Using Theorem 2.5, we can prove (Corollary 2.1 below) the well-known Kirk’s fixed point
theorem [14].

Corollary 2.1. Let E be a reflexive Banach space, and let A be a nonempty, convex, bounded, and
closed subset of E such that (A,A) has a simple normal structure. If a mapping R : A −→ A is
such that

(2.5) ∀(x, y) ∈ A×A : ∥Rx−Ry∥ ⩽ ∥x− y∥,
then there exists a ∈ A such that Ra = a.

Proof. Taking A = B and T =
1

2
(R + IdA) in Theorem 2.5, one can deduce that there is

a ∈ A such that T2a = a. To prove the result, note that

Ta− a = Ra− Ta =
1

2
(Ra− a).

Since a = T2a, we hence get

Ra− a = Ra− T2a = Ra− 1

2
(RTa+ Ta) =

1

2
(Ra−RTa) +

1

2
(Ra− Ta)
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and, consequently,

∥Ra− a∥ ⩽
1

2
∥a− Ta∥+ 1

4
∥Ra− a∥ =

1

2
∥Ra− a∥,

which implies Ra = a. □

2.2. Simple normal structure and best proximity points of a cyclic contraction map. In
the following we present some results on cyclic contractions.

Lemma 2.3. Let (A,B) be a pair of nonempty subset of a normed space E. If T : A∪B −→ A∪B

is a cyclic contraction and x ∈ A is a fixed point of T2, then for every x0 ∈ A, the sequence(
∥T2n(x0)− T(x)∥

)
n∈N converges to dist(A,B).

Proof. Let κ ∈ (0, 1). Suppose

∀(x, y) ∈ A×B, ∥T(x)− T(y)∥ ⩽ κ∥x− y∥+ (1− κ) dist(A,B).

By induction we can show that, for every n ∈ N,

dist(A,B) ⩽ ∥T2n(x0)− T(x)∥ ⩽ κ2n∥x0 − T(x)∥+ (1− κ2n) dist(A,B).

The result follows by tending n to infinity. □

Theorem 2.6. Let E be a reflexive Banach space, and let (A,B) be a pair of nonempty, convex,
bounded, and closed subsets of E with a simple normal structure. Let T : A ∪ B −→ A ∪ B be a
cyclic contraction mapping. Then T2 admits at least one fixed point x∗ ∈ A, which is also a best
proximity point for T in A.
If moreover E is strictly convex space, then

(i) x∗ is the unique best proximity point of T;
(ii) for every x0 ∈ A, the sequence (T2n(x0))n∈N converges weakly to x∗.

Proof. As T is a cyclic contraction, T is cyclic relatively nonexpansive. T satisfies the con-
dition min-max. Indeed, let (x, y) ∈ A × B such that dist(A,B) < ∥x − y∥. Since T is a
cyclic contraction with κ ∈ (0, 1), then

∥Tx− Ty∥ ⩽ κ∥x− y∥+ (1− κ)dist(A,B) < ∥x− y∥,
therefore ∥Tx− Ty∥ < ∥x− y∥, thus min(Tx,Ty) ̸= max(Tx,Ty).
According to Theorem 2.5, T admits at least one best proximity point x∗ ∈ A, which is
also a fixed point of T2 in A.
We assume that E is strictly convex.

(i) Suppose there exist x1, x2 ∈ A, two best proximity points of T such that, T2(x1) = x1

and T2(x2) = x2. Taking x0 = x2 in Lemma 2.3, we get

lim
n→+∞

∥T2n(x0)− T(x1)∥ = dist(A,B),

whence
∥x2 − T(x1)∥ = dist(A,B) = ∥x1 − T(x1)∥.

Moreover, dist(A,B) ⩽ dist(T(x1),A) ⩽ ∥T(x1) − x1∥ = dist(A,B). So dist(T(x),A) =
dist(A,B), and x1, x2 ∈ PA(T(x1)).

Since A is nonempty closed and convex subset of reflexive strictly convex Banach space
E, by Remark 1.1, A is a Chebyshev set. Hence, x1 = x2.

(ii) Let x0 ∈ A and define the sequence (xn)n∈N by, xn+1 = T(xn). According to the
Lemma 2.3, the sequence (∥x2n − T(x)∥)n⩾0 converges to dist(A,B). Since the sequence
(x2n)n∈N is in the closed, bounded and convex subset A of the reflexive Banach space
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E, so, by the Banach-Alaoglu theorem, it admits a subsequence (x2φ(n))n∈N converging
weakly to an element of A.
Now let us show that (x2n)n⩾0 converges weakly to x∗. Indeed, let (x2ψ(n))n⩾0 be a subse-
quence of (x2n)n⩾0. Then, there exists a subsequence (x2(ψ◦σ)(n))n⩾0 of (x2ψ(n))n⩾0 which
converges weakly to an element a ∈ A. We have

dist(A,B) ⩽ ∥a− T(x∗)∥
⩽ lim inf

n→+∞
∥x2(ψ◦σ)(n) − T(x∗)∥

= dist(A,B),

which implies that a = x∗, and this is true for any subsequence (x2ψ(n))n⩾0 of (x2n)n⩾0.
Thus the sequence (x2n)n⩾0 converges weakly to x∗. □

Example 2.5. In the previous Example 2.2, A and B are nonempty convex bounded closed subsets
of L2, and (A,B) have a simple normal structure. Since ∥Un∥ = ∥V2n∥ = ∥Un+1∥ = ∥V2n+1∥ =
1, for all n ∈ N \ {0},

dist(A,B) = inf
(u,v)∈A×B

∥u− v∥

= inf
(λ,µ)∈[0,1]2

∥(λ.Un + (1− λ).V2n)− (µ.Un+1 + (1− µ).V2n+1)∥

= inf
(λ,µ)∈[0,1]2

√
λ2 + (1− λ)2 + µ2 + (1− µ)2 = 1,

Define T : A ∪ B → A ∪B by :
if x = λ.Un + (1− λ).V2n ∈ A, with λ ∈ [0, 1], T(x) =

1

2
(Un + V2n),

if y = µ.Un+1 + (1− µ).V2n+1 ∈ B, with µ ∈ [0, 1], T(y) =
1

2
.(Un+1 + V2n+1).

We have
∥x− y∥ =

√
λ2 + (1− λ)2 + µ2 + (1− µ)2 ⩾ 1 = dist(A,B).

So

∥T(x)− T(y)∥ = ∥1
2
(Un + V2n)−

1

2
.(Un+1 + V2n+1)∥ = 1

= dist(A,B) = λ dist(A,B) + (1− λ) dist(A,B)

⩽ κ ∥x− y∥+ (1− κ) dist(A,B), where κ an element of [0, 1].

Hence, T is a cyclic contraction. By Theorem 2.6, T admits a unique best proximity point x∗ =
1

2
(Un + V2n) ∈ A.

Remark 2.4. To summarize, consider a nonempty closed and convex pair (A,B) in a reflexive and
strictly convex normed space. Then, each of the hypotheses below implies the existence of a unique
x ∈ A ∪B such that T2x = x and ∥x− Tx∥ = dist(A,B) :

(1) T is weakly continuous on A or B [1, Theorem 12];
(2) For every sequence (xn)n∈N in A∪B that converges weakly to an x ∈ A∪B and verifying

lim
n→∞

∥xn − Txn∥ = dist(A,B), one has ∥x− Tx∥ = dist(A,B) [1, Theorem 12];
(3) (A−A) ∩ (B−B) = {0} [1, Theorem 11];
(4) (A,B) is bounded and has a simple normal structure (Theorem 2.6).

The condition “(A,B) has a simple normal structure” does not generally imply the condition
“(A−A) ∩ (B−B) = {0}”, as example 2.4 shows.
It is remarkable to note that in Theorem 2.6, the strict convexity of the reflexive Banach space E is
only used to study the uniqueness of a best proximity point for the map T.



On simple normal structure and best proximity points in reflexive Banach space 515

Finally, we note that in the two main theorems 2.5 and 2.6, a delimitation of the domain sets
A and B is assumed. This assumption is closely related to observations made by Zhelinski and
Zlatanov [20], where a bounded UC property for the ordered pair (A,B) is introduced.
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